1
|
AmiRsardari Z, Gholipour A, Khajali Z, Maleki M, Malakootian M. Exploring the role of non-coding RNAs in atrial septal defect pathogenesis: A systematic review. PLoS One 2024; 19:e0306576. [PMID: 39172906 PMCID: PMC11340980 DOI: 10.1371/journal.pone.0306576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/19/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Extensive research has recognized the significant roles of non-coding RNAs (ncRNAs) in various cellular pathophysiological processes and their association with diverse diseases, including atrial septal defect (ASD), one of the most prevalent congenital heart diseases. This systematic review aims to explore the intricate involvement and significance of ncRNAs in the pathogenesis and progression of ASD. METHODS Four databases (PubMed, Embase, Scopus, and the Web of Science) were searched systematically up to June 19, 2023, with no year restriction. The risk of bias assessment was evaluated using the Newcastle-Ottawa scale. RESULTS The present systematic review included thirteen studies with a collective study population of 874 individuals diagnosed with ASD, 21 parents of ASD patients, and 22 pregnant women carrying ASD fetuses. Our analysis revealed evidence linking five long ncRNAs (STX18-AS1, HOTAIR, AA709223, BX478947, and Moshe) and several microRNAs (hsa-miR-19a, hsa-miR-19b, hsa-miR-375, hsa-miR-29c, miR-29, miR-143/145, miR-17-92, miR-106b-25, and miR-503/424, miR-9, miR-30a, miR-196a2, miR-139-5p, hsa-let-7a, hsa-let-7b, and hsa-miR-486) to ASD progression, corresponding to previous studies. CONCLUSIONS NcRNAs play a crucial role in unraveling the underlying mechanisms of ASD, contributing to both biomarker discovery and therapeutic advancements. This systematic review sheds light on the mechanisms of action of key ncRNAs involved in ASD progression, providing valuable insights for future research in this field.
Collapse
Affiliation(s)
- Zahra AmiRsardari
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Congenital Heart Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Gholipour
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Khajali
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Congenital Heart Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Le Rouzic A, Fix J, Vinck R, Kappler-Gratias S, Volmer R, Gallardo F, Eléouët JF, Keck M, Cintrat JC, Barbier J, Gillet D, Galloux M. A New Derivative of Retro-2 Displays Antiviral Activity against Respiratory Syncytial Virus. Int J Mol Sci 2023; 25:415. [PMID: 38203585 PMCID: PMC10778932 DOI: 10.3390/ijms25010415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Human respiratory syncytial virus (hRSV) is the most common cause of bronchiolitis and pneumonia in newborns, with all children being infected before the age of two. Reinfections are very common throughout life and can cause severe respiratory infections in the elderly and immunocompromised adults. Although vaccines and preventive antibodies have recently been licensed for use in specific subpopulations of patients, there is still no therapeutic treatment commonly available for these infections. Here, we investigated the potential antiviral activity of Retro-2.2, a derivative of the cellular retrograde transport inhibitor Retro-2, against hRSV. We show that Retro-2.2 inhibits hRSV replication in cell culture and impairs the ability of hRSV to form syncytia. Our results suggest that Retro-2.2 treatment affects virus spread by disrupting the trafficking of the viral de novo synthetized F and G glycoproteins to the plasma membrane, leading to a defect in virion morphogenesis. Taken together, our data show that targeting intracellular transport may be an effective strategy against hRSV infection.
Collapse
Affiliation(s)
- Adrien Le Rouzic
- INRAE Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St Quentin, 78350 Jouy-en-Josas, France; (A.L.R.); (J.F.); (J.-F.E.)
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (R.V.); (M.K.); (J.B.)
| | - Jenna Fix
- INRAE Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St Quentin, 78350 Jouy-en-Josas, France; (A.L.R.); (J.F.); (J.-F.E.)
| | - Robin Vinck
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (R.V.); (M.K.); (J.B.)
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, 91191 Gif-sur-Yvette, France;
| | | | - Romain Volmer
- INRAE, IHAP, UMR 1225, ENVT, 31300 Toulouse, France;
| | - Franck Gallardo
- NeoVirTech SAS, 1 Place Pierre Potier, 31000 Toulouse, France; (S.K.-G.); (F.G.)
| | - Jean-François Eléouët
- INRAE Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St Quentin, 78350 Jouy-en-Josas, France; (A.L.R.); (J.F.); (J.-F.E.)
| | - Mathilde Keck
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (R.V.); (M.K.); (J.B.)
| | - Jean-Christophe Cintrat
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, 91191 Gif-sur-Yvette, France;
| | - Julien Barbier
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (R.V.); (M.K.); (J.B.)
| | - Daniel Gillet
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (R.V.); (M.K.); (J.B.)
| | - Marie Galloux
- INRAE Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St Quentin, 78350 Jouy-en-Josas, France; (A.L.R.); (J.F.); (J.-F.E.)
| |
Collapse
|
3
|
Cremer T, Voortman LM, Bos E, Jongsma MLM, ter Haar LR, Akkermans JJLL, Talavera Ormeño CMP, Wijdeven RHM, de Vries J, Kim RQ, Janssen GMC, van Veelen PA, Koning RI, Neefjes J, Berlin I. RNF26 binds perinuclear vimentin filaments to integrate ER and endolysosomal responses to proteotoxic stress. EMBO J 2023; 42:e111252. [PMID: 37519262 PMCID: PMC10505911 DOI: 10.15252/embj.2022111252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Proteotoxic stress causes profound endoplasmic reticulum (ER) membrane remodeling into a perinuclear quality control compartment (ERQC) for the degradation of misfolded proteins. Subsequent return to homeostasis involves clearance of the ERQC by endolysosomes. However, the factors that control perinuclear ER integrity and dynamics remain unclear. Here, we identify vimentin intermediate filaments as perinuclear anchors for the ER and endolysosomes. We show that perinuclear vimentin filaments engage the ER-embedded RING finger protein 26 (RNF26) at the C-terminus of its RING domain. This restricts RNF26 to perinuclear ER subdomains and enables the corresponding spatial retention of endolysosomes through RNF26-mediated membrane contact sites (MCS). We find that both RNF26 and vimentin are required for the perinuclear coalescence of the ERQC and its juxtaposition with proteolytic compartments, which facilitates efficient recovery from ER stress via the Sec62-mediated ER-phagy pathway. Collectively, our findings reveal a scaffolding mechanism that underpins the spatiotemporal integration of organelles during cellular proteostasis.
Collapse
Affiliation(s)
- Tom Cremer
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Lenard M Voortman
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Erik Bos
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Marlieke LM Jongsma
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Laurens R ter Haar
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jimmy JLL Akkermans
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Cami MP Talavera Ormeño
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Ruud HM Wijdeven
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam NeuroscienceAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Jelle de Vries
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Robbert Q Kim
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - George MC Janssen
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Peter A van Veelen
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Roman I Koning
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
4
|
Guay-Vincent MM, Matte C, Berthiaume AM, Olivier M, Jaramillo M, Descoteaux A. Revisiting Leishmania GP63 host cell targets reveals a limited spectrum of substrates. PLoS Pathog 2022; 18:e1010640. [PMID: 36191034 PMCID: PMC9560592 DOI: 10.1371/journal.ppat.1010640] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/13/2022] [Accepted: 09/25/2022] [Indexed: 11/18/2022] Open
Abstract
Colonization of host phagocytic cells by Leishmania metacyclic promastigotes involves several parasite effectors, including the zinc-dependent metalloprotease GP63. The major mode of action of this virulence factor entails the cleavage/degradation of host cell proteins. Given the potent proteolytic activity of GP63, identification of its substrates requires the adequate preparation of cell lysates to prevent artefactual degradation during cell processing. In the present study, we re-examined the cleavage/degradation of reported GP63 substrates when GP63 activity was efficiently neutralized during the preparation of cell lysates. To this end, we infected bone marrow-derived macrophages with either wild type, Δgp63, and Δgp63+GP63 L. major metacyclic promastigotes for various time points. We prepared cell lysates in the absence or presence of the zinc-metalloprotease inhibitor 1,10-phenanthroline and examined the levels and integrity of ten previously reported host cell GP63 substrates. Inhibition of GP63 activity with 1,10-phenanthroline during the processing of macrophages prevented the cleavage/degradation of several previously described GP63 targets, including PTP-PEST, mTOR, p65RelA, c-Jun, VAMP3, and NLRP3. Conversely, we confirmed that SHP-1, Synaptotagmin XI, VAMP8, and Syntaxin-5 are bona fide GP63 substrates. These results point to the importance of efficiently inhibiting GP63 activity during the preparation of Leishmania-infected host cell lysates. In addition, our results indicate that the role of GP63 in Leishmania pathogenesis must be re-evaluated.
Collapse
Affiliation(s)
- Marie-Michèle Guay-Vincent
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Christine Matte
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Anne-Marie Berthiaume
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, Quebec, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Maritza Jaramillo
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Albert Descoteaux
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
- * E-mail:
| |
Collapse
|
5
|
Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. MOLECULAR BIOMEDICINE 2022; 3:29. [PMID: 36129576 PMCID: PMC9492833 DOI: 10.1186/s43556-022-00090-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Intracellular vesicle trafficking is the fundamental process to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. These organelles transport cargo from the donor membrane to the target membrane through the cargo containing vesicles. Vesicle trafficking pathway includes vesicle formation from the donor membrane, vesicle transport, and vesicle fusion with the target membrane. Coat protein mediated vesicle formation is a delicate membrane budding process for cargo molecules selection and package into vesicle carriers. Vesicle transport is a dynamic and specific process for the cargo containing vesicles translocation from the donor membrane to the target membrane. This process requires a group of conserved proteins such as Rab GTPases, motor adaptors, and motor proteins to ensure vesicle transport along cytoskeletal track. Soluble N-ethyl-maleimide-sensitive factor (NSF) attachment protein receptors (SNARE)-mediated vesicle fusion is the final process for vesicle unloading the cargo molecules at the target membrane. To ensure vesicle fusion occurring at a defined position and time pattern in eukaryotic cell, multiple fusogenic proteins, such as synaptotagmin (Syt), complexin (Cpx), Munc13, Munc18 and other tethering factors, cooperate together to precisely regulate the process of vesicle fusion. Dysfunctions of the fusogenic proteins in SNARE-mediated vesicle fusion are closely related to many diseases. Recent studies have suggested that stimulated membrane fusion can be manipulated pharmacologically via disruption the interface between the SNARE complex and Ca2+ sensor protein. Here, we summarize recent insights into the molecular mechanisms of vesicle trafficking, and implications for the development of new therapeutics based on the manipulation of vesicle fusion.
Collapse
|
6
|
Congenital disorder of glycosylation caused by starting site-specific variant in syntaxin-5. Nat Commun 2021; 12:6227. [PMID: 34711829 PMCID: PMC8553859 DOI: 10.1038/s41467-021-26534-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/05/2021] [Indexed: 12/26/2022] Open
Abstract
The SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein syntaxin-5 (Stx5) is essential for Golgi transport. In humans, the STX5 mRNA encodes two protein isoforms, Stx5 Long (Stx5L) from the first starting methionine and Stx5 Short (Stx5S) from an alternative starting methionine at position 55. In this study, we identify a human disorder caused by a single missense substitution in the second starting methionine (p.M55V), resulting in complete loss of the short isoform. Patients suffer from an early fatal multisystem disease, including severe liver disease, skeletal abnormalities and abnormal glycosylation. Primary human dermal fibroblasts isolated from these patients show defective glycosylation, altered Golgi morphology as measured by electron microscopy, mislocalization of glycosyltransferases, and compromised ER-Golgi trafficking. Measurements of cognate binding SNAREs, based on biotin-synchronizable forms of Stx5 (the RUSH system) and Förster resonance energy transfer (FRET), revealed that the short isoform of Stx5 is essential for intra-Golgi transport. Alternative starting codons of Stx5 are thus linked to human disease, demonstrating that the site of translation initiation is an important new layer of regulating protein trafficking.
Collapse
|
7
|
Okumura F, Fujiki Y, Oki N, Osaki K, Nishikimi A, Fukui Y, Nakatsukasa K, Kamura T. Cul5-type Ubiquitin Ligase KLHDC1 Contributes to the Elimination of Truncated SELENOS Produced by Failed UGA/Sec Decoding. iScience 2020; 23:100970. [PMID: 32200094 PMCID: PMC7090344 DOI: 10.1016/j.isci.2020.100970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
The UGA codon signals protein translation termination, but it can also be translated into selenocysteine (Sec, U) to produce selenocysteine-containing proteins (selenoproteins) by dedicated machinery. As Sec incorporation can fail, Sec-containing longer and Sec-lacking shorter proteins co-exist. Cul2-type ubiquitin ligases were recently shown to destabilize such truncated proteins; however, which ubiquitin ligase targets truncated proteins for degradation remained unclear. We report that the Cul5-type ubiquitin ligase KLHDC1 targets truncated SELENOS, a selenoprotein, for proteasomal degradation. SELENOS is involved in endoplasmic reticulum (ER)-associated degradation, which is linked to reactive oxygen species (ROS) production, and the knockdown of KLHDC1 in U2OS cells decreased ER stress-induced cell death. Knockdown of SELENOS increased the cell population with lower ROS levels. Our findings reveal that, in addition to Cul2-type ubiquitin ligases, KLHDC1 is involved in the elimination of truncated oxidoreductase-inactive SELENOS, which would be crucial for maintaining ROS levels and preventing cancer development. KLHDC1 is a Cul5-type ubiquitin ligase KLHDC1 targets immature SELENOS for proteasomal degradation KLHDC1 knockdown in U2OS cells decreases ER stress-induced cell death
Collapse
Affiliation(s)
- Fumihiko Okumura
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8582, Japan.
| | - Yuha Fujiki
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8582, Japan
| | - Nodoka Oki
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8582, Japan
| | - Kana Osaki
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8582, Japan
| | - Akihiko Nishikimi
- Laboratory of Biosafety Research, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience and Research Center for Advanced Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunio Nakatsukasa
- Graduate School of Natural Sciences, Nagoya City University, Aichi 467-8501, Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan.
| |
Collapse
|
8
|
Gao G, Banfield DK. Multiple features within the syntaxin Sed5p mediate its Golgi localization. Traffic 2020; 21:274-296. [DOI: 10.1111/tra.12720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Guanbin Gao
- The Division of Life ScienceThe Hong Kong University of Science and Technology Hong Kong
| | - David K. Banfield
- The Division of Life ScienceThe Hong Kong University of Science and Technology Hong Kong
| |
Collapse
|
9
|
Miyagawa T, Hasegawa K, Aoki Y, Watanabe T, Otagiri Y, Arasaki K, Wakana Y, Asano K, Tanaka M, Yamaguchi H, Tagaya M, Inoue H. MT1-MMP recruits the ER-Golgi SNARE Bet1 for efficient MT1-MMP transport to the plasma membrane. J Cell Biol 2019; 218:3355-3371. [PMID: 31519727 PMCID: PMC6781441 DOI: 10.1083/jcb.201808149] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 04/22/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Invasive cancer cells degrade and invade into the extracellular matrix by expressing the matrix metalloproteinase MT1-MMP at invadopodia. Miyagawa et al. show that MT1-MMP uses the ER-Golgi SNARE Bet1 to facilitate its own transport to the plasma membrane through their interaction in a cholesterol-rich milieu. Metastasis is a major cause of cancer-related death. Membrane type 1–matrix metalloproteinase (MT1-MMP) is a critical protease for local invasion and metastasis. MT1-MMP is synthesized in the endoplasmic reticulum (ER) and transported in vesicles to invadopodia, specialized subdomains of the plasma membrane, through secretory and endocytic recycling pathways. The molecular mechanism underlying intracellular transport of MT1-MMP has been extensively studied, but is not fully understood. We show that MT1-MMP diverts the SNARE Bet1 from its function in ER-Golgi transport, to promote MT1-MMP trafficking to the cell surface, likely to invadopodia. In invasive cells, Bet1 is localized in MT1-MMP–positive endosomes in addition to the Golgi apparatus, and forms a novel SNARE complex with syntaxin 4 and endosomal SNAREs. MT1-MMP may also use Bet1 for its export from raft-like structures in the ER. Our results suggest the recruitment of Bet1 at an early stage after MT1-MMP expression promotes the exit of MT1-MMP from the ER and its efficient transport to invadopodia.
Collapse
Affiliation(s)
- Takuya Miyagawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kana Hasegawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yoko Aoki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Takuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yuka Otagiri
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kenichi Asano
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Masato Tanaka
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hideki Yamaguchi
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, Chiyoda-ku, Tokyo, Japan
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
10
|
Linders PT, Horst CVD, Beest MT, van den Bogaart G. Stx5-Mediated ER-Golgi Transport in Mammals and Yeast. Cells 2019; 8:cells8080780. [PMID: 31357511 PMCID: PMC6721632 DOI: 10.3390/cells8080780] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 01/12/2023] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 5 (Stx5) in mammals and its ortholog Sed5p in Saccharomyces cerevisiae mediate anterograde and retrograde endoplasmic reticulum (ER)-Golgi trafficking. Stx5 and Sed5p are structurally highly conserved and are both regulated by interactions with other ER-Golgi SNARE proteins, the Sec1/Munc18-like protein Scfd1/Sly1p and the membrane tethering complexes COG, p115, and GM130. Despite these similarities, yeast Sed5p and mammalian Stx5 are differently recruited to COPII-coated vesicles, and Stx5 interacts with the microtubular cytoskeleton, whereas Sed5p does not. In this review, we argue that these different Stx5 interactions contribute to structural differences in ER-Golgi transport between mammalian and yeast cells. Insight into the function of Stx5 is important given its essential role in the secretory pathway of eukaryotic cells and its involvement in infections and neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter Ta Linders
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Chiel van der Horst
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Martin Ter Beest
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
11
|
Avci D, Malchus NS, Heidasch R, Lorenz H, Richter K, Neßling M, Lemberg MK. The intramembrane protease SPP impacts morphology of the endoplasmic reticulum by triggering degradation of morphogenic proteins. J Biol Chem 2018; 294:2786-2800. [PMID: 30578301 DOI: 10.1074/jbc.ra118.005642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER), as a multifunctional organelle, plays crucial roles in lipid biosynthesis and calcium homeostasis as well as the synthesis and folding of secretory and membrane proteins. Therefore, it is of high importance to maintain ER homeostasis and to adapt ER function and morphology to cellular needs. Here, we show that signal peptide peptidase (SPP) modulates the ER shape through degradation of morphogenic proteins. Elevating SPP activity induces rapid rearrangement of the ER and formation of dynamic ER clusters. Inhibition of SPP activity rescues the phenotype without the need for new protein synthesis, and this rescue depends on a pre-existing pool of proteins in the Golgi. With the help of organelle proteomics, we identified certain membrane proteins to be diminished upon SPP expression and further show that the observed morphology changes depend on SPP-mediated cleavage of ER morphogenic proteins, including the SNARE protein syntaxin-18. Thus, we suggest that SPP-mediated protein abundance control by a regulatory branch of ER-associated degradation (ERAD-R) has a role in shaping the early secretory pathway.
Collapse
Affiliation(s)
- Dönem Avci
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Nicole S Malchus
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Ronny Heidasch
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Holger Lorenz
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Karsten Richter
- German Cancer Research Center (DKFZ), Central Unit Electron Microscopy, 69120 Heidelberg, Germany
| | - Michelle Neßling
- German Cancer Research Center (DKFZ), Central Unit Electron Microscopy, 69120 Heidelberg, Germany
| | - Marius K Lemberg
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| |
Collapse
|
12
|
Dingjan I, Linders PTA, Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Endosomal and Phagosomal SNAREs. Physiol Rev 2018; 98:1465-1492. [PMID: 29790818 DOI: 10.1152/physrev.00037.2017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein family is of vital importance for organelle communication. The complexing of cognate SNARE members present in both the donor and target organellar membranes drives the membrane fusion required for intracellular transport. In the endocytic route, SNARE proteins mediate trafficking between endosomes and phagosomes with other endosomes, lysosomes, the Golgi apparatus, the plasma membrane, and the endoplasmic reticulum. The goal of this review is to provide an overview of the SNAREs involved in endosomal and phagosomal trafficking. Of the 38 SNAREs present in humans, 30 have been identified at endosomes and/or phagosomes. Many of these SNAREs are targeted by viruses and intracellular pathogens, which thereby reroute intracellular transport for gaining access to nutrients, preventing their degradation, and avoiding their detection by the immune system. A fascinating picture is emerging of a complex transport network with multiple SNAREs being involved in consecutive trafficking routes.
Collapse
Affiliation(s)
- Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Danielle R J Verboogen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
13
|
Sec61β facilitates the maintenance of endoplasmic reticulum homeostasis by associating microtubules. Protein Cell 2017; 9:616-628. [PMID: 29168059 PMCID: PMC6019657 DOI: 10.1007/s13238-017-0492-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/13/2017] [Indexed: 10/25/2022] Open
Abstract
Sec61β, a subunit of the Sec61 translocon complex, is not essential in yeast and commonly used as a marker of endoplasmic reticulum (ER). In higher eukaryotes, such as Drosophila, deletion of Sec61β causes lethality, but its physiological role is unclear. Here, we show that Sec61β interacts directly with microtubules. Overexpression of Sec61β containing small epitope tags, but not a RFP tag, induces dramatic bundling of the ER and microtubule. A basic region in the cytosolic domain of Sec61β is critical for microtubule association. Depletion of Sec61β induces ER stress in both mammalian cells and Caenorhabditis elegans, and subsequent restoration of ER homeostasis correlates with the microtubule binding ability of Sec61β. Loss of Sec61β causes increased mobility of translocon complexes and reduced level of membrane-bound ribosomes. These results suggest that Sec61β may stabilize protein translocation by linking translocon complex to microtubule and provide insight into the physiological function of ER-microtubule interaction.
Collapse
|
14
|
Huang S, Tang D, Wang Y. Monoubiquitination of Syntaxin 5 Regulates Golgi Membrane Dynamics during the Cell Cycle. Dev Cell 2017; 38:73-85. [PMID: 27404360 DOI: 10.1016/j.devcel.2016.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/11/2016] [Accepted: 05/31/2016] [Indexed: 11/29/2022]
Abstract
The Golgi apparatus undergoes a ubiquitin-dependent disassembly and reassembly process during each cycle of cell division. Here we report the identification of the Golgi t-SNARE syntaxin 5 (Syn5) as the ubiquitinated substrate. Syn5 is monoubiquitinated by the ubiquitin ligase HACE1 in early mitosis and deubiquitinated by the deubiquitinase VCIP135 in late mitosis. Syn5 ubiquitination on lysine 270 (K270) in the SNARE domain impairs the interaction between Syn5 and the cognate v-SNARE Bet1 but increases its binding to p47, the adaptor protein of p97. Expression of the Syn5 K270R mutant in cells impairs post-mitotic Golgi reassembly. Therefore, monoubiquitination of Syn5 in early mitosis disrupts SNARE complex formation. Subsequently, ubiquitinated Syn5 recruits p97/p47 to the mitotic Golgi fragments and promotes post-mitotic Golgi reassembly upon ubiquitin removal by VCIP135. Overall, this study reveals both the substrate and the mechanism of ubiquitin-mediated regulation of Golgi membrane dynamics during the cell cycle.
Collapse
Affiliation(s)
- Shijiao Huang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109, USA
| | - Danming Tang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Cruz L, Streck NT, Ferguson K, Desai T, Desai DH, Amin SG, Buchkovich NJ. Potent Inhibition of Human Cytomegalovirus by Modulation of Cellular SNARE Syntaxin 5. J Virol 2017; 91:e01637-16. [PMID: 27795424 PMCID: PMC5165218 DOI: 10.1128/jvi.01637-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023] Open
Abstract
Formation of the cytoplasmic viral assembly compartment (cVAC) is an important step for efficient human cytomegalovirus (HCMV) assembly. To do this, the virus must alter and repurpose the normal cellular balance of membrane and protein flux, a process that is not well understood. Although a recent screen identified three viral proteins essential for cVAC formation, less is known about the contribution of cellular factors. We show that HCMV infection increases the protein level of a cellular trafficking factor, syntaxin 5 (STX5), a member of the syntaxin family of SNARE proteins. STX5 is recruited to the cVAC in infected cells and is required for the efficient production of infectious virions. We find that STX5 is important for normal cVAC morphology and the proper localization of viral proteins. A previously identified inhibitor of trafficking, Retro94, causes the mislocalization of STX5, an altered cVAC morphology, and dispersal of viral proteins. The presence of Retro94 results in severely impaired production of infectious virions, with a decrease as great as 5 logs. We show that this inhibition is conserved among different strains of HCMV and the various cell types that support infection, as well as for murine CMV. Thus, our data identify a key cellular trafficking factor important for supporting HCMV infection. IMPORTANCE Human cytomegalovirus (HCMV) infection causes severe disease and mortality in immunocompromised individuals, including organ transplant and AIDS patients. In addition, infection of a developing fetus may result in lifelong complications such as deafness and learning disabilities. Understanding in detail the processes involved in HCMV replication is important for developing novel treatments. One of these essential processes, assembly of infectious virions, takes places in the cytoplasmic viral assembly compartment. We identify a cellular protein, syntaxin 5, important for generating this compartment, and show that it is required for the efficient production of infectious virions. We also show that a small molecule that disrupts this protein also significantly reduces the amount of infectious virions that are generated. Thus, by pinpointing a cellular protein that is important in the replication cycle of HCMV, we identified a novel target that can be pursued for therapeutic intervention.
Collapse
Affiliation(s)
- Linda Cruz
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Nicholas T Streck
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Kevin Ferguson
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Trisha Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Dhimant H Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Shantu G Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Nicholas J Buchkovich
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
16
|
Syntaxin 5 Overexpression and β-Amyloid 1-42 Accumulation in Endoplasmic Reticulum of Hippocampal Cells in Rat Brain Induced by Ozone Exposure. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2125643. [PMID: 27366738 PMCID: PMC4912997 DOI: 10.1155/2016/2125643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/31/2016] [Accepted: 04/03/2016] [Indexed: 11/18/2022]
Abstract
Oxidative stress is a risk factor for Alzheimer's disease and it is currently accepted that oxidative damage precedes the overproduction of A42 peptide. We have reported that ozone causes oxidative stress inducing neurodegeneration in the brain of rats. It is associated with A42 overproduction and intracellular accumulation in hippocampus. Organelles like mitochondria, intracellular membranes, and endoplasmic reticulum have been identified as sites of A42 production and accumulation affecting cellular metabolism. However whether ozone exposure induces overproduction and/or accumulation of A42 in endoplasmic reticulum has not been studied. We evaluated this effect in the endoplasmic reticulum of hippocampal cells of rats exposed chronically to low doses of ozone (0.25 ppm) at 7, 15, 30, 60, and 90 days. The effect of the presence of A42 in endoplasmic reticulum was analyzed evaluating the expression of the chaperone Syntaxin 5. Our results show an accumulation of A42 peptide in this organelle. It was observed by immunofluorescence and by WB in endoplasmic fractions from hippocampal cells of rats at 60 and 90 days of treatment. Significant overexpression of the chaperone Syntaxin 5 at 60 and 90 days of treatment was observed (⁎P < 0.05). These results indicate that the exposure to environmental pollutants could be involved as a risk factor for neurodegenerative processes.
Collapse
|
17
|
Lin Y, Hou X, Shen WJ, Hanssen R, Khor VK, Cortez Y, Roseman AN, Azhar S, Kraemer FB. SNARE-Mediated Cholesterol Movement to Mitochondria Supports Steroidogenesis in Rodent Cells. Mol Endocrinol 2016; 30:234-47. [PMID: 26771535 DOI: 10.1210/me.2015-1281] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vesicular transport involving soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins is known to be responsible for many major cellular activities. In steroidogenic tissues, chronic hormone stimulation results in increased expression of proteins involved in the steroidogenic pathway, whereas acute hormone stimulation prompts the rapid transfer of cholesterol to the inner mitochondrial membrane to be utilized as substrate for steroid hormone production. Several different pathways are involved in supplying cholesterol to mitochondria, but mobilization of stored cholesteryl esters appears to initially constitute the preferred source; however, the mechanisms mediating this cholesterol transfer are not fully understood. To study the potential contribution of SNARE proteins in steroidogenesis, we examined the expression levels of various SNARE proteins in response to hormone stimulation in steroidogenic tissues and cells and established an in vitro mitochondria reconstitution assay system to assess the contribution of various SNARE proteins on cholesterol delivery for steroidogenesis. Our results from reconstitution experiments along with knockdown studies in rat primary granulosa cells and in a Leydig cell line show that soluble N-ethylmaleimide sensitive factor attachment protein-α, synaptosomal-associated protein of 25 kDa, syntaxin-5, and syntaxin-17 facilitate the transport of cholesterol to mitochondria. Thus, although StAR is required for efficient cholesterol movement into mitochondria for steroidogenesis, specific SNAREs participate and are necessary to mediate cholesterol movement to mitochondria.
Collapse
Affiliation(s)
- Ye Lin
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Xiaoming Hou
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Wen-Jun Shen
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Ruth Hanssen
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Victor K Khor
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Yuan Cortez
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Ann N Roseman
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Salman Azhar
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| |
Collapse
|
18
|
Abstract
In 1995, in the Biochemical Society Transactions, Mundy published the first review on CLIMP-63 (cytoskeleton-linking membrane protein 63) or CKPA4 (cytoskeleton-associated protein 4), initially just p63 [1]. Here we review the following 20 years of research on this still mysterious protein. CLIMP-63 is a type II transmembrane protein, the cytosolic domain of which has the capacity to bind microtubules whereas the luminal domain can form homo-oligomeric complexes, not only with neighbouring molecules but also, in trans, with CLIMP-63 molecules on the other side of the endoplasmic reticulum (ER) lumen, thus promoting the formation of ER sheets. CLIMP-63 however also appears to have a life at the cell surface where it acts as a ligand-activated receptor. The still rudimentary information of how CLIMP-63 fulfills these different roles, what these are exactly and how post-translational modifications control them, will be discussed.
Collapse
|
19
|
Kuster A, Nola S, Dingli F, Vacca B, Gauchy C, Beaujouan JC, Nunez M, Moncion T, Loew D, Formstecher E, Galli T, Proux-Gillardeaux V. The Q-soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor (Q-SNARE) SNAP-47 Regulates Trafficking of Selected Vesicle-associated Membrane Proteins (VAMPs). J Biol Chem 2015; 290:28056-28069. [PMID: 26359495 DOI: 10.1074/jbc.m115.666362] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 11/06/2022] Open
Abstract
SNAREs constitute the core machinery of intracellular membrane fusion, but vesicular SNAREs localize to specific compartments via largely unknown mechanisms. Here, we identified an interaction between VAMP7 and SNAP-47 using a proteomics approach. We found that SNAP-47 mainly localized to cytoplasm, the endoplasmic reticulum (ER), and ERGIC and could also shuttle between the cytoplasm and the nucleus. SNAP-47 preferentially interacted with the trans-Golgi network VAMP4 and post-Golgi VAMP7 and -8. SNAP-47 also interacted with ER and Golgi syntaxin 5 and with syntaxin 1 in the absence of Munc18a, when syntaxin 1 is retained in the ER. A C-terminally truncated SNAP-47 was impaired in interaction with VAMPs and affected their subcellular distribution. SNAP-47 silencing further shifted the subcellular localization of VAMP4 from the Golgi apparatus to the ER. WT and mutant SNAP-47 overexpression impaired VAMP7 exocytic activity. We conclude that SNAP-47 plays a role in the proper localization and function of a subset of VAMPs likely via regulation of their transport through the early secretory pathway.
Collapse
Affiliation(s)
- Aurelia Kuster
- Membrane Traffic in Health and Disease, INSERM U950, CNRS, UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris
| | - Sebastien Nola
- Membrane Traffic in Health and Disease, INSERM U950, CNRS, UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris
| | - Florent Dingli
- Protein Mass Spectrometry Laboratory, Institut Curie, 75005 Paris
| | - Barbara Vacca
- Membrane Traffic in Health and Disease, INSERM U950, CNRS, UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris
| | - Christian Gauchy
- Membrane Traffic in Health and Disease, INSERM U950, CNRS, UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris
| | - Jean-Claude Beaujouan
- Membrane Traffic in Health and Disease, INSERM U950, CNRS, UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris
| | - Marcela Nunez
- Hybrigenics, 3-5 Impasse Reille, 75014 Paris, France
| | | | - Damarys Loew
- Protein Mass Spectrometry Laboratory, Institut Curie, 75005 Paris
| | | | - Thierry Galli
- Membrane Traffic in Health and Disease, INSERM U950, CNRS, UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris.
| | - Veronique Proux-Gillardeaux
- Membrane Traffic in Health and Disease, INSERM U950, CNRS, UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris
| |
Collapse
|
20
|
Noda C, Kimura H, Arasaki K, Matsushita M, Yamamoto A, Wakana Y, Inoue H, Tagaya M. Valosin-containing protein-interacting membrane protein (VIMP) links the endoplasmic reticulum with microtubules in concert with cytoskeleton-linking membrane protein (CLIMP)-63. J Biol Chem 2014; 289:24304-13. [PMID: 25008318 DOI: 10.1074/jbc.m114.571372] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The distribution and morphology of the endoplasmic reticulum (ER) in mammalian cells depend on both dynamic and static interactions of ER membrane proteins with microtubules (MTs). Cytoskeleton-linking membrane protein (CLIMP)-63 is exclusively localized in sheet-like ER membranes, typical structures of the rough ER, and plays a pivotal role in the static interaction with MTs. Our previous study showed that the 42-kDa ER-residing form of syntaxin 5 (Syn5L) regulates ER structure through the interactions with both CLIMP-63 and MTs. Here, we extend our previous study and show that the valosin-containing protein/p97-interacting membrane protein (VIMP)/SelS is also a member of the family of proteins that shape the ER by interacting with MTs. Depletion of VIMP causes the spreading of the ER to the cell periphery and affects an MT-dependent process on the ER. Although VIMP can interact with CLIMP-63 and Syn5L, it does not interact with MT-binding ER proteins (such as Reep1) that shape the tubular smooth ER, suggesting that different sets of MT-binding ER proteins are used to organize different ER subdomains.
Collapse
Affiliation(s)
- Chikano Noda
- From the Department of Molecular Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 and
| | - Hana Kimura
- From the Department of Molecular Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 and
| | - Kohei Arasaki
- From the Department of Molecular Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 and
| | - Mitsuru Matsushita
- From the Department of Molecular Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 and
| | - Akitsugu Yamamoto
- the Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Yuichi Wakana
- From the Department of Molecular Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 and
| | - Hiroki Inoue
- From the Department of Molecular Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 and
| | - Mitsuo Tagaya
- From the Department of Molecular Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 and
| |
Collapse
|
21
|
Wagner T, Dieckmann M, Jaeger S, Weggen S, Pietrzik CU. Stx5 is a novel interactor of VLDL-R to affect its intracellular trafficking and processing. Exp Cell Res 2013; 319:1956-1972. [DOI: 10.1016/j.yexcr.2013.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/10/2013] [Accepted: 05/13/2013] [Indexed: 11/30/2022]
|