1
|
Nikou S, Arbi M, Dimitrakopoulos FID, Kalogeropoulou A, Geramoutsou C, Zolota V, Kalofonos HP, Taraviras S, Lygerou Z, Bravou V. Ras suppressor-1 (RSU1) exerts a tumor suppressive role with prognostic significance in lung adenocarcinoma. Clin Exp Med 2022:10.1007/s10238-022-00847-8. [PMID: 35729367 DOI: 10.1007/s10238-022-00847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/25/2022] [Indexed: 11/03/2022]
Abstract
Ras suppressor-1 (RSU1), originally described as a suppressor of Ras oncogenic transformation, localizes to focal adhesions interacting with the ILK-PINCH-PARVIN (IPP) complex that exerts a well-established oncogenic role in cancer. However, RSU1 implication in lung cancer is currently unknown. Our study aims to address the role of RSU1 in lung adenocarcinoma (LUADC). We here show that RSU1 protein expression by immunohistochemistry is downregulated in LUADC human tissue samples and represents a significant prognostic indicator. In silico analysis of gene chip and RNA seq data validated our findings. Depletion of RSU1 by siRNA in lung cancer cells promotes anchorage-independent cell growth, cell motility and epithelial to mesenchymal transition (EMT). Silencing of RSU1 also alters IPP complex expression in lung cancer cells. The p29 RSU1 truncated isoform is detected in lung cancer cells, and its expression is downregulated upon RSU1 silencing, whereas it is overexpressed upon ILK overexpression. These findings suggest that RSU1 exerts a tumor suppressive role with prognostic significance in LUADC.
Collapse
Affiliation(s)
- Sofia Nikou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26504, Patras, Greece
| | - Marina Arbi
- Department of General Biology, Medical School, University of Patras, 26504, Patras, Greece
| | - Foteinos-Ioannis D Dimitrakopoulos
- Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, 26504, Patras, Greece
| | - Argiro Kalogeropoulou
- Department of Physiology, School of Medicine, University of Patras, 26504, Rio, Patras, Greece
| | - Christina Geramoutsou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26504, Patras, Greece
| | - Vasiliki Zolota
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26504, Patras, Greece.,Department of Pathology, University Hospital of Patras, 26504, Patras, Greece
| | - Haralabos P Kalofonos
- Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, 26504, Patras, Greece.,Division of Oncology, Department of Internal Medicine, University Hospital of Patras, 26504, Rio Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, 26504, Rio, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, 26504, Patras, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26504, Patras, Greece.
| |
Collapse
|
2
|
Fukuda K, Lu F, Qin J. Molecular basis for Ras suppressor-1 binding to PINCH-1 in focal adhesion assembly. J Biol Chem 2021; 296:100685. [PMID: 33891945 PMCID: PMC8141872 DOI: 10.1016/j.jbc.2021.100685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 10/29/2022] Open
Abstract
Ras suppressor-1 (Rsu-1) is a leucine-rich repeat (LRR)-containing protein that is crucial for regulating cell adhesion and is involved in such physiological and pathological processes as focal adhesion assembly and tumor metastasis. Rsu-1 interacts with zinc-finger type multi-LIM domain-containing adaptor protein PINCH-1, known to be involved in the integrin-mediated consensus adhesome, but not with its highly homologous family member PINCH-2. However, the structural basis for and regulatory mechanisms of this specific interaction remain unclear. Here, we determined the crystal structures of Rsu-1 and its complex with the PINCH-1 LIM4-5 domains. Rsu-1 displays an arc-shaped solenoid architecture, with eight LRRs shielded by N- and C-terminal capping modules. We showed that the conserved concave surface of the Rsu-1 LRR domain binds and stabilizes the PINCH-1 LIM5 domain via salt bridge and hydrophobic interactions, while the C-terminal non-LIM region of PINCH-2 sterically disfavors Rsu-1 binding. We also showed that Rsu-1 can be assembled, via PINCH-1-binding, into a heteropentamer complex comprising Rsu-1, PINCH-1, ILK, Parvin, and Kindlin-2, which constitute a major consensus integrin adhesome crucial for focal adhesion assembly. Our mutagenesis and cell biological data emphasize the significance of the Rsu-1/PINCH-1 interaction in focal adhesion assembly and cell spreading, providing crucial molecular insights into Rsu-1-mediated cell adhesion with implications for disease development.
Collapse
Affiliation(s)
- Koichi Fukuda
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Ohio, USA
| | - Fan Lu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Ohio, USA; Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jun Qin
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Ohio, USA; Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
3
|
Kadrmas JL, Beckerle MC, Yoshigi M. Genetic analyses in mouse fibroblast and melanoma cells demonstrate novel roles for PDGF-AB ligand and PDGF receptor alpha. Sci Rep 2020; 10:19303. [PMID: 33168840 PMCID: PMC7653911 DOI: 10.1038/s41598-020-75774-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/14/2020] [Indexed: 01/21/2023] Open
Abstract
Platelet Derived Growth Factor Receptor (PDGFR) signaling is a central mitogenic pathway in development, as well as tissue repair and homeostasis. The rules governing the binding of PDGF ligand to the receptor to produce activation and downstream signaling have been well defined over the last several decades. In cultured cells after a period of serum deprivation, treatment with PDGF leads to the rapid formation of dramatic, actin-rich Circular Dorsal Ruffles (CDRs). Using CDRs as a robust visual readout of early PDGFR signaling, we have identified several contradictory elements in the widely accepted model of PDGF activity. Employing CRISPR/Cas9 gene editing to disrupt the Pdgfra gene in two different murine cell lines, we show that in addition to the widely accepted function for PDGFR-beta in CDR formation, PDGFR-alpha is also clearly capable of eliciting CDRs. Moreover, we demonstrate activity for heterodimeric PDGF-AB ligand in the vigorous activation of PDGFR-beta homodimers to produce CDRs. These findings are key to a more complete understanding of PDGF ligand-receptor interactions and their downstream signaling consequences. This knowledge will allow for more rigorous experimental design in future studies of PDGFR signaling and its contributions to development and disease.
Collapse
Affiliation(s)
- Julie L Kadrmas
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, 84112, USA. .,Department of Oncological Sciences, The University of Utah, Salt Lake City, UT, 84112, USA.
| | - Mary C Beckerle
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, 84112, USA. .,School of Biological Sciences, The University of Utah, Salt Lake City, UT, 84112, USA.
| | - Masaaki Yoshigi
- Department of Pediatrics, The University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
4
|
RSU-1 Maintains Integrity of Caenorhabditis elegans Vulval Muscles by Regulating α-Actinin. G3-GENES GENOMES GENETICS 2020; 10:2507-2517. [PMID: 32461202 PMCID: PMC7341117 DOI: 10.1534/g3.120.401185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Egg-laying behavior in Caenorhabditis elegans is a well-known model for investigating fundamental cellular processes. In egg-laying, muscle contraction is the relaxation of the vulval muscle to extrude eggs from the vulva. Unlike skeletal muscle, vulval muscle lacks visible striations of the sarcomere. Therefore, vulval muscle must counteract the mechanical stress, caused by egg extrusion and body movement, from inducing cell-shape distortion by maintaining its cytoskeletal integrity. However, the underlying mechanisms that regulate the cellular integrity in vulval muscles remain unclear. Here, we demonstrate that C. elegans egg-laying requires proper vulval muscle 1 (vm1), in which the actin bundle organization of vm1 muscles is regulated by Ras suppressor protein 1 (RSU-1). In the loss of RSU-1, as well as RasLET-60 overactivation, blister-like membrane protrusions and disorganized actin bundles were observed in the vm1 muscles. Moreover, RasLET-60 depletion diminished the defected actin-bundles in rsu-1 mutant. These results reveal the genetic interaction of RSU-1 and RasLET-60 in vivo In addition, our results further demonstrated that the fifth to seventh leucine-rich region of RSU-1 is required to promote actin-bundling protein, α-actinin, for actin bundle stabilization in the vm1 muscles. This expands our understanding of the molecular mechanisms of actin bundle organization in a specialized smooth muscle.
Collapse
|
5
|
Nikou S, Arbi M, Dimitrakopoulos FID, Sirinian C, Chadla P, Pappa I, Ntaliarda G, Stathopoulos GT, Papadaki H, Zolota V, Lygerou Z, Kalofonos HP, Bravou V. Integrin-linked kinase (ILK) regulates KRAS, IPP complex and Ras suppressor-1 (RSU1) promoting lung adenocarcinoma progression and poor survival. J Mol Histol 2020; 51:385-400. [PMID: 32592097 DOI: 10.1007/s10735-020-09888-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022]
Abstract
Integrin-linked kinase (ILK) forms a heterotrimeric protein complex with PINCH and PARVIN (IPP) in Focal Adhesions (FAs) that acts as a signaling platform between the cell and its microenvironment regulating important cancer-related functions. We aimed to elucidate the role of ILK in lung adenocarcinoma (LUADC) focusing on a possible link with KRAS oncogene. We used immunohistochemistry on human tissue samples and KRAS-driven LUADC in mice, analysis of large scale publicly available RNA sequencing data, ILK overexpression and pharmacological inhibition as well as knockdown of KRAS in lung cancer cells. ILK, PINCH1 and PARVB (IPP) proteins are overexpressed in human LUADC and KRAS-driven LUADC in mice representing poor prognostic indicators. Genes implicated in ILK signaling are significantly enriched in KRAS-driven LUADC. Silencing of KRAS, as well as, overexpression and pharmacological inhibition of ILK in lung cancer cells provide evidence of a two-way association between ILK and KRAS. Upregulation of PINCH, PARVB and Ras suppressor-1 (RSU1) expression was demonstrated in ILK overexpressing lung cancer cells in addition to a significant positive correlation between these factors in tissue samples, while KRAS silencing downregulates IPP and RSU1. Pharmacological inhibition of ILK in KRAS mutant lung cancer cells suppresses cell growth, migration, EMT and increases sensitivity to platinum-based chemotherapy. ILK promotes an aggressive lung cancer phenotype with prognostic and therapeutic value through functions that involve KRAS, IPP complex and RSU1, rendering ILK a promising biomarker and therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Sofia Nikou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece
| | - Marina Arbi
- Department of General Biology, Medical School, University of Patras, 26504, Patras, Greece
| | | | - Chaido Sirinian
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, 26504, Rio, Greece
| | - Panagiota Chadla
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece
| | - Ioanna Pappa
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece
| | - Giannoula Ntaliarda
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, 2504, Rio, Achaia, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, 2504, Rio, Achaia, Greece.,Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece
| | - Vasiliki Zolota
- Department of Pathology, University Hospital of Patras, 26504, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, 26504, Patras, Greece
| | - Haralabos P Kalofonos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, 26504, Rio, Greece.,Division of Oncology, Department of Internal Medicine, University Hospital of Patras, 26504, Rio, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece.
| |
Collapse
|
6
|
Ras Suppressor-1 (RSU1) in Cancer Cell Metastasis: A Tale of a Tumor Suppressor. Int J Mol Sci 2020; 21:ijms21114076. [PMID: 32517326 PMCID: PMC7312364 DOI: 10.3390/ijms21114076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/14/2023] Open
Abstract
Cancer is a multifactorial disease responsible for millions of deaths worldwide. It has a strong genetic background, as mutations in oncogenes or tumor suppressor genes contribute to the initiation of cancer development. Integrin signaling as well as the signaling pathway of Ras oncogene, have been long implicated both in carcinogenesis and disease progression. Moreover, they have been involved in the promotion of metastasis, which accounts for the majority of cancer-related deaths. Ras Suppressor-1 (RSU1) was identified as a suppressor of Ras-induced transformation and was shown to localize to cell-extracellular matrix adhesions. Recent findings indicate that its expression is elevated in various cancer types, while its role in regulating metastasis-related cellular processes remains largely unknown. Interestingly, there is no in vivo work in the field to date, and thus, all relevant knowledge stems from in vitro studies. In this review, we summarize recent studies using breast, liver and brain cancer cell lines and highlight the role of RSU1 in regulating cancer cell invasion.
Collapse
|
7
|
Captur G, Heywood WE, Coats C, Rosmini S, Patel V, Lopes LR, Collis R, Patel N, Syrris P, Bassett P, O'Brien B, Moon JC, Elliott PM, Mills K. Identification of a Multiplex Biomarker Panel for Hypertrophic Cardiomyopathy Using Quantitative Proteomics and Machine Learning. Mol Cell Proteomics 2020; 19:114-127. [PMID: 31243064 PMCID: PMC6944230 DOI: 10.1074/mcp.ra119.001586] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/24/2019] [Indexed: 12/22/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is defined by pathological left ventricular hypertrophy (LVH). It is the commonest inherited cardiac condition and a significant number of high risk cases still go undetected until a sudden cardiac death (SCD) event. Plasma biomarkers do not currently feature in the assessment of HCM disease progression, which is tracked by serial imaging, or in SCD risk stratification, which is based on imaging parameters and patient/family history. There is a need for new HCM plasma biomarkers to refine disease monitoring and improve patient risk stratification. To identify new plasma biomarkers for patients with HCM, we performed exploratory myocardial and plasma proteomics screens and subsequently developed a multiplexed targeted liquid chromatography-tandem/mass spectrometry-based assay to validate the 26 peptide biomarkers that were identified. The association of discovered biomarkers with clinical phenotypes was prospectively tested in plasma from 110 HCM patients with LVH (LVH+ HCM), 97 controls, and 16 HCM sarcomere gene mutation carriers before the development of LVH (subclinical HCM). Six peptides (aldolase fructose-bisphosphate A, complement C3, glutathione S-transferase omega 1, Ras suppressor protein 1, talin 1, and thrombospondin 1) were increased significantly in the plasma of LVH+ HCM compared with controls and correlated with imaging markers of phenotype severity: LV wall thickness, mass, and percentage myocardial scar on cardiovascular magnetic resonance imaging. Using supervised machine learning (ML), this six-biomarker panel differentiated between LVH+ HCM and controls, with an area under the curve of ≥ 0.87. Five of these peptides were also significantly increased in subclinical HCM compared with controls. In LVH+ HCM, the six-marker panel correlated with the presence of nonsustained ventricular tachycardia and the estimated five-year risk of sudden cardiac death. Using quantitative proteomic approaches, we have discovered six potentially useful circulating plasma biomarkers related to myocardial substrate changes in HCM, which correlate with the estimated sudden cardiac death risk.
Collapse
Affiliation(s)
- Gabriella Captur
- UCL MRC Unit for Lifelong Health and Ageing, 1-19 Torrington Place, Fitzrovia, London WC1E 7HB, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Wendy E Heywood
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Caroline Coats
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Stefania Rosmini
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Vimal Patel
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Luis R Lopes
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK; Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Richard Collis
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Nina Patel
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Petros Syrris
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Paul Bassett
- Biostatistics Joint Research Office, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ben O'Brien
- Department of Perioperative Medicine, St. Bartholomew's Hospital and Barts Heart Center, West Smithfield, London, EC1A 7BE, UK; William Harvey Research Institute, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - James C Moon
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK; Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Perry M Elliott
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK; Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; Institute of Child Health, University College London, London, WC1N 1EH, UK.
| |
Collapse
|
8
|
Integrin intracellular machinery in action. Exp Cell Res 2019; 378:226-231. [PMID: 30853446 DOI: 10.1016/j.yexcr.2019.03.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
Integrin-mediated adhesion to the extracellular matrix involves a surprisingly large number of intracellular proteins, the integrin-associated proteins (IAPs), which are a fraction of the total integrin adhesome. In this review we discuss how genetic approaches have improved our understanding of how each IAP contributes to integrin function, especially in the context of building a functional organism during development. We then begin the process of assembling IAP roles together into an integrated mechanism.
Collapse
|
9
|
Green HJ, Griffiths AGM, Ylänne J, Brown NH. Novel functions for integrin-associated proteins revealed by analysis of myofibril attachment in Drosophila. eLife 2018; 7:e35783. [PMID: 30028294 PMCID: PMC6092120 DOI: 10.7554/elife.35783] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/19/2018] [Indexed: 01/18/2023] Open
Abstract
We use the myotendinous junction of Drosophila flight muscles to explore why many integrin associated proteins (IAPs) are needed and how their function is coordinated. These muscles revealed new functions for IAPs not required for viability: Focal Adhesion Kinase (FAK), RSU1, tensin and vinculin. Genetic interactions demonstrated a balance between positive and negative activities, with vinculin and tensin positively regulating adhesion, while FAK inhibits elevation of integrin activity by tensin, and RSU1 keeps PINCH activity in check. The molecular composition of myofibril termini resolves into 4 distinct layers, one of which is built by a mechanotransduction cascade: vinculin facilitates mechanical opening of filamin, which works with the Arp2/3 activator WASH to build an actin-rich layer positioned between integrins and the first sarcomere. Thus, integration of IAP activity is needed to build the complex architecture of the myotendinous junction, linking the membrane anchor to the sarcomere.
Collapse
Affiliation(s)
- Hannah J Green
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
- Department of Biological and Environmental SciencesUniversity of JyväskyläJyväskyläFinland
- Nanoscience CenterUniversity of JyväskyläJyväskyläFinland
| | - Annabel GM Griffiths
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Jari Ylänne
- Department of Biological and Environmental SciencesUniversity of JyväskyläJyväskyläFinland
- Nanoscience CenterUniversity of JyväskyläJyväskyläFinland
| | - Nicholas H Brown
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
10
|
Maartens AP, Brown NH. The many faces of cell adhesion during Drosophila muscle development. Dev Biol 2015; 401:62-74. [DOI: 10.1016/j.ydbio.2014.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
11
|
Kim YC, Gonzalez-Nieves R, Cutler ML. Rsu1 contributes to cell adhesion and spreading in MCF10A cells via effects on P38 map kinase signaling. Cell Adh Migr 2014; 9:227-32. [PMID: 25482629 PMCID: PMC4594256 DOI: 10.4161/19336918.2014.972775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ILK, PINCH, Parvin (IPP) complex regulates adhesion and migration via binding of ILK to β1 integrin and α−parvin thus linking focal adhesions to actin cytoskeleton. ILK also binds the adaptor protein PINCH which connects signaling proteins including Rsu1 to the complex. A recent study of Rsu1 and PINCH1 in non-transformed MCF10A human mammary epithelial cells revealed that the siRNA-mediated depletion of either Rsu1 or PINCH1 decreased the number of focal adhesions (FAs) and altered the distribution and localization of FA proteins. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function in part by regulating levels of PINCH1. However, Rsu1, but not PINCH1, was required for EGF-induced activation of p38 Map kinase and ATF2 phosphorylation, suggesting a Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with a Rsu1 mutant (N92D) that does not bind to PINCH1 failed to restore FAs or migration but did promote IPP-independent spreading and constitutive as well as EGF-induced p38 activation. In this commentary we discuss p38 activity in adhesion and how Rsu1 expression may be linked to Map kinase kinase (MKK) activation and detachment-induced stress kinase signaling.
Collapse
Affiliation(s)
- Yong-Chul Kim
- a Department of Pathology; F. Edward Hebert School of Medicine ; Uniformed Services University of the Health Sciences ; Bethesda , MD USA
| | | | | |
Collapse
|
12
|
Abstract
Integrin-linked kinase (ILK), PINCH and Parvin proteins form the IPP-complex that has been established as a core component of the integrin-actin link. Our recent genetic studies on Drosophila parvin, reveal that loss of function mutant defects phenocopy those observed upon loss of ILK or PINCH in the muscle and the wing, strengthening the notion that these proteins function together in the organism. Our work identified that ILK is necessary and sufficient for parvin subcellular localization, corroborating previous data indicating a direct association between these two proteins. Further genetic epistasis analysis of the IPP-complex assembly at integrin adhesion sites reveals that depending on the cell context each component is required differently. At the muscle attachment sites of the embryo, ILK is placed upstream in the hierarchy of genetic interactions required for the IPP-complex assembly. By contrast, in the wing epithelium the three proteins are mutually interdependent. Finally, we uncovered a novel property for the CH1-domain of parvin: its recruitment at the integrin-containing junctions in an ILK-dependent manner. Apparently, this ability of the CH1-domain is controlled by the inter-CH linker region. Thus, an intramolecular interaction within parvin could serve as a putative regulatory mechanism controlling the ILK-Parvin interaction.
Collapse
Affiliation(s)
- Katerina Vakaloglou
- Biomedical Research Foundation; Academy of Athens (BRFAA); Division of Genetics; Athens, Greece
| | | |
Collapse
|
13
|
Eke I, Cordes N. Focal adhesion signaling and therapy resistance in cancer. Semin Cancer Biol 2014; 31:65-75. [PMID: 25117005 DOI: 10.1016/j.semcancer.2014.07.009] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/18/2022]
Abstract
Interlocking gene mutations, epigenetic alterations and microenvironmental features perpetuate tumor development, growth, infiltration and spread. Consequently, intrinsic and acquired therapy resistance arises and presents one of the major goals to solve in oncologic research today. Among the myriad of microenvironmental factors impacting on cancer cell resistance, cell adhesion to the extracellular matrix (ECM) has recently been identified as key determinant. Despite the differentiation between cell adhesion-mediated drug resistance (CAMDR) and cell adhesion-mediated radioresistance (CAMRR), the underlying mechanisms share great overlap in integrin and focal adhesion hub signaling and differ further downstream in the complexity of signaling networks between tumor entities. Intriguingly, cell adhesion to ECM is per se also essential for cancer cells similar to their normal counterparts. However, based on the overexpression of focal adhesion hub signaling receptors and proteins and a distinct addiction to particular integrin receptors, targeting of focal adhesion proteins has been shown to potently sensitize cancer cells to different treatment regimes including radiotherapy, chemotherapy and novel molecular therapeutics. In this review, we will give insight into the role of integrins in carcinogenesis, tumor progression and metastasis. Additionally, literature and data about the function of focal adhesion molecules including integrins, integrin-associated proteins and growth factor receptors in tumor cell resistance to radio- and chemotherapy will be elucidated and discussed.
Collapse
Affiliation(s)
- Iris Eke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Dresden 01328, Germany; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Dresden 01328, Germany; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden 01328, Germany.
| |
Collapse
|
14
|
Gonzalez-Nieves R, Desantis AI, Cutler ML. Rsu1 contributes to regulation of cell adhesion and spreading by PINCH1-dependent and - independent mechanisms. J Cell Commun Signal 2013; 7:279-93. [PMID: 23765260 PMCID: PMC3889256 DOI: 10.1007/s12079-013-0207-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 05/28/2013] [Indexed: 01/29/2023] Open
Abstract
Cell adhesion and migration are complex processes that require integrin activation, the formation and dissolution of focal adhesion (FAs), and linkage of actin cytoskeleton to the FAs. The IPP (ILK, PINCH, Parvin) complex regulates FA formation via binding of the adaptor protein ILK to β1 integrin, PINCH and parvin. The signaling protein Rsu1 is linked to the complex via binding PINCH1. The role of Rsu1 and PINCH1 in adhesion and migration was examined in non-transformed mammary epithelial cells. Confocal microscopy revealed that the depletion of either Rsu1 or PINCH1 by siRNA in MCF10A cells decreased the number of focal adhesions and altered the distribution and localization of β1 integrin, vinculin, talin and paxillin without affecting the levels of FA protein expression. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. In addition, constitutive phosphorylation of actin regulatory proteins occurred in the absence of PINCH1. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function by regulating levels of PINCH1. However, while both Rsu1- or PINCH1-depleted cells retained the ability to activate adhesion signaling in response to EGF stimulation, only Rsu1 was required for EGF-induced p38 Map Kinase phosphorylation and ATF2 activation, suggesting an Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with an Rsu1 mutant that does not bind to PINCH1 failed to restore FAs or migration but did promote spreading and constitutive p38 activation. These data show that Rsu1-PINCH1 association with ILK and the IPP complex is required for regulation of adhesion and migration but that Rsu1 has a critical role in linking integrin-induced adhesion to activation of p38 Map kinase signaling and cell spreading. Moreover, it suggests that Rsu1 may regulate p38 signaling from the IPP complex affecting other functions including survival.
Collapse
Affiliation(s)
- Reyda Gonzalez-Nieves
- Department of Pathology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | | | | |
Collapse
|
15
|
Yoshigi M, Pronovost SM, Kadrmas JL. Interactions by 2D Gel Electrophoresis Overlap (iGEO): a novel high fidelity approach to identify constituents of protein complexes. Proteome Sci 2013; 11:21. [PMID: 23663728 PMCID: PMC3688448 DOI: 10.1186/1477-5956-11-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/08/2013] [Indexed: 01/29/2023] Open
Abstract
Background Here we describe a novel approach used to identify the constituents of protein complexes with high fidelity, using the integrin-associated scaffolding protein PINCH as a test case. PINCH is comprised of five LIM domains, zinc-finger protein interaction modules. In Drosophila melanogaster, PINCH has two known high-affinity binding partners—Integrin-linked kinase (ILK) that binds to LIM1 and Ras Suppressor 1 (RSU1) that binds to LIM5—but has been postulated to bind additional proteins as well. Results To purify PINCH complexes, in parallel we fused different affinity tags (Protein A and Flag) to different locations within the PINCH sequence (N- and C-terminus). We expressed these tagged versions of PINCH both in cell culture (overexpressed in Drosophila S2 cell culture in the presence of endogenous PINCH) and in vivo (at native levels in Drosophila lacking endogenous PINCH). After affinity purification, we analyzed PINCH complexes by a novel 2D-gel electrophoresis analysis, iGEO (interactions by 2D Gel Electrophoresis Overlap), with mass spectrometric identification of individual spots of interest. iGEO allowed the identification of protein partners that associate with PINCH under two independent purification strategies, providing confidence in the significance of the interaction. Proteins identified by iGEO were validated against a highly inclusive list of candidate PINCH interacting proteins identified in previous analyses by MuDPIT mass spectrometry. Conclusions The iGEO strategy confirmed a core complex comprised of PINCH, RSU1, ILK, and ILK binding partner Parvin. Our iGEO method also identified five novel protein partners that specifically interacted with PINCH in Drosophila S2 cell culture. Because of the improved reproducibility of 2D-GE methodology and the increasing affordability of the required labeling reagents, iGEO is a method that is accessible to most moderately well-equipped biological laboratories. The biochemical co-purifications inherent in iGEO allow for rapid and unambiguous identification of the constituents of protein complexes, without the need for extensive follow-up experiments.
Collapse
Affiliation(s)
- Masaaki Yoshigi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
| | | | | |
Collapse
|
16
|
Pronovost SM, Beckerle MC, Kadrmas JL. Elevated expression of the integrin-associated protein PINCH suppresses the defects of Drosophila melanogaster muscle hypercontraction mutants. PLoS Genet 2013; 9:e1003406. [PMID: 23555310 PMCID: PMC3610608 DOI: 10.1371/journal.pgen.1003406] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/07/2013] [Indexed: 01/05/2023] Open
Abstract
A variety of human diseases arise from mutations that alter muscle contraction. Evolutionary conservation allows genetic studies in Drosophila melanogaster to be used to better understand these myopathies and suggest novel therapeutic strategies. Integrin-mediated adhesion is required to support muscle structure and function, and expression of Integrin adhesive complex (IAC) proteins is modulated to adapt to varying levels of mechanical stress within muscle. Mutations in flapwing (flw), a catalytic subunit of myosin phosphatase, result in non-muscle myosin hyperphosphorylation, as well as muscle hypercontraction, defects in size, motility, muscle attachment, and subsequent larval and pupal lethality. We find that moderately elevated expression of the IAC protein PINCH significantly rescues flw phenotypes. Rescue requires PINCH be bound to its partners, Integrin-linked kinase and Ras suppressor 1. Rescue is not achieved through dephosphorylation of non-muscle myosin, suggesting a mechanism in which elevated PINCH expression strengthens integrin adhesion. In support of this, elevated expression of PINCH rescues an independent muscle hypercontraction mutant in muscle myosin heavy chain, MhcSamba1. By testing a panel of IAC proteins, we show specificity for PINCH expression in the rescue of hypercontraction mutants. These data are consistent with a model in which PINCH is present in limiting quantities within IACs, with increasing PINCH expression reinforcing existing adhesions or allowing for the de novo assembly of new adhesion complexes. Moreover, in myopathies that exhibit hypercontraction, strategic PINCH expression may have therapeutic potential in preserving muscle structure and function. A wide variety of diseases of the muscle are caused by mutations that alter either the actin and myosin contractile machinery or its regulation. One class of mutations of interest results in hypercontraction of the muscle—actin and myosin fibers contract, but cannot efficiently relax. We have used the fruit fly as a model to study these mutations because of the striking similarity of fly and human muscle and because of the many genetic techniques that are available in the fly. Using a genetic approach we identified a protein, PINCH, whose increased expression can rescue the defects observed in hypercontraction mutants. PINCH is a component of integrin adhesion complexes, responsible for anchoring cells in their environment. This suggests that strengthening the anchorage of muscles via PINCH may be an effective strategy to prevent or reduce the muscle damage that occurs in diseases of muscle hypercontraction.
Collapse
Affiliation(s)
- Stephen M. Pronovost
- Huntsman Cancer Institute, Departments of Biology and Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary C. Beckerle
- Huntsman Cancer Institute, Departments of Biology and Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Julie L. Kadrmas
- Huntsman Cancer Institute, Departments of Biology and Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
17
|
Cell adhesion in Drosophila: versatility of cadherin and integrin complexes during development. Curr Opin Cell Biol 2012; 24:702-12. [PMID: 22938782 DOI: 10.1016/j.ceb.2012.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/16/2012] [Accepted: 07/26/2012] [Indexed: 01/22/2023]
Abstract
We highlight recent progress in understanding cadherin and integrin function in the model organism Drosophila. New functions for these adhesion receptors continue to be discovered in this system, emphasising the importance of cell adhesion within the developing organism and showing that the requirement for cell adhesion changes between cell types. New ways to control adhesion have been discovered, including controlling the expression and recruitment of adhesion components, their posttranslational modification, recycling and turnover. Importantly, even ubiquitous adhesion components can function differently in distinct cellular contexts.
Collapse
|