1
|
Camillo C, Facchinello N, Villari G, Mana G, Gioelli N, Sandri C, Astone M, Tortarolo D, Clapero F, Gays D, Oberkersch RE, Arese M, Tamagnone L, Valdembri D, Santoro MM, Serini G. LPHN2 inhibits vascular permeability by differential control of endothelial cell adhesion. J Cell Biol 2021; 220:212665. [PMID: 34581723 PMCID: PMC8480966 DOI: 10.1083/jcb.202006033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 03/22/2021] [Accepted: 09/02/2021] [Indexed: 01/20/2023] Open
Abstract
Dynamic modulation of endothelial cell-to-cell and cell–to–extracellular matrix (ECM) adhesion is essential for blood vessel patterning and functioning. Yet the molecular mechanisms involved in this process have not been completely deciphered. We identify the adhesion G protein–coupled receptor (ADGR) Latrophilin 2 (LPHN2) as a novel determinant of endothelial cell (EC) adhesion and barrier function. In cultured ECs, endogenous LPHN2 localizes at ECM contacts, signals through cAMP/Rap1, and inhibits focal adhesion (FA) formation and nuclear localization of YAP/TAZ transcriptional regulators, while promoting tight junction (TJ) assembly. ECs also express an endogenous LPHN2 ligand, fibronectin leucine-rich transmembrane 2 (FLRT2), that prevents ECM-elicited EC behaviors in an LPHN2-dependent manner. Vascular ECs of lphn2a knock-out zebrafish embryos become abnormally stretched, display a hyperactive YAP/TAZ pathway, and lack proper intercellular TJs. Consistently, blood vessels are hyperpermeable, and intravascularly injected cancer cells extravasate more easily in lphn2a null animals. Thus, LPHN2 ligands, such as FLRT2, may be therapeutically exploited to interfere with cancer metastatic dissemination.
Collapse
Affiliation(s)
- Chiara Camillo
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Nicola Facchinello
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Giulia Villari
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Giulia Mana
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Noemi Gioelli
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Chiara Sandri
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Matteo Astone
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Dora Tortarolo
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Fabiana Clapero
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Dafne Gays
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Roxana E Oberkersch
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Marco Arese
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Luca Tamagnone
- Institute of Histology and Embryology, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy.,"Agostino Gemelli" University Polyclinic Foundation, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Donatella Valdembri
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Massimo M Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Guido Serini
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| |
Collapse
|
2
|
Dunislawska A, Herosimczyk A, Lepczynski A, Slama P, Slawinska A, Bednarczyk M, Siwek M. Molecular Response in Intestinal and Immune Tissues to in Ovo Administration of Inulin and the Combination of Inulin and Lactobacillus lactis Subsp. cremoris. Front Vet Sci 2021; 7:632476. [PMID: 33614758 PMCID: PMC7886801 DOI: 10.3389/fvets.2020.632476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/15/2020] [Indexed: 02/02/2023] Open
Abstract
Intestinal microbiota are a key factor in maintaining good health and production results in chickens. They play an important role in the stimulation of immune responses, as well as in metabolic processes and nutrient digestion. Bioactive substances such as prebiotics, probiotics, or a combination of the two (synbiotic) can effectively stimulate intestinal microbiota and therefore replace antibiotic growth promoters. Intestinal microbiota might be stimulated at the early stage of embryo development in ovo. The aim of the study was to analyze the expression of genes related to energy metabolism and immune response after the administration of inulin and a synbiotic, in which lactic acid bacteria were combined with inulin in the intestines and immune tissues of chicken broilers. The experiment was performed on male broiler chickens. Eggs were incubated for 21 days in a commercial hatchery. On day 12 of egg incubation, inulin as a prebiotic and inulin with Lactobacillus lactis subsp. cremoris as a synbiotic were delivered to the egg chamber. The control group was injected with physiological saline. On day 35 post-hatching, birds from each group were randomly selected and sacrificed. Tissues (spleen, cecal tonsils, and large intestine) were collected and intended for RNA isolation. The gene panel (ABCG8, HNF4A, ACOX2, APBB1IP, BRSK2, APOA1, and IRS2) was selected based on the microarray dataset and biological functions of genes related to the energy metabolism and immune responses. Isolated RNA was analyzed using the RT-qPCR method, and the relative gene expression was calculated. In our experiment, distinct effects of prebiotics and synbiotics following in ovo delivery were manifested in all analyzed tissues, with the lowest number of genes with altered expression shown in the large intestines of broilers. The results demonstrated that prebiotics or synbiotics provide a potent stimulation of gene expression in the spleen and cecal tonsils of broiler chickens. The overall number of gene expression levels and the magnitude of their changes in the spleen and cecal tonsils were higher in the group of synbiotic chickens compared to the prebiotic group.
Collapse
Affiliation(s)
- Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - Adam Lepczynski
- Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Brno, Czechia
| | - Anna Slawinska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Marek Bednarczyk
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz, Poland
| |
Collapse
|
3
|
RIAM-VASP Module Relays Integrin Complement Receptors in Outside-In Signaling Driving Particle Engulfment. Cells 2020; 9:cells9051166. [PMID: 32397169 PMCID: PMC7291270 DOI: 10.3390/cells9051166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
The phagocytic integrins and complement receptors αMβ2/CR3 and αXβ2/CR4 are classically associated with the phagocytosis of iC3b-opsonized particles. The activation of this receptor is dependent on signals derived from other receptors (inside-out signaling) with the crucial involvement of the Rap1-RIAM-Talin-1 pathway. Here, we analyze the implication of RIAM and its binding partner VASP in the signaling events occurring downstream of β2 integrins (outside-in) during complement-mediated phagocytosis. To this end, we used HL-60 promyelocytic cell lines deficient in RIAM or VASP or overexpressing EGFP-tagged VASP to determine VASP dynamics at phagocytic cups. Our results indicate that RIAM-deficient HL-60 cells presented impaired particle internalization and altered integrin downstream signaling during complement-dependent phagocytosis. Similarly, VASP deficiency completely blocked phagocytosis, while VASP overexpression increased the random movement of phagocytic particles at the cell surface, with reduced internalization. Moreover, the recruitment of VASP to particle contact sites, amount of pSer157-VASP and formation of actin-rich phagocytic cups were dependent on RIAM expression. Our results suggested that RIAM worked as a relay for integrin complement receptors in outside-in signaling, coordinating integrin activation and cytoskeletal rearrangements via its interaction with VASP.
Collapse
|
4
|
Rebecca VW, Herlyn M. Nongenetic Mechanisms of Drug Resistance in Melanoma. ANNUAL REVIEW OF CANCER BIOLOGY 2020. [DOI: 10.1146/annurev-cancerbio-030419-033533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Resistance to targeted and immune-based therapies limits cures in patients with metastatic melanoma. A growing number of reports have identified nongenetic primary resistance mechanisms including intrinsic microenvironment- and lineage plasticity–mediated processes serving critical functions in the persistence of disease throughout therapy. There is a temporally shifting spectrum of cellular identities fluidly occupied by therapy-persisting melanoma cells responsible for driving therapeutic resistance and metastasis. The key epigenetic, metabolic, and phenotypic reprogramming events requisite for the manifestation and maintenance of so-called persister melanoma populations remain poorly understood and underscore the need to comprehensively investigate actionable vulnerabilities. Here we attempt to integrate the field's observations on nongenetic mechanisms of drug resistance in melanoma. We postulate that the future design of therapeutic strategies specifically addressing therapy-persisting subpopulations of melanoma will improve the curative potential of therapy for patients with metastatic disease.
Collapse
Affiliation(s)
- Vito W. Rebecca
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
5
|
Bauer TJ, Gombocz E, Krüger M, Sahana J, Corydon TJ, Bauer J, Infanger M, Grimm D. Augmenting cancer cell proteomics with cellular images - A semantic approach to understand focal adhesion. J Biomed Inform 2019; 100:103320. [PMID: 31669288 DOI: 10.1016/j.jbi.2019.103320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/23/2019] [Accepted: 10/23/2019] [Indexed: 01/13/2023]
Abstract
If monolayers of cancer cells are exposed to microgravity, some of the cells cease adhering to the bottom of a culture flask and join three-dimensional aggregates floating in the culture medium. Searching reasons for this change in phenotype, we performed proteome analyses and learnt that accumulation and posttranslational modification of proteins involved in cell-matrix and cell-cell adhesion are affected. To further investigate these proteins, we developed a methodology to find histological images about focal adhesion complex (FA) proteins. Selecting proteins expressed by human FTC-133 and MCF-7 cancer cells and known to be incorporated in FA, we transformed the experimental data to RDF to establish a core semantic knowledgebase. Applying iterative SPARQL queries to Linked Open Databases, we augmented these data with additional functional, transformation- and aggregation-related relationships. Using reasoning, we retrieved publications with images about the spatial arrangement of proteins incorporated in FA. Contextualizing those images enabled us to gain insights about FA of cells changing their site of growth, and to independently validate our experimental results. This new way to link experimental proteome data to biomedical knowledge from various sources via searching images may generally be applied in science when images are a tool of knowledge dissemination.
Collapse
Affiliation(s)
- Thomas J Bauer
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.
| | - Erich Gombocz
- Melissa Informatics, 2550 Ninth Street, Suite 114, Berkeley, CA, USA.
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Hoeg-Guldbergsgade 10, DK-8000 Aarhus C, Denmark.
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Hoeg-Guldbergsgade 10, DK-8000 Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark.
| | - Johann Bauer
- Max-Planck Institute of Biochemistry, D-82152 Martinsried, Germany.
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany; Department of Biomedicine, Aarhus University, Hoeg-Guldbergsgade 10, DK-8000 Aarhus C, Denmark; Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto-von-Guericke-University-Magdeburg, D-39120 Magdeburg, Germany.
| |
Collapse
|
6
|
Torsello B, De Marco S, Bombelli S, Chisci E, Cassina V, Corti R, Bernasconi D, Giovannoni R, Bianchi C, Perego RA. The 1ALCTL and 1BLCTL isoforms of Arg/Abl2 induce fibroblast activation and extra cellular matrix remodelling differently. Biol Open 2019; 8:bio.038554. [PMID: 30837227 PMCID: PMC6451347 DOI: 10.1242/bio.038554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The fibrotic tissue and the stroma adjacent to cancer cells are characterised by the presence of activated fibroblasts (myofibroblasts) which play a role in creating a supportive tissue characterised by abundant extracellular matrix (ECM) secretion. The myofibroblasts remodel this tissue through secreted molecules and modulation of their cytoskeleton and specialized contractile structures. The non-receptor protein tyrosine kinase Arg (also called Abl2) has the unique ability to bind directly to the actin cytoskeleton, transducing diverse extracellular signals into cytoskeletal rearrangements. In this study we analysed the 1ALCTL and 1BLCTL Arg isoforms in Arg−/− murine embryonal fibroblasts (MEF) cell line, focusing on their capacity to activate fibroblasts and to remodel ECM. The results obtained showed that Arg isoform 1BLCTL has a major role in proliferation, migration/invasion of MEF and in inducing a milieu able to modulate tumour cell morphology, while 1ALCTL isoform has a role in MEF adhesion maintaining active focal adhesions. On the whole, the presence of Arg in MEF supports the proliferation, activation, adhesion, ECM contraction and stiffness, while the absence of Arg affected these myofibroblast features. This article has an associated First Person interview with the first author of the paper. Summary: The non-receptor tyrosine kinase Arg and its isoforms modulate the extra cellular matrix production that is relevant in fibrosis and tumour growth, this may open future novel therapeutic approaches.
Collapse
Affiliation(s)
- Barbara Torsello
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Sofia De Marco
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Silvia Bombelli
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Elisa Chisci
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Valeria Cassina
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberta Corti
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy.,Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy
| | - Davide Bernasconi
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberto Giovannoni
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Cristina Bianchi
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberto A Perego
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
7
|
Ijuin T. Phosphoinositide phosphatases in cancer cell dynamics-Beyond PI3K and PTEN. Semin Cancer Biol 2019; 59:50-65. [PMID: 30922959 DOI: 10.1016/j.semcancer.2019.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Phosphoinositides are a group of lipids that regulate intracellular signaling and subcellular biological events. The signaling by phosphatidylinositol-3,4,5-trisphosphate and Akt mediates the action of growth factors that are essential for cell proliferation, gene transcription, cell migration, and polarity. The hyperactivation of this signaling has been identified in different cancer cells; and, it has been implicated in oncogenic transformation and cancer cell malignancy. Recent studies have argued the role of phosphoinositides in cancer cell dynamics, including actin cytoskeletal rearrangement at the plasma membrane and the organization of intracellular compartments. The focus of this review is to summarize the impact of the activities of phosphoinositide phosphatases on intracellular signaling related to cancer cell dynamics and to discuss how the abnormalities in the activities of the enzymes alter the levels of phosphoinositides in cancer cells.
Collapse
Affiliation(s)
- Takeshi Ijuin
- Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chu-o, Kobe 650-0017, Japan.
| |
Collapse
|
8
|
Molecular basis for autoinhibition of RIAM regulated by FAK in integrin activation. Proc Natl Acad Sci U S A 2019; 116:3524-3529. [PMID: 30733287 DOI: 10.1073/pnas.1818880116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RAP1-interacting adapter molecule (RIAM) mediates RAP1-induced integrin activation. The RAS-association (RA) segment of the RA-PH module of RIAM interacts with GTP-bound RAP1 and phosphoinositol 4,5 bisphosphate but this interaction is inhibited by the N-terminal segment of RIAM. Here we report the structural basis for the autoinhibition of RIAM by an intramolecular interaction between the IN region (aa 27-93) and the RA-PH module. We solved the crystal structure of IN-RA-PH to a resolution of 2.4-Å. The structure reveals that the IN segment associates with the RA segment and thereby suppresses RIAM:RAP1 association. This autoinhibitory configuration of RIAM can be released by phosphorylation at Tyr45 in the IN segment. Specific inhibitors of focal adhesion kinase (FAK) blocked phosphorylation of Tyr45, inhibited stimulated translocation of RIAM to the plasma membrane, and inhibited integrin-mediated cell adhesion in a Tyr45-dependent fashion. Our results reveal an unusual regulatory mechanism in small GTPase signaling by which the effector molecule is autoinhibited for GTPase interaction, and a modality of integrin activation at the level of RIAM through a FAK-mediated feedforward mechanism that involves reversal of autoinhibition by a tyrosine kinase associated with integrin signaling.
Collapse
|
9
|
miR-23a promotes invasion of glioblastoma via HOXD10-regulated glial-mesenchymal transition. Signal Transduct Target Ther 2018; 3:33. [PMID: 30603114 PMCID: PMC6308238 DOI: 10.1038/s41392-018-0033-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/02/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma is the most aggressive and invasive brain tumor and has a poor prognosis; elucidating the underlying molecular mechanisms is essential to select molecular targeted therapies. Here, we investigated the effect of microRNAs on the marked invasiveness of glioblastoma. U373 glioblastoma cells were infected with 140 different microRNAs from an OncomiR library, and the effects of the invasion-related microRNAs and targeted molecules were investigated after repeated Matrigel invasion assays. Screening of the OncomiR library identified miR-23a as a key regulator of glioblastoma invasion. In six glioblastoma cell lines, a positive correlation was detected between the expression levels of miR-23a and invasiveness. A luciferase reporter assay demonstrated that homeobox D10 (HOXD10) was a miR-23a-target molecule, which was verified by high scores from both the PicTar and miRanda algorithms. Forced expression of miR-23a induced expression of invasion-related molecules, including uPAR, RhoA, and RhoC, and altered expression of glial-mesenchymal transition markers such as Snail, Slug, MMP2, MMP9, MMP14, and E-cadherin; however, these changes in expression levels were reversed by HOXD10 overexpression. Thus, miR-23a significantly promoted invasion of glioblastoma cells with polarized formation of focal adhesions, while exogenous HOXD10 overexpression reversed these phenomena. Here, we identify miR-23a-regulated HOXD10 as a pivotal regulator of invasion in glioblastoma, providing a novel mechanism for the aggressive invasiveness of this tumor and providing insight into potential therapeutic targets. Researchers in Japan have identified key genetic players in an aggressive form of brain cancer. Glioblastoma is the most invasive type of brain tumor, with a five-year survival rate of just 7%. To investigate its invasiveness, a team led by Shinya Tanaka of Hokkaido University tested the effect of 140 microRNAs on glioblastoma cells. They found that miR-23a increased the invasiveness of the cells. Further research revealed that miR-23a reduces the level of the regulatory gene HOXD10 by destroying the protein it encodes. This reduction leads to changes in the expression of genes regulated by HOXD10, increasing affected cells’ invasiveness and altering their morphology. The miR-23a/HOXD10 pathway revealed here not only provides insight into the biology of glioblastoma but also offers a potential therapeutic target.
Collapse
|
10
|
Patsoukis N, Bardhan K, Weaver JD, Sari D, Torres-Gomez A, Li L, Strauss L, Lafuente EM, Boussiotis VA. The adaptor molecule RIAM integrates signaling events critical for integrin-mediated control of immune function and cancer progression. Sci Signal 2017; 10:10/493/eaam8298. [DOI: 10.1126/scisignal.aam8298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Tang DD, Gerlach BD. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res 2017; 18:54. [PMID: 28390425 PMCID: PMC5385055 DOI: 10.1186/s12931-017-0544-7] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Smooth muscle cell migration has been implicated in the development of respiratory and cardiovascular systems; and airway/vascular remodeling. Cell migration is a polarized cellular process involving a protrusive cell front and a retracting trailing rear. There are three cytoskeletal systems in mammalian cells: the actin cytoskeleton, the intermediate filament network, and microtubules; all of which regulate all or part of the migrated process. The dynamic actin cytoskeleton spatially and temporally regulates protrusion, adhesions, contraction, and retraction from the cell front to the rear. c-Abl tyrosine kinase plays a critical role in regulating actin dynamics and migration of airway smooth muscle cells and nonmuscle cells. Recent studies suggest that intermediate filaments undergo reorganization during migration, which coordinates focal adhesion dynamics, cell contraction, and nucleus rigidity. In particular, vimentin intermediate filaments undergo phosphorylation and reorientation in smooth muscle cells, which may regulate cell contraction and focal adhesion assembly/disassembly. Motile cells are characterized by a front-rear polarization of the microtubule framework, which regulates all essential processes leading to cell migration through its role in cell mechanics, intracellular trafficking, and signaling. This review recapitulates our current knowledge how the three cytoskeletal systems spatially and temporally modulate the migratory properties of cells. We also summarize the potential role of migration-associated biomolecules in lung and vascular diseases.
Collapse
Affiliation(s)
- Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| | - Brennan D Gerlach
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| |
Collapse
|
12
|
Rahamim-Ben Navi L, Tsukerman A, Feldman A, Melamed P, Tomić M, Stojilkovic SS, Boehm U, Seger R, Naor Z. GnRH Induces ERK-Dependent Bleb Formation in Gonadotrope Cells, Involving Recruitment of Members of a GnRH Receptor-Associated Signalosome to the Blebs. Front Endocrinol (Lausanne) 2017; 8:113. [PMID: 28626446 PMCID: PMC5454083 DOI: 10.3389/fendo.2017.00113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We have previously described a signaling complex (signalosome) associated with the GnRH receptor (GnRHR). We now report that GnRH induces bleb formation in the gonadotrope-derived LβT2 cells. The blebs appear within ~2 min at a turnover rate of ~2-3 blebs/min and last for at least 90 min. Formation of the blebs requires active ERK1/2 and RhoA-ROCK but not active c-Src. Although the following ligands stimulate ERK1/2 in LβT2 cells: EGF > GnRH > PMA > cyclic adenosine monophosphate (cAMP), they produced little or no effect on bleb formation as compared to the robust effect of GnRH (GnRH > PMA > cAMP > EGF), indicating that ERK1/2 is required but not sufficient for bleb formation possibly due to compartmentalization. Members of the above mentioned signalosome are recruited to the blebs, some during bleb formation (GnRHR, c-Src, ERK1/2, focal adhesion kinase, paxillin, and tubulin), and some during bleb retraction (vinculin), while F-actin decorates the blebs during retraction. Fluorescence intensity measurements for the above proteins across the cells showed higher intensity in the blebs vs. intracellular area. Moreover, GnRH induces blebs in primary cultures of rat pituitary cells and isolated mouse gonadotropes in an ERK1/2-dependent manner. The novel signalosome-bleb pathway suggests that as with the signalosome, the blebs are apparently involved in cell migration. Hence, we have extended the potential candidates which are involved in the blebs life cycle in general and for the GnRHR in particular.
Collapse
Affiliation(s)
- Liat Rahamim-Ben Navi
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Anna Tsukerman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alona Feldman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Melanija Tomić
- National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States
| | - Stanko S. Stojilkovic
- National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Zvi Naor,
| |
Collapse
|
13
|
Zhao J, Zeng X, Song P, Wu X, Shi H. AKT1 as the PageRank hub gene is associated with melanoma and its functional annotation is highly related to the estrogen signaling pathway that may regulate the growth of melanoma. Oncol Rep 2016; 36:2087-93. [PMID: 27573172 DOI: 10.3892/or.2016.5048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/01/2016] [Indexed: 11/05/2022] Open
Abstract
In order to detect the disease-associated genes and their gene interaction function and association with melanoma mechanisms, we identified a total of 1,310 differentially expressed genes (DEGs) from the Gene Expression Omnibus database GSE3189 with FDR <0.01 and |logFC| >2 using the R package. After constructing the gene interaction network by STRING with the selected DEGs, we applied a statistical approach to identify the topological hub genes with PageRank score. Forty-four genes were identified in this network and AKT1 was selected as the most important hub gene. The AKT1 gene encodes a serine‑threonine protein kinase (AKT). High expression of AKT is involved in the resistance of cell apoptosis as well as adaptive resistance to treatment in melanoma. Our results indicated that AKT1 with a higher expression in melanoma showed enriched binding sites in the negative regulation of response to external stimulus, which enables cells to adapt to changes in external stimulation for survival. Another finding was that AKT regulated the lipid metabolic process and may be involved in melanoma progression and promotion of tumor growth through gene enrichment function analysis. Two highlighted pathways were detected in our study: i) the estrogen signaling pathway modulates the immune tolerance and resistance to cell apoptosis, which contributes to the growth of melanoma and ii) the RAP1 signaling pathway which regulates focal adhesion (FA) negative feedback to cell migration and invasion in melanoma. Our studies highlighted the top differentially expressed gene AKT1 and its correlation with the estrogen signaling and RAP1 signaling pathways to alter the proliferation and apoptosis of melanoma cells. Analysis of the enrichment functions of genes associated with melanoma will help us find the exact mechanism of melanoma and advance the full potential of newly targeted cancer therapy.
Collapse
Affiliation(s)
- Jingjing Zhao
- Key Laboratory of Advanced Control and Optimization for Chemical Processes of the Chinese Ministry of Education, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Xue Zeng
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Ping Song
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Xiaohong Wu
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Hongbo Shi
- Key Laboratory of Advanced Control and Optimization for Chemical Processes of the Chinese Ministry of Education, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
14
|
Major Action of Endogenous Lysyl Oxidase in Clear Cell Renal Cell Carcinoma Progression and Collagen Stiffness Revealed by Primary Cell Cultures. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2473-85. [PMID: 27449199 DOI: 10.1016/j.ajpath.2016.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/27/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022]
Abstract
Human clear cell renal cell carcinoma (ccRCC) is therapy resistant; therefore, it is worthwhile studying in depth the molecular aspects of its progression. In ccRCC the biallelic inactivation of the VHL gene leads to stabilization of hypoxia-inducible factors (HIFs). Among the targets of HIF-1α transcriptional activity is the LOX gene, which codes for the inactive proenzyme (Pro-Lox) from which, after extracellular secretion and proteolysis, derives the active enzyme (Lox) and the propeptide (Lox-PP). By increasing stiffness of extracellular matrix by collagen crosslinking, Lox promotes tumor progression and metastasis. Lox and Lox-PP can reenter the cells where Lox promotes cell proliferation and invasion, whereas Lox-PP acts as tumor suppressor because of its Ras recision and apoptotic activity. Few data are available concerning LOX in ccRCC. Using an in vitro model of ccRCC primary cell cultures, we performed, for the first time in ccRCC, a detailed study of endogenous LOX and also investigated their transcriptomic profile. We found that endogenous LOX is overexpressed in ccRCC, is involved in a positive-regulative loop with HIF-1α, and has a major action on ccRCC progression through cellular adhesion, migration, and collagen matrix stiffness increment; however, the oncosuppressive action of Lox-PP was not found to prevail. These findings may suggest translational approaches for new therapeutic strategies in ccRCC.
Collapse
|
15
|
Vu HL, Rosenbaum S, Capparelli C, Purwin TJ, Davies MA, Berger AC, Aplin AE. MIG6 Is MEK Regulated and Affects EGF-Induced Migration in Mutant NRAS Melanoma. J Invest Dermatol 2015; 136:453-463. [PMID: 26967478 PMCID: PMC4789776 DOI: 10.1016/j.jid.2015.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/29/2015] [Accepted: 09/11/2015] [Indexed: 12/17/2022]
Abstract
Activating mutations in NRAS are frequent driver events in cutaneous melanoma. NRAS is a GTP-binding protein, whose most well-characterized downstream effector is RAF leading to activation of MEK-ERK1/2 signaling. While there are no FDA-approved targeted therapies for melanoma patients with a primary mutation in NRAS, one form of targeted therapy that has been explored is MEK inhibition. In clinical trials, MEK inhibitors have shown disappointing efficacy in mutant NRAS patients, the reasons for which are unclear. To explore the effects of MEK inhibitors in mutant NRAS melanoma, we utilized a high-throughput reverse-phase protein array (RPPA) platform to identify signaling alterations. RPPA analysis of phospho-proteomic changes in mutant NRAS melanoma in response to trametinib indicated a compensatory increase in AKT signaling and decreased expression of mitogen-inducible gene 6 (MIG6), a negative regulator of EGFR/ERBB receptors. MIG6 expression did not alter the growth or survival properties of mutant NRAS melanoma cells. Rather, we identified a role for MIG6 as a negative regulator of EGF-induced signaling and cell migration and invasion. In MEK inhibited cells, further depletion of MIG6 increased migration and invasion, whereas MIG6 expression decreased these properties. Therefore, a decrease in MIG6 may promote the migration and invasiveness of MEK-inhibited mutant NRAS melanoma especially in response to EGF stimulation.
Collapse
Affiliation(s)
- Ha Linh Vu
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University Philadelphia, Pennsylvania, USA
| | - Sheera Rosenbaum
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University Philadelphia, Pennsylvania, USA
| | - Claudia Capparelli
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University Philadelphia, Pennsylvania, USA
| | - Timothy J Purwin
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University Philadelphia, Pennsylvania, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Adam C Berger
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrew E Aplin
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University Philadelphia, Pennsylvania, USA; Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
16
|
A plastic relationship between vinculin-mediated tension and adhesion complex area defines adhesion size and lifetime. Nat Commun 2015; 6:7524. [PMID: 26109125 PMCID: PMC4491829 DOI: 10.1038/ncomms8524] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/16/2015] [Indexed: 01/08/2023] Open
Abstract
Cell-matrix adhesions are central mediators of mechanotransduction, yet the interplay between force and adhesion regulation remains unclear. Here we use live cell imaging to map time-dependent cross-correlations between vinculin-mediated tension and adhesion complex area, revealing a plastic, context-dependent relationship. Interestingly, while an expected positive cross-correlation dominated in mid-sized adhesions, small and large adhesions display negative cross-correlation. Furthermore, although large changes in adhesion complex area follow vinculin-mediated tension alterations, small increases in area precede vinculin-mediated tension dynamics. Modelling based on this mapping of the vinculin-mediated tension-adhesion complex area relationship confirms its biological validity, and indicates that this relationship explains adhesion size and lifetime limits, keeping adhesions focal and transient. We also identify a subpopulation of steady-state adhesions whose size and vinculin-mediated tension become stabilized, and whose disassembly may be selectively microtubule-mediated. In conclusion, we define a plastic relationship between vinculin-mediated tension and adhesion complex area that controls fundamental cell-matrix adhesion properties. Cell-matrix adhesions may increase or decrease in size in response to tension; however, the factors determining which of these responses predominates remain unclear. Hernández-Varas et al. quantify the plastic relationship between adhesion size and tension and use modelling to explain this behaviour.
Collapse
|
17
|
Rap1-GTP-interacting adaptor molecule (RIAM) is dispensable for platelet integrin activation and function in mice. Blood 2014; 125:219-22. [PMID: 25336629 DOI: 10.1182/blood-2014-08-597542] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelet aggregation at sites of vascular injury is essential for hemostasis but also thrombosis. Platelet adhesiveness is critically dependent on agonist-induced inside-out activation of heterodimeric integrin receptors by a mechanism involving the recruitment of talin-1 to the cytoplasmic integrin tail. Experiments in heterologous cells have suggested a critical role of Rap1-guanosine triphosphate-interacting adaptor molecule (RIAM) for talin-1 recruitment and thus integrin activation, but direct in vivo evidence to support this has been missing. We generated RIAM-null mice and found that they are viable, fertile, and apparently healthy. Unexpectedly, platelets from these mice show unaltered β3- and β1-integrin activation and consequently normal adhesion and aggregation responses under static and flow conditions. Similarly, hemostasis and arterial thrombus formation were indistinguishable between wild-type and RIAM-null mice. These results reveal that RIAM is dispensable for integrin activation and function in mouse platelets, strongly suggesting the existence of alternative mechanisms of talin-1 recruitment.
Collapse
|
18
|
Chakraborty S, Umasankar PK, Preston GM, Khandelwal P, Apodaca G, Watkins SC, Traub LM. A phosphotyrosine switch for cargo sequestration at clathrin-coated buds. J Biol Chem 2014; 289:17497-514. [PMID: 24798335 DOI: 10.1074/jbc.m114.556589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AP-2 clathrin adaptor complex oversees endocytic cargo selection in two parallel but independent manners. First, by physically engaging peptide-based endocytic sorting signals, a subset of clathrin-dependent transmembrane cargo is directly collected into assembling buds. Synchronously, by interacting with an assortment of clathrin-associated sorting proteins (CLASPs) that independently select different integral membrane cargo for inclusion within the incipient bud, AP-2 handles additional cargo capture indirectly. The distal platform subdomain of the AP-2 β2 subunit appendage is a privileged CLASP-binding surface that recognizes a cognate, short α-helical interaction motif. This signal, found in the CLASPs β-arrestin and the autosomal recessive hypercholesterolemia (ARH) protein, docks into an elongated groove on the β2 appendage platform. Tyr-888 is a critical constituent of this spatially confined β2 appendage contact interface and is phosphorylated in numerous high-throughput proteomic studies. We find that a phosphomimetic Y888E substitution does not interfere with incorporation of expressed β2-YFP subunit into AP-2 or alter AP-2 deposition at surface clathrin-coated structures. The Y888E mutation does not affect interactions involving the sandwich subdomain of the β2 appendage, indicating that the mutated appendage is folded and operational. However, the Y888E, but not Y888F, switch selectively uncouples interactions with ARH and β-arrestin. Phyogenetic conservation of Tyr-888 suggests that this residue can reversibly control occupancy of the β2 platform-binding site and, hence, cargo sorting.
Collapse
Affiliation(s)
| | | | | | - Puneet Khandelwal
- the Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Gerard Apodaca
- the Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | | | |
Collapse
|
19
|
Plasticity in the macromolecular-scale causal networks of cell migration. PLoS One 2014; 9:e90593. [PMID: 24587399 PMCID: PMC3938764 DOI: 10.1371/journal.pone.0090593] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 02/03/2014] [Indexed: 11/26/2022] Open
Abstract
Heterogeneous and dynamic single cell migration behaviours arise from a complex multi-scale signalling network comprising both molecular components and macromolecular modules, among which cell-matrix adhesions and F-actin directly mediate migration. To date, the global wiring architecture characterizing this network remains poorly defined. It is also unclear whether such a wiring pattern may be stable and generalizable to different conditions, or plastic and context dependent. Here, synchronous imaging-based quantification of migration system organization, represented by 87 morphological and dynamic macromolecular module features, and migration system behaviour, i.e., migration speed, facilitated Granger causality analysis. We thereby leveraged natural cellular heterogeneity to begin mapping the directionally specific causal wiring between organizational and behavioural features of the cell migration system. This represents an important advance on commonly used correlative analyses that do not resolve causal directionality. We identified organizational features such as adhesion stability and adhesion F-actin content that, as anticipated, causally influenced cell migration speed. Strikingly, we also found that cell speed can exert causal influence over organizational features, including cell shape and adhesion complex location, thus revealing causality in directions contradictory to previous expectations. Importantly, by comparing unperturbed and signalling-modulated cells, we provide proof-of-principle that causal interaction patterns are in fact plastic and context dependent, rather than stable and generalizable.
Collapse
|
20
|
Dinardo CL, Venturini G, Zhou EH, Watanabe IS, Campos LCG, Dariolli R, da Motta-Leal-Filho JM, Carvalho VM, Cardozo KHM, Krieger JE, Alencar AM, Pereira AC. Variation of mechanical properties and quantitative proteomics of VSMC along the arterial tree. Am J Physiol Heart Circ Physiol 2014; 306:H505-16. [DOI: 10.1152/ajpheart.00655.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are thought to assume a quiescent and homogeneous mechanical behavior after arterial tree development phase. However, VSMCs are known to be molecularly heterogeneous in other aspects and their mechanics may play a role in pathological situations. Our aim was to evaluate VSMCs from different arterial beds in terms of mechanics and proteomics, as well as investigate factors that may influence this phenotype. VSMCs obtained from seven arteries were studied using optical magnetic twisting cytometry (both in static state and after stretching) and shotgun proteomics. VSMC mechanical data were correlated with anatomical parameters and ultrastructural images of their vessels of origin. Femoral, renal, abdominal aorta, carotid, mammary, and thoracic aorta exhibited descending order of stiffness (G, P < 0.001). VSMC mechanical data correlated with the vessel percentage of elastin and amount of surrounding extracellular matrix (ECM), which decreased with the distance from the heart. After 48 h of stretching simulating regional blood flow of elastic arteries, VSMCs exhibited a reduction in basal rigidity. VSMCs from the thoracic aorta expressed a significantly higher amount of proteins related to cytoskeleton structure and organization vs. VSMCs from the femoral artery. VSMCs are heterogeneous in terms of mechanical properties and expression/organization of cytoskeleton proteins along the arterial tree. The mechanical phenotype correlates with the composition of ECM and can be modulated by cyclic stretching imposed on VSMCs by blood flow circumferential stress.
Collapse
Affiliation(s)
- Carla Luana Dinardo
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Gabriela Venturini
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Enhua H. Zhou
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Ii Sei Watanabe
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, São Paulo, Brazil
| | | | - Rafael Dariolli
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | | | | | - José Eduardo Krieger
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | | |
Collapse
|