1
|
Jarupalee T, Chatchatee P, Komolpis K, Suratannon N, Roytrakul S, Yingchutrakul Y, Yimchuen W, Butta P, Jacquet A, Palaga T. Detecting Allergens From Black Tiger Shrimp Penaeus monodon That Can Bind and Cross-link IgE by ELISA, Western Blot, and a Humanized Rat Basophilic Leukemia Reporter Cell Line RS-ATL8. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:62-76. [PMID: 29178679 PMCID: PMC5705486 DOI: 10.4168/aair.2018.10.1.62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/01/2017] [Accepted: 08/06/2017] [Indexed: 11/30/2022]
Abstract
Background Black tiger shrimp Penaeus monodon is one of the common causes of shellfish allergy that is increasing worldwide. One of the important problems in the management of shellfish allergy is the lack of accurate diagnostic assay because the biological and immunological properties of allergens in black tiger shrimp have not been well characterized. This study aims to detect proteins with the ability to bind and cross-link immunoglobulin E (IgE) from black tiger shrimp by enzyme-linked immunosorbent assay (ELISA), Western blot, and a humanized rat basophilic leukemia reporter cell line RS-ATL8. Methods Sera from shrimp allergic subjects were subjected to ELISA and Western blots using raw or cooked shrimp extract as antigens. Pooled sera were used to sensitize the RS-ATL8 reporter cell line and cells were activated by shrimp extract. Eluted protein extracts separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were tested on the RS-ATL8 cell line and subjected to mass spectrometry to identify potential candidate allergens. Results Allergic sera reacted stronger to raw shrimp extract than cooked shrimp extract (P=0.009). Western blot demonstrated that major IgE reactivity protein bands were at 32–39 kDa and 91–230 kDa in both raw and cooked shrimp extracts. The eluted protein bands at the molecular weight of 38 and 115 kDa from raw shrimp extract induced IgE cross-linking as assayed by the RS-ATL8 cell line. These protein bands were subjected to mass spectrometry for analysis. Ubiquitin-activating enzyme and crustacyanin were identified as potential candidate novel shrimp allergens. Conclusions The RS-ATL8 reporter cell line can be used to identify potential new shrimp allergens that can functionally cross-link IgE and induce mast cell degranulation.
Collapse
Affiliation(s)
- Thanyapat Jarupalee
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pantipa Chatchatee
- Allergy&Immunology Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kittinan Komolpis
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Narissara Suratannon
- Allergy&Immunology Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Wanaporn Yimchuen
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Patcharavadee Butta
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Alain Jacquet
- Chula-Vaccine Research Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
2
|
SAK-HV Decreases the Self-Ubiquitination of MEKK1 to Promote Macrophage Proliferation via MAPK/ERK and JNK Pathways. Int J Mol Sci 2017; 18:ijms18040835. [PMID: 28422048 PMCID: PMC5412419 DOI: 10.3390/ijms18040835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 11/22/2022] Open
Abstract
SAK-HV is an anti-atherosclerosis recombinant fusion protein developed by our lab. Our study determined that SAK-HV promoted macrophage proliferation, of which the mechanism was explored by both RAW264.7 cells and primary macrophages. Mass spectrometric analysis and co-immunoprecipitation were combined to screen the SAK-HV-interacting proteins in RAW264.7 cells. Confocal microscopy was adopted to detect the localization of SAK-HV in cells. The results indicated that SAK-HV triggered macrophage proliferation via the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK) pathways by its SAK-mutant functional domain. We screened out Uba1 as the SAK-HV-interacting protein in the RAW264.7 cells and discovered their co-localization in the cytoplasm and nucleus. Inhibiting Uba1 significantly decreased the SAK-HV-induced macrophage proliferation. Thus, we postulated an attractive model of ubiquitination, in which the interactions between Uba1 and specific E2 enzymes are blocked by its interaction with SAK-HV. Based on this model, we detected the decreased self-ubiquitination of MEKK1 after SAK-HV treatment and concluded that SAK-HV inhibits the self-ubiquitination of MEKK1 via its SAK-mutant functional domain to activate MAPK/ERK and JNK pathways, promoting macrophage proliferation. This conclusion highly supported our hypothesized model of ubiquitination at the level of Uba1, which may represent a novel paradigm to promote macrophage proliferation by using the E1 enzyme (Uba1) as a switch.
Collapse
|
3
|
Carvalho AF, Pinto MP, Grou CP, Vitorino R, Domingues P, Yamao F, Sá-Miranda C, Azevedo JE. High-Yield Expression in Escherichia coli and Purification of Mouse Ubiquitin-Activating Enzyme E1. Mol Biotechnol 2011; 51:254-61. [DOI: 10.1007/s12033-011-9463-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Nouspikel T, Hanawalt PC. Impaired nucleotide excision repair upon macrophage differentiation is corrected by E1 ubiquitin-activating enzyme. Proc Natl Acad Sci U S A 2006; 103:16188-93. [PMID: 17060614 PMCID: PMC1621053 DOI: 10.1073/pnas.0607769103] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global nucleotide excision repair is greatly attenuated in terminally differentiated mammalian cells. We observed this phenomenon in human neurons and in macrophages, noting that the transcription-coupled repair pathway remains functional and that there is no significant reduction in levels of excision repair enzymes. We have discovered that ubiquitin-activating enzyme E1 complements the repair deficiency in macrophage extracts, and although there is no reduction in the concentration of E1 upon differentiation, our results indicate a reduction in phosphorylation of E1. In preliminary studies, we have identified the basal transcription factor TFIIH as the potential target for ubiquitination. We suggest that this unusual type of regulation at the level of the E1 enzyme is likely to affect numerous cellular processes and may represent a strategy to coordinate multiple phenotypic changes upon differentiation by using E1 as a "master switch."
Collapse
Affiliation(s)
- Thierry Nouspikel
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020
| | - Philip C. Hanawalt
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020
| |
Collapse
|
5
|
Diestel S, Eckert R, Hülser D, Traub O. Exchange of serine residues 263 and 266 reduces the function of mouse gap junction protein connexin31 and exhibits a dominant-negative effect on the wild-type protein in HeLa cells. Exp Cell Res 2004; 294:446-57. [PMID: 15023533 DOI: 10.1016/j.yexcr.2003.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 11/13/2003] [Indexed: 11/25/2022]
Abstract
To characterize the role of Cx31 phosphorylation, serine residues 263 and 266 (Cx31Delta263,266) or 266 (Cx31Delta266) alone were exchanged for amino acids that cannot be phosphorylated. HeLa cells, which were stably transfected with wild type and the two different mutant Cx31-cDNA constructs, were analyzed for expression, phosphorylation, localization, formation of functional gap junction channels, and degradation of mutant Cx31 protein. Both mutant proteins showed similar reduced phosphorylation levels compared to Cx31 wild type, indicating a pivotal role of serine residue 266 for Cx31 phosphorylation. None of these mutations did interfere with correct intracellular trafficking of gap junction proteins. Pulse chase experiments with the different transfectants revealed an increased turnover of both mutated Cx31 proteins. They showed decreased intercellular communication as shown by dye transfer to neighboring cells and measurement of total conductance (mutant Cx31Delta263,266). Mutated Cx31 protein (Cx31Delta263,266) diminished the function of the Cx31 wild-type protein dependent on the amount of the mutated protein, indicating a dominant-negative effect of the mutated protein in HeLa cells.
Collapse
Affiliation(s)
- Simone Diestel
- Department of Biochemistry, Institute of Animal Anatomy and Physiology, University of Bonn, Bonn 53115, Germany
| | | | | | | |
Collapse
|
6
|
Abstract
Ubiquitylation--the conjugation of proteins with a small protein called ubiquitin--touches upon all aspects of eukaryotic biology, and its defective regulation is manifest in diseases that range from developmental abnormalities and autoimmunity to neurodegenerative diseases and cancer. A few years ago, we could only have dreamt of the complex arsenal of enzymes dedicated to ubiquitylation. Why has nature come up with so many ways of doing what seems to be such a simple job?
Collapse
Affiliation(s)
- A M Weissman
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-1152, USA.
| |
Collapse
|
7
|
Sancho E, Vilá MR, Sánchez-Pulido L, Lozano JJ, Paciucci R, Nadal M, Fox M, Harvey C, Bercovich B, Loukili N, Ciechanover A, Lin SL, Sanz F, Estivill X, Valencia A, Thomson TM. Role of UEV-1, an inactive variant of the E2 ubiquitin-conjugating enzymes, in in vitro differentiation and cell cycle behavior of HT-29-M6 intestinal mucosecretory cells. Mol Cell Biol 1998; 18:576-89. [PMID: 9418904 PMCID: PMC121525 DOI: 10.1128/mcb.18.1.576] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/1997] [Accepted: 10/16/1997] [Indexed: 02/05/2023] Open
Abstract
By means of differential RNA display, we have isolated a cDNA corresponding to transcripts that are down-regulated upon differentiation of the goblet cell-like HT-29-M6 human colon carcinoma cell line. These transcripts encode proteins originally identified as CROC-1 on the basis of their capacity to activate transcription of c-fos. We show that these proteins are similar in sequence, and in predicted secondary and tertiary structure, to the ubiquitin-conjugating enzymes, also known as E2. Despite the similarities, these proteins lack a critical cysteine residue essential for the catalytic activity of E2 enzymes and, in vitro, they do not conjugate or transfer ubiquitin to protein substrates. These proteins constitute a distinct subfamily within the E2 protein family and are highly conserved in phylogeny from yeasts to mammals. Therefore, we have designated them UEV (ubiquitin-conjugating E2 enzyme variant) proteins, defined as proteins similar in sequence and structure to the E2 ubiquitin-conjugating enzymes but lacking their enzymatic activity (HW/GDB-approved gene symbol, UBE2V). At least two human genes code for UEV proteins, and one of them, located on chromosome 20q13.2, is expressed as at least four isoforms, generated by alternative splicing. All human cell types analyzed expressed at least one of these isoforms. Constitutive expression of exogenous human UEV in HT-29-M6 cells inhibited their capacity to differentiate upon confluence and caused both the entry of a larger proportion of cells in the division cycle and an accumulation in G2-M. This was accompanied with a profound inhibition of the mitotic kinase, cdk1. These results suggest that UEV proteins are involved in the control of differentiation and could exert their effects by altering cell cycle distribution.
Collapse
Affiliation(s)
- E Sancho
- Departamento de Biología Molecular, Instituto de Biología del Cáncer, IMIM-CSIC, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Taylor A, Shang F, Obin M. Relationships between stress, protein damage, nutrition, and age-related eye diseases. Mol Aspects Med 1997; 18:305-414. [PMID: 9578986 DOI: 10.1016/s0098-2997(95)00049-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A Taylor
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| | | | | |
Collapse
|
9
|
Shang F, Gong X, Taylor A. Activity of ubiquitin-dependent pathway in response to oxidative stress. Ubiquitin-activating enzyme is transiently up-regulated. J Biol Chem 1997; 272:23086-93. [PMID: 9287309 DOI: 10.1074/jbc.272.37.23086] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Relations between the ubiquitin pathway and cellular stress have been noted, but data regarding responses of the ubiquitin pathway to oxidative stress are scanty. This paper documents the response of this pathway to oxidative stress in lens cells. A brief exposure of lens epithelial cells to physiologically relevant levels of H2O2 induces a transient increase in activity of the ubiquitin-dependent pathway. Ubiquitin conjugation activity was maximal and increased 3. 5-9.2-fold over the activity noted in untreated cells by 4 h after removal of H2O2. By 24 h after removal of H2O2, ubiquitin conjugation activity returned to the level noted in untreated cells. In parallel to the changes in ubiquitin conjugation activity, the activity of ubiquitin-activating enzyme (E1), as determined by thiol ester formation, increased 2-6.7-fold during recovery from oxidation. Addition of exogenous E1 resulted in an increase in ubiquitin conjugation activity and in the levels of ubiquitin carrier protein (E2)-ubiquitin thiol esters in both the untreated cells and the H2O2-treated cells. These data suggest that E1 is the rate-limiting enzyme in the ubiquitin conjugation process and that the increases in ubiquitin conjugation activity which are induced upon recovery from oxidation are primarily due to increased E1 activity. The oxidation- and recovery-induced up-regulation of E1 activity is primarily due to post-synthetic events. Substrate availability and up-regulation of E2 activities also appear to be related to the enhancement in ubiquitinylation upon recovery from oxidative stress. The oxidation-induced increases in ubiquitin conjugation activity were associated with an increase in intracellular proteolysis, suggesting that the transient increase in ubiquitinylation noted upon recovery from oxidative stress may play a role in removal of damaged proteins from the cells.
Collapse
Affiliation(s)
- F Shang
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
10
|
Stephen AG, Trausch-Azar JS, Handley-Gearhart PM, Ciechanover A, Schwartz AL. Identification of a region within the ubiquitin-activating enzyme required for nuclear targeting and phosphorylation. J Biol Chem 1997; 272:10895-903. [PMID: 9099746 DOI: 10.1074/jbc.272.16.10895] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ubiquitin-activating enzyme exists as two isoforms: E1a, localized predominantly in the nucleus, and E1b, localized in the cytoplasm. Previously we generated hemagglutinin (HA) epitope-tagged cDNA constructs, HA1-E1 (epitope tag placed after the first methionine) and HA2-E1 (epitope tag placed after the second methionine) (Handley-Gearhart, P. M., Stephen, A. G., Trausch-Azar, J. S., Ciechanover, A., and Schwartz, A. L. (1994) J. Biol. Chem. 269, 33171-33178), which represent the native isoforms. HA1-E1 is exclusively nuclear, whereas HA2-E1 is found predominantly in the cytoplasm. Using high resolution isoelectric focusing and SDS-polyacrylamide gel electrophoresis, we confirm that these epitope-tagged constructs HA1-E1 and HA2-E1 represent the two isoforms E1a and E1b. HA1-E1/E1a exists as one non-phosphorylated and four phosphorylated forms, and HA2-E1/E1b exists as one predominant non-phosphorylated form and two minor phosphorylated forms. We demonstrate that the first 11 amino acids are essential for phosphorylation and exclusive nuclear localization of HA1-E1. Within this region are four serine residues and a putative nuclear localization sequence (NLS; 5PLSKKRR). Removal of these four serine residues reduced phosphorylation levels by 60% but had no effect on nuclear localization of HA1-E1. Each serine residue was independently mutated to an alanine and analyzed by two-dimensional electrophoresis; only serine 4 was phosphorylated. Disruption of the basic amino acids within the NLS resulted in loss of exclusive nuclear localization and a 90-95% decrease in the phosphorylation of HA1-E1. This putative NLS was able to confer nuclear import on a non-nuclear protein in digitonin-permeabilized cells in a temperature- and ATP-dependent manner. Thus the predominant requirement for efficient phosphorylation of HA1-E1/E1a is a functional NLS, suggesting that E1a may be phosphorylated within the nucleus.
Collapse
Affiliation(s)
- A G Stephen
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- A M Weissman
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1152, USA.
| |
Collapse
|
12
|
Stephen AG, Trausch-Azar JS, Ciechanover A, Schwartz AL. The ubiquitin-activating enzyme E1 is phosphorylated and localized to the nucleus in a cell cycle-dependent manner. J Biol Chem 1996; 271:15608-14. [PMID: 8663123 DOI: 10.1074/jbc.271.26.15608] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The ubiquitin-activating enzyme E1 exists as two isoforms, E1a (117 kDa) and E1b (110 kDa). E1a is phosphorylated, whereas E1b is not. In the present study we have demonstrated the cell cycle dependence of E1a phosphorylation: a 2-fold increase in the specific phosphorylation of E1a in G2 compared with the basal level of phosphorylation in the other stages of the cell cycle. Two-dimensional gel electrophoresis resolved E1 into the two isoforms E1a and E1b; E1a resolved further as three phosphorylated forms and one nonphosphorylated form, while E1b resolved as one nonphosphorylated form. E1a is found predominantly in the phosphorylated forms. However, the distribution of E1a among these different phosphorylated forms was not cell cycle-dependent. We next evaluated the enzymatic activity of E1 as well as its subcellular localization throughout the cell cycle. 32P-Pyrophosphate exchange activity of E1 did not vary along the cell cycle; however, the amount of ubiquitin-protein conjugates decreased by 50% in G2. Nuclear and cytosolic fractionation of cells revealed the nuclear to cytosolic ratio of phosphorylated E1a was 3-fold greater in G2 compared with the other stages of the cell cycle. Finally, purified nuclear extracts supported E1-dependent ubiquitin conjugation of exogenous substrates as did purified cytosol. However, in nuclear extracts but not in cytosol the amount of E1 activity was rate-limiting. Thus we establish nuclear E1-dependent protein ubiquitination and propose that an increase in phosphorylation of E1a in G2 functions to increase the import and/or retention of E1a in the nucleus and may modulate nuclear protein ubiquitination.
Collapse
Affiliation(s)
- A G Stephen
- Edward Mallincrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|