1
|
Meissner JM, Akhmetova K, Szul T, Viktorova EG, Sha B, Bhatt JM, Lee EJ, Kahn RA, Belov GA, Chesnokov I, Sztul E. The Arf-GEF GBF1 undergoes multi-domain structural shifts to activate Arf at the Golgi. Front Cell Dev Biol 2023; 11:1233272. [PMID: 37745300 PMCID: PMC10512945 DOI: 10.3389/fcell.2023.1233272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Golgi homeostasis require the activation of Arf GTPases by the guanine-nucleotide exchange factor requires GBF1, whose recruitment to the Golgi represents a rate limiting step in the process. GBF1 contains a conserved, catalytic, Sec7 domain (Sec7d) and five additional (DCB, HUS, HDS1-3) domains. Herein, we identify the HDS3 domain as essential for GBF1 membrane association in mammalian cells and document the critical role of HDS3 during the development of Drosophila melanogaster. We show that upon binding to Golgi membranes, GBF1 undergoes conformational changes in regions bracketing the catalytic Sec7d. We illuminate GBF1 interdomain arrangements by negative staining electron microscopy of full-length human GBF1 to show that GBF1 forms an anti-parallel dimer held together by the paired central DCB-HUS core, with two sets of HDS1-3 arms extending outward in opposite directions. The catalytic Sec7d protrudes from the central core as a largely independent domain, but is closely opposed to a previously unassigned α-helix from the HDS1 domain. Based on our data, we propose models of GBF1 engagement on the membrane to provide a paradigm for understanding GBF1-mediated Arf activation required for cellular and organismal function.
Collapse
Affiliation(s)
- Justyna M. Meissner
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Katarina Akhmetova
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tomasz Szul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ekaterina G. Viktorova
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Bingdong Sha
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jay M. Bhatt
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eunjoo J. Lee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - George A. Belov
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Igor Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Boutet A, Zeledon C, Emery G. ArfGAP1 regulates the endosomal sorting of guidance receptors to promote directed collective cell migration in vivo. iScience 2023; 26:107467. [PMID: 37599820 PMCID: PMC10432204 DOI: 10.1016/j.isci.2023.107467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Chemotaxis drives diverse migrations important for development and involved in diseases, including cancer progression. Using border cells in the Drosophila egg chamber as a model for collective cell migration, we characterized the role of ArfGAP1 in regulating chemotaxis during this process. We found that ArfGAP1 is required for the maintenance of receptor tyrosine kinases, the guidance receptors, at the plasma membrane. In the absence of ArfGAP1, the level of active receptors is reduced at the plasma membrane and increased in late endosomes. Consequently, clusters with impaired ArfGAP1 activity lose directionality. Furthermore, we found that the number and size of late endosomes and lysosomes are increased in the absence of ArfGAP1. Finally, genetic interactions suggest that ArfGAP1 acts on the kinase and GTPase Lrrk to regulate receptor sorting. Overall, our data indicate that ArfGAP1 is required to maintain guidance receptors at the plasma membrane and promote chemotaxis.
Collapse
Affiliation(s)
- Alison Boutet
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada
| | - Carlos Zeledon
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada
| | - Gregory Emery
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
3
|
Glashauser J, Camelo C, Hollmann M, Backer W, Jacobs T, Sanchez JI, Schleutker R, Förster D, Berns N, Riechmann V, Luschnig S. Acute manipulation and real-time visualization of membrane trafficking and exocytosis in Drosophila. Dev Cell 2023; 58:709-723.e7. [PMID: 37023749 DOI: 10.1016/j.devcel.2023.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023]
Abstract
Intracellular trafficking of secretory proteins plays key roles in animal development and physiology, but so far, tools for investigating the dynamics of membrane trafficking have been limited to cultured cells. Here, we present a system that enables acute manipulation and real-time visualization of membrane trafficking through the reversible retention of proteins in the endoplasmic reticulum (ER) in living multicellular organisms. By adapting the "retention using selective hooks" (RUSH) approach to Drosophila, we show that trafficking of GPI-linked, secreted, and transmembrane proteins can be controlled with high temporal precision in intact animals and cultured organs. We demonstrate the potential of this approach by analyzing the kinetics of ER exit and apical secretion and the spatiotemporal dynamics of tricellular junction assembly in epithelia of living embryos. Furthermore, we show that controllable ER retention enables tissue-specific depletion of secretory protein function. The system is broadly applicable to visualizing and manipulating membrane trafficking in diverse cell types in vivo.
Collapse
Affiliation(s)
- Jade Glashauser
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Carolina Camelo
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Manuel Hollmann
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Wilko Backer
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Thea Jacobs
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Jone Isasti Sanchez
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Raphael Schleutker
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Dominique Förster
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Nicola Berns
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Veit Riechmann
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Stefan Luschnig
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
4
|
Scholl A, Ndoja I, Jiang L. Drosophila Trachea as a Novel Model of COPD. Int J Mol Sci 2021; 22:ijms222312730. [PMID: 34884534 PMCID: PMC8658011 DOI: 10.3390/ijms222312730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
COPD, a chronic obstructive pulmonary disease, is one of the leading causes of death worldwide. Clinical studies and research in rodent models demonstrated that failure of repair mechanisms to cope with increased ROS and inflammation in the lung leads to COPD. Despite this progress, the molecular mechanisms underlying the development of COPD remain poorly understood, resulting in a lack of effective treatments. Thus, an informative, simple model is highly valued and desired. Recently, the cigarette smoke-induced Drosophila COPD model showed a complex set of pathological phenotypes that resemble those seen in human COPD patients. The Drosophila trachea has been used as a premier model to reveal the mechanisms of tube morphogenesis. The association of these mechanisms to structural changes in COPD can be analyzed by using Drosophila trachea. Additionally, the timeline of structural damage, ROS, and inflammation can be studied in live organisms using fluorescently-tagged proteins. The related function of human COPD genes identified by GWAS can be screened using respective fly homologs. Finally, the Drosophila trachea can be used as a high-throughput drug screening platform to identify novel treatments for COPD. Therefore, Drosophila trachea is an excellent model that is complementary to rodent COPD models.
Collapse
|
5
|
Fujii S, Kurokawa K, Tago T, Inaba R, Takiguchi A, Nakano A, Satoh T, Satoh AK. Sec71 separates Golgi stacks in Drosophila S2 cells. J Cell Sci 2020; 133:jcs245571. [PMID: 33262309 PMCID: PMC10668125 DOI: 10.1242/jcs.245571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/18/2020] [Indexed: 01/19/2023] Open
Abstract
Golgi stacks are the basic structural units of the Golgi. Golgi stacks are separated from each other and scattered in the cytoplasm of Drosophila cells. Here, we report that the ARF-GEF inhibitor Brefeldin A (BFA) induces the formation of BFA bodies, which are aggregates of Golgi stacks, trans-Golgi networks and recycling endosomes. Recycling endosomes are located in the centers of BFA bodies, while Golgi stacks surround them on their trans sides. Live imaging of S2 cells revealed that Golgi stacks repeatedly merged and separated on their trans sides, and BFA caused successive merger by inhibiting separation, forming BFA bodies. S2 cells carrying genome-edited BFA-resistant mutant Sec71M717L did not form BFA bodies at high concentrations of BFA; S2 cells carrying genome-edited BFA-hypersensitive mutant Sec71F713Y produced BFA bodies at low concentrations of BFA. These results indicate that Sec71 is the sole BFA target for BFA body formation and controls Golgi stack separation. Finally, we showed that impairment of Sec71 in fly photoreceptors induces BFA body formation, with accumulation of both apical and basolateral cargoes, resulting in inhibition of polarized transport.
Collapse
Affiliation(s)
- Syara Fujii
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tatsuya Tago
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Ryota Inaba
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Arata Takiguchi
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akiko K Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
6
|
Zeledon C, Sun X, Plutoni C, Emery G. The ArfGAP Drongo Promotes Actomyosin Contractility during Collective Cell Migration by Releasing Myosin Phosphatase from the Trailing Edge. Cell Rep 2020; 28:3238-3248.e3. [PMID: 31533044 DOI: 10.1016/j.celrep.2019.08.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Collective cell migration is involved in various developmental and pathological processes, including the dissemination of various cancer cells. During Drosophila melanogaster oogenesis, a group of cells called border cells migrate collectively toward the oocyte. Herein, we show that members of the Arf family of small GTPases and some of their regulators are required for normal border cell migration. Notably, we found that the ArfGAP Drongo and its GTPase-activating function are essential for the initial detachment of the border cell cluster from the basal lamina. We demonstrate through protein localization and genetic interactions that Drongo controls the localization of the myosin phosphatase in order to regulate myosin II activity at the back of the cluster. Moreover, we show that toward the class III Arf, Drongo acts antagonistically to the guanine exchange factor Steppke. Overall, our work describes a mechanistic pathway that promotes the local actomyosin contractility necessary for border cell detachment.
Collapse
Affiliation(s)
- Carlos Zeledon
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Xiaojuan Sun
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Cédric Plutoni
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Gregory Emery
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
7
|
Gonçalves-Pimentel C, Mazaud D, Kottler B, Proelss S, Hirth F, Fanto M. A miRNA screen procedure identifies garz as an essential factor in adult glia functions and validates Drosophila as a beneficial 3Rs model to study glial functions and GBF1 biology. F1000Res 2020; 9:317. [PMID: 32595956 PMCID: PMC7309417 DOI: 10.12688/f1000research.23154.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 03/21/2024] Open
Abstract
Invertebrate glia performs most of the key functions controlled by mammalian glia in the nervous system and provides an ideal model for genetic studies of glial functions. To study the influence of adult glial cells in ageing we have performed a genetic screen in Drosophila using a collection of transgenic lines providing conditional expression of micro-RNAs (miRNAs). Here, we describe a methodological algorithm to identify and rank genes that are candidate to be targeted by miRNAs that shorten lifespan when expressed in adult glia. We have used four different databases for miRNA target prediction in Drosophila but find little agreement between them, overall. However, top candidate gene analysis shows potential to identify essential genes involved in adult glial functions. One example from our top candidates' analysis is gartenzwerg ( garz). We establish that garz is necessary in many glial cell types, that it affects motor behaviour and, at the sub-cellular level, is responsible for defects in cellular membranes, autophagy and mitochondria quality control. We also verify the remarkable conservation of functions between garz and its mammalian orthologue, GBF1, validating the use of Drosophila as an alternative 3Rs-beneficial model to knock-out mice for studying the biology of GBF1, potentially involved in human neurodegenerative diseases.
Collapse
Affiliation(s)
- Catarina Gonçalves-Pimentel
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
- Champalimaud Research, Champalimaud Foundation, Av. Brasília, Lisbon, 1400-038, Portugal
| | - David Mazaud
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
| | - Benjamin Kottler
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
| | - Sandra Proelss
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
- Institut du Cerveau et de la Moelle épinière (ICM), 47, bd de l'hôpital, Paris, F-75013, France
| |
Collapse
|
8
|
Gonçalves-Pimentel C, Mazaud D, Kottler B, Proelss S, Hirth F, Fanto M. A miRNA screen procedure identifies garz as an essential factor in adult glia functions and validates Drosophila as a beneficial 3Rs model to study glial functions and GBF1 biology. F1000Res 2020; 9:317. [PMID: 32595956 PMCID: PMC7309417 DOI: 10.12688/f1000research.23154.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2020] [Indexed: 11/25/2022] Open
Abstract
Invertebrate glia performs most of the key functions controlled by mammalian glia in the nervous system and provides an ideal model for genetic studies of glial functions. To study the influence of adult glial cells in ageing we have performed a genetic screen in Drosophila using a collection of transgenic lines providing conditional expression of micro-RNAs (miRNAs). Here, we describe a methodological algorithm to identify and rank genes that are candidate to be targeted by miRNAs that shorten lifespan when expressed in adult glia. We have used four different databases for miRNA target prediction in Drosophila but find little agreement between them, overall. However, top candidate gene analysis shows potential to identify essential genes involved in adult glial functions. One example from our top candidates' analysis is gartenzwerg ( garz). We establish that garz is necessary in many glial cell types, that it affects motor behaviour and, at the sub-cellular level, is responsible for defects in cellular membranes, autophagy and mitochondria quality control. We also verify the remarkable conservation of functions between garz and its mammalian orthologue, GBF1, validating the use of Drosophila as an alternative 3Rs-beneficial model to knock-out mice for studying the biology of GBF1, potentially involved in human neurodegenerative diseases.
Collapse
Affiliation(s)
- Catarina Gonçalves-Pimentel
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
- Champalimaud Research, Champalimaud Foundation, Av. Brasília, Lisbon, 1400-038, Portugal
| | - David Mazaud
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
| | - Benjamin Kottler
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
| | - Sandra Proelss
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
- Institut du Cerveau et de la Moelle épinière (ICM), 47, bd de l'hôpital, Paris, F-75013, France
| |
Collapse
|
9
|
Scholl A, O'Brien MJ, Chandran RR, Jiang L. The novel gene
apnoia
regulates
Drosophila
tracheal tube size. Dev Dyn 2019; 248:477-487. [DOI: 10.1002/dvdy.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Aaron Scholl
- Department of Biological SciencesOakland University Rochester Michigan
| | | | | | - Lan Jiang
- Department of Biological SciencesOakland University Rochester Michigan
| |
Collapse
|
10
|
Prince E, Kroeger B, Gligorov D, Wilson C, Eaton S, Karch F, Brankatschk M, Maeda RK. Rab-mediated trafficking in the secondary cells of Drosophila male accessory glands and its role in fecundity. Traffic 2018; 20:137-151. [PMID: 30426623 PMCID: PMC6492190 DOI: 10.1111/tra.12622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
Abstract
The male seminal fluid contains factors that affect female post‐mating behavior and physiology. In Drosophila, most of these factors are secreted by the two epithelial cell types that make up the male accessory gland: the main and secondary cells. Although secondary cells represent only ~4% of the cells of the accessory gland, their contribution to the male seminal fluid is essential for sustaining the female post‐mating response. To better understand the function of the secondary cells, we investigated their molecular organization, particularly with respect to the intracellular membrane transport machinery. We determined that large vacuole‐like structures found in the secondary cells are trafficking hubs labeled by Rab6, 7, 11 and 19. Furthermore, these organelles require Rab6 for their formation and many are essential in the process of creating the long‐term postmating behavior of females. In order to better serve the intracellular membrane and protein trafficking communities, we have created a searchable, online, open‐access imaging resource to display our complete findings regarding Rab localization in the accessory gland.
Collapse
Affiliation(s)
- Elodie Prince
- Department of Genetics and Evolution, Section of Biology, Sciences Faculty, University of Geneva, Geneva, Switzerland
| | - Benjamin Kroeger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Dragan Gligorov
- Department of Genetics and Evolution, Section of Biology, Sciences Faculty, University of Geneva, Geneva, Switzerland
| | - Clive Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Suzanne Eaton
- Biotechnology Center of the TU Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - François Karch
- Department of Genetics and Evolution, Section of Biology, Sciences Faculty, University of Geneva, Geneva, Switzerland
| | - Marko Brankatschk
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Robert K Maeda
- Department of Genetics and Evolution, Section of Biology, Sciences Faculty, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Pocognoni CA, Viktorova EG, Wright J, Meissner JM, Sager G, Lee E, Belov GA, Sztul E. Highly conserved motifs within the large Sec7 ARF guanine nucleotide exchange factor GBF1 target it to the Golgi and are critical for GBF1 activity. Am J Physiol Cell Physiol 2018; 314:C675-C689. [PMID: 29443553 DOI: 10.1152/ajpcell.00221.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular life requires the activation of the ADP-ribosylation factors (ARFs) by Golgi brefeldin A-resistant factor 1 (GBF1), a guanine nucleotide exchange factor (GEF) with a highly conserved catalytic Sec7 domain (Sec7d). In addition to the Sec7d, GBF1 contains other conserved domains whose functions remain unclear. Here, we focus on HDS2 (homology downstream of Sec7d 2) domain because the L1246R substitution within the HDS2 α-helix 5 of the zebrafish GBF1 ortholog causes vascular hemorrhaging and embryonic lethality (13). To dissect the structure/function relationships within HDS2, we generated six variants, in which the most conserved residues within α-helices 1, 2, 4, and 6 were mutated to alanines. Each HDS2 mutant was assessed in a cell-based "replacement" assay for its ability to support cellular functions normally supported by GBF1, such as maintaining Golgi homeostasis, facilitating COPI recruitment, supporting secretion, and sustaining cellular viability. We show that cells treated with the pharmacological GBF1 inhibitor brefeldin A (BFA) and expressing a BFA-resistant GBF1 variant with alanine substitutions of RDR1168 or LF1266 are compromised in Golgi homeostasis, impaired in ARF activation, unable to sustain secretion, and defective in maintaining cellular viability. To gain insight into the molecular mechanism of this dysfunction, we assessed the ability of each GBF1 mutant to target to Golgi membranes and found that mutations in RDR1168 and LF1266 significantly decrease targeting efficiency. Thus, these residues within α-helix 2 and α-helix 6 of the HDS2 domain in GBF1 are novel regulatory determinants that support GBF1 cellular function by impacting the Golgi-specific membrane association of GBF1.
Collapse
Affiliation(s)
- Cristian A Pocognoni
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ekaterina G Viktorova
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland , College Park, Maryland
| | - John Wright
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Justyna M Meissner
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Garrett Sager
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Eunjoo Lee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | - George A Belov
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland , College Park, Maryland
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
12
|
Rosa JB, Metzstein MM, Ghabrial AS. An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity. PLoS Genet 2018; 14:e1007146. [PMID: 29309404 PMCID: PMC5774827 DOI: 10.1371/journal.pgen.1007146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/19/2018] [Accepted: 12/09/2017] [Indexed: 01/25/2023] Open
Abstract
During sprouting angiogenesis in the vertebrate vascular system, and primary branching in the Drosophila tracheal system, specialized tip cells direct branch outgrowth and network formation. When tip cells lumenize, they form subcellular (seamless) tubes. How these seamless tubes are made, shaped and maintained remains poorly understood. Here we characterize a Drosophila mutant called ichor (ich), and show that ich is essential for the integrity and shape of seamless tubes in tracheal terminal cells. We find that Ich regulates seamless tubulogenesis via its role in promoting the formation of a mature apical extracellular matrix (aECM) lining the lumen of the seamless tubes. We determined that ich encodes a zinc finger protein (CG11966) that acts, as a transcriptional activator required for the expression of multiple aECM factors, including a novel membrane-anchored trypsin protease (CG8213). Thus, the integrity and shape of seamless tubes are regulated by the aECM that lines their lumens.
Collapse
Affiliation(s)
- Jeffrey B. Rosa
- Department of Cell & Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mark M. Metzstein
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Amin S. Ghabrial
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
13
|
Rodrigues FF, Harris TJC. Key roles of Arf small G proteins and biosynthetic trafficking for animal development. Small GTPases 2017; 10:403-410. [PMID: 28410007 DOI: 10.1080/21541248.2017.1304854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Although biosynthetic trafficking can function constitutively, it also functions specifically for certain developmental processes. These processes require either a large increase to biosynthesis or the biosynthesis and targeted trafficking of specific players. We review the conserved molecular mechanisms that direct biosynthetic trafficking, and discuss how their genetic disruption affects animal development. Specifically, we consider Arf small G proteins, such as Arf1 and Sar1, and their coat effectors, COPI and COPII, and how these proteins promote biosynthetic trafficking for cleavage of the Drosophila embryo, the growth of neuronal dendrites and synapses, extracellular matrix secretion for bone development, lumen development in epithelial tubes, notochord and neural tube development, and ciliogenesis. Specific need for the biosynthetic trafficking system is also evident from conserved CrebA/Creb3-like transcription factors increasing the expression of secretory machinery during several of these developmental processes. Moreover, dysfunctional trafficking leads to a range of developmental syndromes.
Collapse
Affiliation(s)
- Francisco F Rodrigues
- Department of Cell & Systems Biology, University of Toronto , Toronto , Ontario , Canada
| | - Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
14
|
Busby T, Meissner JM, Styers ML, Bhatt J, Kaushik A, Hjelmeland AB, Sztul E. The Arf activator GBF1 localizes to plasma membrane sites involved in cell adhesion and motility. CELLULAR LOGISTICS 2017; 7:e1308900. [PMID: 28702273 DOI: 10.1080/21592799.2017.1308900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/20/2017] [Accepted: 03/14/2017] [Indexed: 10/24/2022]
Affiliation(s)
- Theodore Busby
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Justyna M Meissner
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Melanie L Styers
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jay Bhatt
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Akhil Kaushik
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Endocytosis of Wingless via a dynamin-independent pathway is necessary for signaling in Drosophila wing discs. Proc Natl Acad Sci U S A 2016; 113:E6993-E7002. [PMID: 27791132 DOI: 10.1073/pnas.1610565113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Endocytosis of ligand-receptor complexes regulates signal transduction during development. In particular, clathrin and dynamin-dependent endocytosis has been well studied in the context of patterning of the Drosophila wing disc, wherein apically secreted Wingless (Wg) encounters its receptor, DFrizzled2 (DFz2), resulting in a distinctive dorso-ventral pattern of signaling outputs. Here, we directly track the endocytosis of Wg and DFz2 in the wing disc and demonstrate that Wg is endocytosed from the apical surface devoid of DFz2 via a dynamin-independent CLIC/GEEC pathway, regulated by Arf1, Garz, and class I PI3K. Subsequently, Wg containing CLIC/GEEC endosomes fuse with DFz2-containing vesicles derived from the clathrin and dynamin-dependent endocytic pathway, which results in a low pH-dependent transfer of Wg to DFz2 within the merged and acidified endosome to initiate Wg signaling. The employment of two distinct endocytic pathways exemplifies a mechanism wherein cells in tissues leverage multiple endocytic pathways to spatially regulate signaling.
Collapse
|
16
|
Rodrigues FF, Shao W, Harris TJC. The Arf GAP Asap promotes Arf1 function at the Golgi for cleavage furrow biosynthesis in Drosophila. Mol Biol Cell 2016; 27:3143-3155. [PMID: 27535433 PMCID: PMC5063621 DOI: 10.1091/mbc.e16-05-0272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/11/2016] [Indexed: 11/11/2022] Open
Abstract
Drosophila embryo cleavage requires the conserved Arf GAP Asap. Asap seems to recycle Arf1 to the Golgi from post-Golgi membranes for optimal Golgi output and cleavage furrow biosynthesis. Biosynthetic traffic from the Golgi drives plasma membrane growth. For Drosophila embryo cleavage, this growth is rapid but regulated for cycles of furrow ingression and regression. The highly conserved small G protein Arf1 organizes Golgi trafficking. Arf1 is activated by guanine nucleotide exchange factors, but essential roles for Arf1 GTPase-activating proteins (GAPs) are less clear. We report that the conserved Arf GAP Asap is required for cleavage furrow ingression in the early embryo. Because Asap can affect multiple subcellular processes, we used genetic approaches to dissect its primary effect. Our data argue against cytoskeletal or endocytic involvement and reveal a common role for Asap and Arf1 in Golgi organization. Although Asap lacked Golgi enrichment, it was necessary and sufficient for Arf1 accumulation at the Golgi, and a conserved Arf1-Asap binding site was required for Golgi organization and output. Of note, Asap relocalized to the nuclear region at metaphase, a shift that coincided with subtle Golgi reorganization preceding cleavage furrow regression. We conclude that Asap is essential for Arf1 to function at the Golgi for cleavage furrow biosynthesis. Asap may recycle Arf1 to the Golgi from post-Golgi membranes, providing optimal Golgi output for specific stages of the cell cycle.
Collapse
Affiliation(s)
- Francisco F Rodrigues
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Wei Shao
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Tony J C Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
17
|
Öztürk-Çolak A, Moussian B, Araújo SJ. Drosophila chitinous aECM and its cellular interactions during tracheal development. Dev Dyn 2015; 245:259-67. [PMID: 26442625 DOI: 10.1002/dvdy.24356] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/07/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022] Open
Abstract
The morphology of organs, and hence their proper physiology, relies to a considerable extent on the extracellular matrix (ECM) secreted by their cells. The ECM is a structure contributed to and commonly shared by many cells in an organism that plays an active role in morphogenesis. Increasing evidence indicates that the ECM not only provides a passive contribution to organ shape but also impinges on cell behaviour and genetic programmes. The ECM is emerging as a direct modulator of many aspects of cell biology, rather than as a mere physical network that supports cells. Here, we review how the apical chitinous ECM is generated in Drosophila trachea and how cells participate in the formation of this supracellular structure. We discuss recent findings on the molecular and cellular events that lead to the formation of this apical ECM (aECM) and how it is influenced and affects tracheal cell biology.
Collapse
Affiliation(s)
- Arzu Öztürk-Çolak
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona, Barcelona, Spain.,Institut de Recerca Biomedica de Barcelona (IRB Barcelona), Parc Cientific de Barcelona, Barcelona, Spain
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany.,Institute of Biology Valrose (IBV), University of Nice-Sophia Antipolis, Université de Nice - Faculté des Sciences-Parc Valrose, Nice, France
| | - Sofia J Araújo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona, Barcelona, Spain.,Institut de Recerca Biomedica de Barcelona (IRB Barcelona), Parc Cientific de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Chang L, Kreko-Pierce T, Eaton BA. The guanine exchange factor Gartenzwerg and the small GTPase Arl1 function in the same pathway with Arfaptin during synapse growth. Biol Open 2015; 4:947-53. [PMID: 26116655 PMCID: PMC4542281 DOI: 10.1242/bio.011262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The generation of neuronal morphology requires transport vesicles originating from the Golgi apparatus (GA) to deliver specialized components to the axon and dendrites. Drosophila Arfaptin is a membrane-binding protein localized to the GA that is required for the growth of the presynaptic nerve terminal. Here we provide biochemical, cellular and genetic evidence that the small GTPase Arl1 and the guanine-nucleotide exchange factor (GEF) Gartenzwerg are required for Arfaptin function at the Golgi during synapse growth. Our data define a new signaling pathway composed of Arfaptin, Arl1, and Garz, required for the generation of normal synapse morphology.
Collapse
Affiliation(s)
- Leo Chang
- Department of Physiology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tabita Kreko-Pierce
- Department of Physiology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Benjamin A Eaton
- Department of Physiology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
19
|
Dong B, Hayashi S. Shaping of biological tubes by mechanical interaction of cell and extracellular matrix. Curr Opin Genet Dev 2015; 32:129-34. [DOI: 10.1016/j.gde.2015.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/14/2015] [Accepted: 02/21/2015] [Indexed: 01/19/2023]
|
20
|
Carvajal-Gonzalez JM, Balmer S, Mendoza M, Dussert A, Collu G, Roman AC, Weber U, Ciruna B, Mlodzik M. The clathrin adaptor AP-1 complex and Arf1 regulate planar cell polarity in vivo. Nat Commun 2015; 6:6751. [PMID: 25849195 DOI: 10.1038/ncomms7751] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/24/2015] [Indexed: 12/17/2022] Open
Abstract
A key step in generating planar cell polarity (PCP) is the formation of restricted junctional domains containing Frizzled/Dishevelled/Diego (Fz/Dsh/Dgo) or Van Gogh/Prickle (Vang/Pk) complexes within the same cell, stabilized via Flamingo (Fmi) across cell membranes. Although models have been proposed for how these complexes acquire and maintain their polarized localization, the machinery involved in moving core PCP proteins around cells remains unknown. We describe the AP-1 adaptor complex and Arf1 as major regulators of PCP protein trafficking in vivo. AP-1 and Arf1 disruption affects the accumulation of Fz/Fmi and Vang/Fmi complexes in the proximo-distal axis, producing severe PCP phenotypes. Using novel tools, we demonstrate a direct and specific Arf1 involvement in Fz trafficking in vivo. Moreover, we uncover a conserved Arf1 PCP function in vertebrates. Our data support a model whereby the trafficking machinery plays an important part during PCP establishment, promoting formation of polarized PCP-core complexes in vivo.
Collapse
Affiliation(s)
- Jose Maria Carvajal-Gonzalez
- Department of Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York City, New York 10029, USA
| | - Sophie Balmer
- Department of Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York City, New York 10029, USA
| | - Meg Mendoza
- Program in Developmental and Stem Cell Biology, Department of Molecular Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | - Aurore Dussert
- Department of Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York City, New York 10029, USA
| | - Giovanna Collu
- Department of Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York City, New York 10029, USA
| | | | - Ursula Weber
- Department of Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York City, New York 10029, USA
| | - Brian Ciruna
- Program in Developmental and Stem Cell Biology, Department of Molecular Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | - Marek Mlodzik
- Department of Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York City, New York 10029, USA
| |
Collapse
|
21
|
Farkaš R, Beňová-Liszeková D, Mentelová L, Mahmood S, Ďatková Z, Beňo M, Pečeňová L, Raška O, Šmigová J, Chase BA, Raška I, Mechler BM. Vacuole dynamics in the salivary glands ofDrosophila melanogasterduring prepupal development. Dev Growth Differ 2015; 57:74-96. [DOI: 10.1111/dgd.12193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/21/2014] [Accepted: 11/28/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Robert Farkaš
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
| | - Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
| | - Lucia Mentelová
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
- Department of Genetics; Comenius University; Mlynská dolina, B-1 84215 Bratislava Slovakia
| | - Silvia Mahmood
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
- Department of Medical Biochemistry; Jessenius Faculty of Medicine; Comenius University; Mala Hora 4 03601 Martin Slovakia
| | - Zuzana Ďatková
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
- Department of Genetics; Comenius University; Mlynská dolina, B-1 84215 Bratislava Slovakia
| | - Milan Beňo
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
| | - Ludmila Pečeňová
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
- Department of Genetics; Comenius University; Mlynská dolina, B-1 84215 Bratislava Slovakia
| | - Otakar Raška
- Institute of Cellular Biology and Pathology; 1st Faculty of Medicine; Charles University in Prague; Albertov 4 12800 Prague Czech Republic
| | - Jana Šmigová
- Institute of Cellular Biology and Pathology; 1st Faculty of Medicine; Charles University in Prague; Albertov 4 12800 Prague Czech Republic
| | - Bruce A. Chase
- Department of Biology; University of Nebraska at Omaha; 6001 Dodge Street Omaha NE 68182-0040 USA
| | - Ivan Raška
- Institute of Cellular Biology and Pathology; 1st Faculty of Medicine; Charles University in Prague; Albertov 4 12800 Prague Czech Republic
| | - Bernard M. Mechler
- Institute of Cellular Biology and Pathology; 1st Faculty of Medicine; Charles University in Prague; Albertov 4 12800 Prague Czech Republic
- German Cancer Research Centre; Neuenheimer Feld 581 D-69120 Heidelberg Germany
- VIT-University; Vellore Tamil Nadu India
| |
Collapse
|
22
|
Arst HN, Hernandez-Gonzalez M, Peñalva MA, Pantazopoulou A. GBF/Gea mutant with a single substitution sustains fungal growth in the absence of BIG/Sec7. FEBS Lett 2014; 588:4799-806. [PMID: 25451223 PMCID: PMC4266534 DOI: 10.1016/j.febslet.2014.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022]
Abstract
A. nidulans has a GBF/Gea and a BIG/Sec7 subfamily Golgi Arf1-GEFs, both essential. The late Golgi Arf1-GEF mutant hypB5 conditionally blocks secretion. Residue substitution in the early Golgi Arf1-GEF GeaA suppresses hypB5 and hypBΔ. The mutation alters a GBF/Gea amino acid motif and shifts GeaA localization. GeaA1 alone satisfies the eukaryotic requirement for two Golgi Arf1 GEFs.
Golgi Arf1-guanine nucleotide exchange factors (GEFs) belong to two subfamilies: GBF/Gea and BIG/Sec7. Both are conserved across eukaryotes, but the physiological role of each is not well understood. Aspergillus nidulans has a single member of the early Golgi GBF/Gea-subfamily, geaA, and the late Golgi BIG/Sec7-subfamily, hypB. Both geaA and hypB are essential. hypB5 conditionally blocks secretion. We sought extragenic hypB5 suppressors and obtained geaA1. geaA1 results in Tyr1022Cys within a conserved GBF/Gea-specific S(Y/W/F)(L/I) motif in GeaA. This mutation alters GeaA localization. Remarkably, geaA1 suppresses hypBΔ, indicating that a single mutant Golgi Arf1-GEF suffices for growth.
Collapse
Affiliation(s)
- Herbert N Arst
- Section of Microbiology, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom; Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| | | | | | | |
Collapse
|
23
|
Regulating the large Sec7 ARF guanine nucleotide exchange factors: the when, where and how of activation. Cell Mol Life Sci 2014; 71:3419-38. [PMID: 24728583 DOI: 10.1007/s00018-014-1602-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Eukaryotic cells require selective sorting and transport of cargo between intracellular compartments. This is accomplished at least in part by vesicles that bud from a donor compartment, sequestering a subset of resident protein "cargos" destined for transport to an acceptor compartment. A key step in vesicle formation and targeting is the recruitment of specific proteins that form a coat on the outside of the vesicle in a process requiring the activation of regulatory GTPases of the ARF family. Like all such GTPases, ARFs cycle between inactive, GDP-bound, and membrane-associated active, GTP-bound, conformations. And like most regulatory GTPases the activating step is slow and thought to be rate limiting in cells, requiring the use of ARF guanine nucleotide exchange factor (GEFs). ARF GEFs are characterized by the presence of a conserved, catalytic Sec7 domain, though they also contain motifs or additional domains that confer specificity to localization and regulation of activity. These domains have been used to define and classify five different sub-families of ARF GEFs. One of these, the BIG/GBF1 family, includes three proteins that are each key regulators of the secretory pathway. GEF activity initiates the coating of nascent vesicles via the localized generation of activated ARFs and thus these GEFs are the upstream regulators that define the site and timing of vesicle production. Paradoxically, while we have detailed molecular knowledge of how GEFs activate ARFs, we know very little about how GEFs are recruited and/or activated at the right time and place to initiate transport. This review summarizes the current knowledge of GEF regulation and explores the still uncertain mechanisms that position GEFs at "budding ready" membrane sites to generate highly localized activated ARFs.
Collapse
|
24
|
ARF1-GTP regulates Asrij to provide endocytic control of Drosophila blood cell homeostasis. Proc Natl Acad Sci U S A 2014; 111:4898-903. [PMID: 24707047 DOI: 10.1073/pnas.1303559111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drosophila melanogaster larval hematopoiesis is a well-established model to study mechanisms that regulate hematopoietic niche maintenance and control of blood cell precursor (prohemocyte) differentiation. Molecules that perturb niche function affect the balance between prohemocytes and differentiated hemocytes. The conserved hemocyte-specific endosomal protein Asrij is essential for niche function and prohemocyte maintenance. Elucidating how subcellular trafficking molecules can regulate signaling presents an important challenge. Here we show that Asrij function is mediated by the Ras family GTPase Arf79F, the Drosophila homolog of ADP ribosylation factor 1 (ARF1), essential for clathrin coat assembly, Golgi architecture, and vesicular trafficking. ARF1 is expressed in the larval lymph gland and in circulating hemocytes and interacts with Asrij. ARF1-depleted lymph glands show loss of niche cells and prohemocyte maintenance with increased differentiation. Inhibiting ARF1 activation by knocking down its guanine nucleotide exchange factor (Gartenzwerg) or overexpressing its GTPAse-activating protein showed that ARF1-GTP is essential for regulating niche size and maintaining stemness. Activated ARF1 regulates Asrij levels in blood cells thereby mediating Asrij function. Asrij controls crystal cell differentiation by affecting Notch trafficking. ARF1 perturbation also leads to aberrant Notch trafficking and the Notch intracellular domain is stalled in sorting endosomes. Thus, ARF1 can regulate Drosophila blood cell homeostasis by regulating Asrij endocytic function. ARF1 also regulates signals arising from the niche and differentiated cells by integrating the insulin-mediated and PDGF-VEGF receptor signaling pathways. We propose that the conserved ARF1-Asrij endocytic axis modulates signals that govern hematopoietic development. Thus, Asrij affords tissue-specific control of global mechanisms involved in molecular traffic.
Collapse
|
25
|
Torres IL, Rosa-Ferreira C, Munro S. The Arf family G protein Arl1 is required for secretory granule biogenesis in Drosophila. J Cell Sci 2014; 127:2151-60. [PMID: 24610947 DOI: 10.1242/jcs.122028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The small G protein Arf like 1 (Arl1) is found at the Golgi complex, and its GTP-bound form recruits several effectors to the Golgi including GRIP-domain-containing coiled-coil proteins, and the Arf1 exchange factors Big1 and Big2. To investigate the role of Arl1, we have characterised a loss-of-function mutant of the Drosophila Arl1 orthologue. The gene is essential, and examination of clones of cells lacking Arl1 shows that it is required for recruitment of three of the four GRIP domain golgins to the Golgi, with Drosophila GCC185 being less dependent on Arl1. At a functional level, Arl1 is essential for formation of secretory granules in the larval salivary gland. When Arl1 is missing, Golgi are still present but there is a dispersal of adaptor protein 1 (AP-1), a clathrin adaptor that requires Arf1 for its membrane recruitment and which is known to be required for secretory granule biogenesis. Arl1 does not appear to be required for AP-1 recruitment in all tissues, suggesting that it is crucially required to enhance Arf1 activation at the trans-Golgi in particular tissues.
Collapse
Affiliation(s)
- Isabel L Torres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
26
|
Zuo L, Iordanou E, Chandran RR, Jiang L. Novel mechanisms of tube-size regulation revealed by the Drosophila trachea. Cell Tissue Res 2013; 354:343-54. [PMID: 23824100 DOI: 10.1007/s00441-013-1673-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/27/2013] [Indexed: 12/17/2022]
Abstract
The size of various tubes within tubular organs such as the lung, vascular system and kidney must be finely tuned for the optimal delivery of gases, nutrients, waste and cells within the entire organism. Aberrant tube sizes lead to devastating human illnesses, such as polycystic kidney disease, fibrocystic breast disease, pancreatic cystic neoplasm and thyroid nodules. However, the underlying mechanisms that are responsible for tube-size regulation have yet to be fully understood. Therefore, no effective treatments are available for disorders caused by tube-size defects. Recently, the Drosophila tracheal system has emerged as an excellent in vivo model to explore the fundamental mechanisms of tube-size regulation. Here, we discuss the role of the apical luminal matrix, cell polarity and signaling pathways in regulating tube size in Drosophila trachea. Previous studies of the Drosophila tracheal system have provided general insights into epithelial tube morphogenesis. Mechanisms that regulate tube size in Drosophila trachea could be well conserved in mammalian tubular organs. This knowledge should greatly aid our understanding of tubular organogenesis in vertebrates and potentially lead to new avenues for the treatment of human disease caused by tube-size defects.
Collapse
Affiliation(s)
- Li Zuo
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; School of Health and Rehabilitation Sciences, The Ohio State College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ekaterini Iordanou
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Rachana R Chandran
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Lan Jiang
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; Dodge Hall of Engineering 322, 2200 N. Squirrel Road, Rochester, MI 48309, USA
| |
Collapse
|
27
|
Ackema KB, Sauder U, Solinger JA, Spang A. The ArfGEF GBF-1 Is Required for ER Structure, Secretion and Endocytic Transport in C. elegans. PLoS One 2013; 8:e67076. [PMID: 23840591 PMCID: PMC3686754 DOI: 10.1371/journal.pone.0067076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/15/2013] [Indexed: 12/02/2022] Open
Abstract
Small GTPases of the Sar/Arf family are essential to generate transport containers that mediate communication between organelles of the secretory pathway. Guanine nucleotide exchange factor (GEFs) activate the small GTPases and help their anchorage in the membrane. Thus, GEFs in a way temporally and spatially control Sar1/Arf1 GTPase activation. We investigated the role of the ArfGEF GBF-1 in C. elegans oocytes and intestinal epithelial cells. GBF-1 localizes to the cis-Golgi and is part of the t-ER-Golgi elements. GBF-1 is required for secretion and Golgi integrity. In addition, gbf-1(RNAi) causes the ER reticular structure to become dispersed, without destroying ER exit sites (ERES) because the ERES protein SEC-16 was still localized in distinct punctae at t-ER-Golgi units. Moreover, GBF-1 plays a role in receptor-mediated endocytosis in oocytes, without affecting recycling pathways. We find that both the yolk receptor RME-2 and the recycling endosome-associated RAB-11 localize similarly in control and gbf-1(RNAi) oocytes. While RAB5-positive early endosomes appear to be less prominent and the RAB-5 levels are reduced by gbf-1(RNAi) in the intestine, RAB-7-positive late endosomes were more abundant and formed aggregates and tubular structures. Our data suggest a role for GBF-1 in ER structure and endosomal traffic.
Collapse
Affiliation(s)
- Karin B. Ackema
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Ursula Sauder
- Microscopy Center, Biozentrum, University of Basel, Basel, Switzerland
| | - Jachen A. Solinger
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Anne Spang
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Ile KE, Renault AD. Compartmentalizing the embryo: lipids and septate junction mediated barrier function. Fly (Austin) 2012; 7:18-22. [PMID: 23221483 PMCID: PMC3660746 DOI: 10.4161/fly.22938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lipid phosphate phosphatases (LPPs) are a class of enzymes that can dephosphorylate a number of lysophopholipids in vitro. Analysis of knockouts of LPP family members has demonstrated striking but diverse developmental roles for these enzymes. LPP3 is required for mouse vascular development while the Drosophila LPPs Wunen (Wun) and Wunen2 (Wun2) are required during embryogenesis for germ cell migration and survival. In a recent publication we examined if these fly LPPs have further developmental roles and found that Wun is required for proper tracheal formation. In particular we highlight a role for Wun in septate junction mediated barrier function in the tracheal system. In this paper we discuss further the possible mechanisms by which LPPs may influence barrier activity.
Collapse
Affiliation(s)
- Kristina E Ile
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
29
|
Baer MM, Palm W, Eaton S, Leptin M, Affolter M. Microsomal triacylglycerol transfer protein (MTP) is required to expand tracheal lumen in Drosophila in a cell-autonomous manner. J Cell Sci 2012; 125:6038-48. [PMID: 23132924 DOI: 10.1242/jcs.110452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Drosophila tracheal system is a useful model for dissecting the molecular mechanisms controlling the assembly and expansion of tubular organs. We have identified microsomal triacylglycerol transfer protein (MTP) as a new player involved in the lumen expansion in unicellular tubes. MTP is an endoplasmic reticulum resident protein that can transfer triglycerides and phospholipids between membranes in vitro. MTP lipid transfer activity is crucial for the assembly and secretion of apoB family lipoproteins, which are carriers of lipids between different tissues. Here we describe an unexpected role of MTP in tracheal development, which we postulate to be independent of its known function in lipoprotein secretion. We propose that, in tracheal cells, MTP is involved in regulation of de novo apical membrane delivery to the existing lumen and thus promotes proper expansion of the larval tracheal system.
Collapse
Affiliation(s)
- Magdalena M Baer
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Armbruster K, Luschnig S. The Drosophila Sec7 domain guanine nucleotide exchange factor protein Gartenzwerg localizes at the cis-Golgi and is essential for epithelial tube expansion. Development 2012. [DOI: 10.1242/dev.080986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|