1
|
Jagtap P, Meena VK, Sambhare S, Basu A, Abraham P, Cherian S. Exploring Niclosamide as a Multi-target Drug Against SARS-CoV-2: Molecular Dynamics Simulation Studies on Host and Viral Proteins. Mol Biotechnol 2024:10.1007/s12033-024-01296-2. [PMID: 39373955 DOI: 10.1007/s12033-024-01296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Niclosamide has emerged as a promising repurposed drug against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In vitro studies suggested that niclosamide inhibits the host transmembrane protein 16F (hTMEM16F), crucial for lipid scramblase activity, which consequently reduces syncytia formation that aids viral spread. Based on other in vitro reports, niclosamide may also target viral proteases such as papain-like protease (PLpro) and main protease (Mpro), essential for viral replication and maturation. However, the precise interactions by which niclosamide interacts with these multiple targets remain largely unclear. Docking and molecular dynamics (MD) simulation studies were undertaken based on a homology model of the hTMEM16F and available crystal structures of SARS-CoV-2 PLpro and Mpro. Niclosamide was observed to bind stably throughout a 400 ns MD simulation at the extracellular exit gate of the hTMEM16F tunnel, forming crucial interactions with residues spanning the TM1-TM2 loop (Gln350), TM3 (Phe481), and TM5-TM6 loop (Lys573, Glu594, and Asp596). Among the SARS-CoV-2 proteases, niclosamide was found to interact effectively with conserved active site residues of PLpro (Tyr268), exhibiting better stability in comparison to the control inhibitor, GRL0617. In conclusion, our in silico analyses support niclosamide as a multi-targeted drug inhibiting viral and host proteins involved in SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Prachi Jagtap
- Bioinformatics & Data Management Group, ICMR National Institute of Virology, 20A Dr. Ambedkar Road, Pune, Maharashtra, 411 001, India
| | - Virendra Kumar Meena
- ICMR National Institute of Virology, 20A Dr. Ambedkar Road, Pune, Maharashtra, 411 001, India
| | - Susmit Sambhare
- ICMR National Institute of Virology, 20A Dr. Ambedkar Road, Pune, Maharashtra, 411 001, India
| | - Atanu Basu
- ICMR National Institute of Virology, 20A Dr. Ambedkar Road, Pune, Maharashtra, 411 001, India
| | - Priya Abraham
- Christian Medical College, Vellore, Tamil Nadu, India
| | - Sarah Cherian
- Bioinformatics & Data Management Group, ICMR National Institute of Virology, 20A Dr. Ambedkar Road, Pune, Maharashtra, 411 001, India.
| |
Collapse
|
2
|
Lian Z, Luo W, Liu J, Wang J, Chai W, Wang Y, Sethi S, Ma X. Analysis of ANO6, HAPLN1, and EDIL3 Polymorphisms in Patients with Ankylosing Spondylitis in a Chinese Han Population: A Case-Control Study. Genet Test Mol Biomarkers 2024; 28:385-392. [PMID: 39358671 DOI: 10.1089/gtmb.2023.0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Background: Earlier research has demonstrated a genetic basis for the susceptibility to ankylosing spondylitis (AS) and the severity of AS. By employing a genome-wide association study, recent work has established a correlation between the susceptibility to AS and the ANO6, HAPLN, and EDIL3 genes in a Western study population-though alternative studies have not corroborated these findings. This study aims to examine the effects of ANO6, HAPLN1, and EDIL3 polymorphisms on the susceptibility and severity of AS among the predominantly Chinese Han population. Methods: The study involved the collection of blood samples from 497 patients with AS and 498 nonrelated healthy individuals. All participants in the study were human leukocyte antigen (HLA) HLA-B27 positive and of Han Chinese descent. Illness severity was the criteria used for classifying patients with AS. Thirteen tagSNPs in ANO6, HAPLN1, and EDIL3 were chosen and then subjected to genetic typing. Analysis was conducted on the occurrence rates of various genotypes and alleles between the control group and patients with varying AS severity. Results: Following Bonferroni correction, it was found that the rs4768085 and rs17095830 single nucleotide polymorphism (SNPs) in ANO6 were related to the susceptibility to AS. Further, the rs6869296 SNP in HAPLN1 and the rs2301071 SNP between EDIL3 and HAPLN1 were also related to AS susceptibility. Regarding AS severity, the rs4768085, rs2897868, rs7965430, and rs11182965 SNPs in ANO6 were found to be associated. Conclusions: Among the Han population in China, the ANO6 and HAPLN1 genes are related to the susceptibility to AS; the ANO6 gene is also associated with the severity of AS.
Collapse
Affiliation(s)
- Zijian Lian
- Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| | - Wei Luo
- Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| | - Jun Liu
- Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| | - Jing Wang
- Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| | - Wei Chai
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yan Wang
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Sahil Sethi
- Department of Orthopaedics, University of Chicago Hospital, Chicago, Illinois, USA
| | - Xinlong Ma
- Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| |
Collapse
|
3
|
Sakoshita K, Aratani S, Kameda N, Takebe R, Tominaga T, Ishida M, Hori M. Anoctamin-like protein 1 regulates repolarization in Paramecium behavioral responses. J Eukaryot Microbiol 2024; 71:e13030. [PMID: 38757880 DOI: 10.1111/jeu.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 05/18/2024]
Abstract
Paramecium exhibits responsive behavior to environmental changes, moving either closer to or further away from stimuli. Electrophysiological experiments have revealed that these behavioral responses are controlled by membrane potentials. Anoctamin, a Ca2+-activated Cl- channel, is involved in the regulation of membrane potential in mammals. However, it remains uncertain whether Cl- channels like anoctamin regulate Paramecium behavior. Herein, replacement of external Cl- ions with acetate ion and application of Cl- channel blocker niflumic acid (NFA, 0.1 μM) increased spontaneous avoiding reactions (sARs). Hence, we hypothesized that anoctamin is involved in the stabilization of membrane potential fluctuation. Paramecium cells in which the anoctamin-like protein 1 gene was knocked down displayed frequent sARs in the culture medium without external stimulation. Treatment of anoctamin-like protein 1-knockdown cells with the Ca2+ chelator BAPTA or Ca-channel blocker nicardipine reversed the increase in sARs. Electrophysiological experiments revealed extension of membrane depolarization when positive currents were applied to anoctamin-like protein 1-knockdown cells. We concluded that anoctamin-like protein 1 works as a Cl-channel and stabilizes the membrane potential oscillation, reducing sARs.
Collapse
Affiliation(s)
- Kana Sakoshita
- Faculty of Science, Yamaguchi University, Yamaguchi, Japan
| | | | - Nana Kameda
- Faculty of Science, Yamaguchi University, Yamaguchi, Japan
| | - Ryo Takebe
- Faculty of Science, Yamaguchi University, Yamaguchi, Japan
| | - Takashi Tominaga
- Institute of Neuroscience, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Masaki Ishida
- School of Science Education, Nara University of Education, Nara, Japan
| | - Manabu Hori
- Faculty of Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
4
|
Nguyen DM, Chen TY. Structure and Function of Calcium-Activated Chloride Channels and Phospholipid Scramblases in the TMEM16 Family. Handb Exp Pharmacol 2024; 283:153-180. [PMID: 35792944 DOI: 10.1007/164_2022_595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The transmembrane protein 16 (TMEM16) family consists of Ca2+-activated chloride channels and phospholipid scramblases. Ten mammalian TMEM16 proteins, TMEM16A-K (with no TMEM16I), and several non-mammalian TMEM16 proteins, such as afTMEM16 and nhTMEM16, have been discovered. All known TMEM16 proteins are homodimeric proteins containing two subunits. Each subunit consists of ten transmembrane helices with Ca2+-binding sites and a single ion-permeation/phospholipid transport pathway. The ion-permeation pathway and the phospholipid transport pathway of TMEM16 proteins have a wide intracellular vestibule, a narrow neck, and a smaller extracellular vestibule. Interestingly, the lining wall of the ion-permeation/phospholipid transport pathway may be formed, at least partially, by membrane phospholipids, though the degree of pore-wall forming by phospholipids likely varies among TMEM16 proteins. Thus, the biophysical properties and activation mechanisms of TMEM16 proteins could differ from each other accordingly. Here we review the current understanding of the structure and function of TMEM16 molecules.
Collapse
Affiliation(s)
- Dung Manh Nguyen
- Center for Neuroscience, University of California, Davis, CA, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Tsung-Yu Chen
- Department of Neurology, Center for Neuroscience, University of California, Davis, CA, USA.
| |
Collapse
|
5
|
Chen C, Aluksanasuwan S, Somsuan K. Expression of anoctamin 7 (ANO7) is associated with poor prognosis and mucin 2 (MUC2) in colon adenocarcinoma: a study based on TCGA data. Genomics Inform 2023; 21:e46. [PMID: 38224713 PMCID: PMC10788358 DOI: 10.5808/gi.23071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/22/2023] [Accepted: 11/21/2023] [Indexed: 01/17/2024] Open
Abstract
Colon adenocarcinoma (COAD) is the predominant type of colorectal cancer. Early diagnosis and treatment can significantly improve the prognosis of COAD patients. Anoctamin 7 (ANO7), an anion channel protein, has been implicated in prostate cancer and other types of cancer. In this study, we analyzed the expression of ANO7 and its correlation with clinicopathological characteristics among COAD patients using the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and the University of Alabama at Birmingham CANcer (UALCAN) databases. The GEPIA2, Kaplan-Meier plotter, and the Survival Genie platform were employed for survival analysis. The co-expression network and potential function of ANO7 in COAD were analyzed using GeneFriends, the Database for Annotation, Visualization and Integrated Discovery (DAVID), GeneMANIA, and Pathway Studio. Our data analysis revealed a significant reduction in ANO7 expression levels within COAD tissues compared to normal tissues. Additionally, ANO7 expression was found to be associated with race and histological subtype. The COAD patients exhibiting low ANO7 expression had lower survival rates compared to those with high ANO7 expression. The genes correlated with ANO7 were significantly enriched in proteolysis and mucin type O-glycan biosynthesis pathway. Furthermore, ANO7 demonstrated a direct interaction and a positive co-expression correlation with mucin 2 (MUC2). In conclusion, our findings suggest that ANO7 might serve as a potential prognostic biomarker and potentially plays a role in proteolysis and mucin biosynthesis in the context of COAD.
Collapse
Affiliation(s)
- Chen Chen
- Medical Science Graduate Program, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Siripat Aluksanasuwan
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Keerakarn Somsuan
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
6
|
Wu Y, Li W, Chen X, Wang H, Su S, Xu Y, Deng X, Yang T, Wei M, Li L, Liu Y, Yang J, Li W. DOG1 as a novel antibody-drug conjugate target for the treatment of multiple gastrointestinal tumors and liver metastasis. Front Immunol 2023; 14:1051506. [PMID: 36776873 PMCID: PMC9909470 DOI: 10.3389/fimmu.2023.1051506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Discovered On Gastrointestinal stromal tumors protein 1 (DOG1), a major calcium-activated chloride channel, has been used as a common diagnostic marker for gastrointestinal stromal tumors. However, the therapeutic application of DOG1 was not well defined. Here, we aim to investigate its potential as a therapeutic target for an antibody-drug conjugate (ADC) in various cancers of the alimentary tract and metastasis. The DOG1 expression profile was determined among TCGA samples and tissue microarrays. High levels of DOG1 expression were ubiquitously observed in multiple cancer samples from the alimentary tract determined by TCGA samples and tissue microarrays. Circulating tumor cells isolated from metastatic colon cancer patients were also positive for DOG1 expression. The mechanisms of anti-DOG1 antibody were investigated by dual-luciferase reporter assay. The anti-DOG1 antibody could inhibit proliferation and metastasis via p53 signaling in limited cancer cell lines. The anti-DOG1 antibody was conjugated with a microtubule inhibitor DM4, to construct a new anti-DOG1-DM4-ADC to strengthen its activity. The anti-DOG1-DM4-ADC showed cytotoxicity at the nanomolar level in vitro. In the murine xenograft tumor models, treatment of anti-DOG1-DM4-ADC achieved a significant tumor growth inhibition rate. Our study indicates that anti-DOG1-DM4-ADC may be promising therapeutic molecules for DOG1-positive alimentary tract tumors and may be effective in inhibiting recurrence after curative resection of liver metastases of colorectal origin.
Collapse
Affiliation(s)
- Yangping Wu
- Targeted Tracer Research and Development Laboratory, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenting Li
- State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangzheng Chen
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haichuan Wang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Su
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, United States
| | - Ying Xu
- Targeted Tracer Research and Development Laboratory, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangbing Deng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghan Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Yixin Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Weimin Li, ; Jinliang Yang,
| | - Weimin Li
- Targeted Tracer Research and Development Laboratory, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Weimin Li, ; Jinliang Yang,
| |
Collapse
|
7
|
Himmel NJ, Sakurai A, Patel AA, Bhattacharjee S, Letcher JM, Benson MN, Gray TR, Cymbalyuk GS, Cox DN. Chloride-dependent mechanisms of multimodal sensory discrimination and nociceptive sensitization in Drosophila. eLife 2023; 12:76863. [PMID: 36688373 PMCID: PMC9904763 DOI: 10.7554/elife.76863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Individual sensory neurons can be tuned to many stimuli, each driving unique, stimulus-relevant behaviors, and the ability of multimodal nociceptor neurons to discriminate between potentially harmful and innocuous stimuli is broadly important for organismal survival. Moreover, disruptions in the capacity to differentiate between noxious and innocuous stimuli can result in neuropathic pain. Drosophila larval class III (CIII) neurons are peripheral noxious cold nociceptors and innocuous touch mechanosensors; high levels of activation drive cold-evoked contraction (CT) behavior, while low levels of activation result in a suite of touch-associated behaviors. However, it is unknown what molecular factors underlie CIII multimodality. Here, we show that the TMEM16/anoctamins subdued and white walker (wwk; CG15270) are required for cold-evoked CT, but not for touch-associated behavior, indicating a conserved role for anoctamins in nociception. We also evidence that CIII neurons make use of atypical depolarizing chloride currents to encode cold, and that overexpression of ncc69-a fly homologue of NKCC1-results in phenotypes consistent with neuropathic sensitization, including behavioral sensitization and neuronal hyperexcitability, making Drosophila CIII neurons a candidate system for future studies of the basic mechanisms underlying neuropathic pain.
Collapse
Affiliation(s)
| | - Akira Sakurai
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| | - Atit A Patel
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| | | | - Jamin M Letcher
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| | - Maggie N Benson
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| | - Thomas R Gray
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| | | | - Daniel N Cox
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| |
Collapse
|
8
|
Sassenbach L. Identification of novel proteins involved in P2X7-mediated signaling cascades. Purinergic Signal 2022; 18:495-498. [PMID: 35960424 PMCID: PMC9832184 DOI: 10.1007/s11302-022-09893-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 01/14/2023] Open
Abstract
High concentration of extracellular ATP acts as a danger signal that is sensed by the P2X7 receptor (P2X7R). This ATP-gated ion channel has been shown to induce multiple metabotropic events such as changes in plasma membrane composition and morphology, ectodomain shedding, activation of lipases, kinases, and transcription factors as well as cytokine release. The specific signaling pathways and molecular mechanisms remain largely obscure. Using an unbiased genome-scale CRISPR/Cas9 screening approach in a murine T cell line, Ryoden et al. (2022, 2020) identified three proteins involved in P2X7 regulation and signaling: Essential for Reactive Oxygen Species (EROS) is essential for P2X7 folding and maturation, and Xk and Vsp13a are required for P2X7-mediated phosphatidyl serine exposure and cell lysis. They further provide evidence for an interaction of Xk and Vsp13a at the plasma membrane and confirm the role of Xk in ATP-induced cytolysis in primary CD25+CD4+ T cells from Xk-/- mice.
Collapse
Affiliation(s)
- Lukas Sassenbach
- Walther-Straub-Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany.
| |
Collapse
|
9
|
Ke K, Li L, Lu C, Zhu Q, Wang Y, Mou Y, Wang H, Jin W. The crosstalk effect between ferrous and other ions metabolism in ferroptosis for therapy of cancer. Front Oncol 2022; 12:916082. [PMID: 36033459 PMCID: PMC9413412 DOI: 10.3389/fonc.2022.916082] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Ferroptosis is an iron-dependent cell death process characterized by excessive accumulation of reactive oxygen species and lipid peroxidation. The elucidation of ferroptosis pathways may lead to novel cancer therapies. Current evidence suggests that the mechanism of ferroptosis can be summarized as oxidative stress and antioxidant defense mechanisms. During this process, ferrous ions play a crucial role in cellular oxidation, plasma membrane damage, reactive oxygen species removal imbalance and lipid peroxidation. Although, disregulation of intracellular cations (Fe2+, Ca2+, Zn2+, etc.) and anions (Cl-, etc.) have been widely reported to be involved in ferroptosis, their specific regulatory mechanisms have not been established. To further understand the crosstalk effect between ferrous and other ions in ferroptosis, we reviewed the ferroptosis process from the perspective of ions metabolism. In addition, the role of ferrous and other ions in tumor therapy is briefly summarized.
Collapse
Affiliation(s)
- Kun Ke
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Li Li
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chao Lu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qicong Zhu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yuanyu Wang
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yiping Mou
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Huiju Wang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Weiwei Jin, ; Huiju Wang,
| | - Weiwei Jin
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Weiwei Jin, ; Huiju Wang,
| |
Collapse
|
10
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
11
|
Abstract
Anoctamin 10 (ANO10), also known as TMEM16K, is a transmembrane protein and member of the anoctamin family characterized by functional duality. Anoctamins manifest ion channel and phospholipid scrambling activities and are involved in many physiological processes such as cell division, migration, apoptosis, cell signalling, and developmental processes. Several diseases, including neurological, muscle, blood disorders, and cancer, have been associated with the anoctamin family proteins. ANO10, which is the main focus of the present review, exhibits both scrambling and chloride channel activity; calcium availability is necessary for protein activation in either case. Additional processes implicating ANO10 include endosomal sorting, spindle assembly, and calcium signalling. Dysregulation of calcium signalling in Purkinje cells due to ANO10 defects is proposed as the main mechanism leading to spinocerebellar ataxia autosomal recessive type 10 (SCAR10), a rare, slowly progressive spinocerebellar ataxia. Regulation of the endolysosomal pathway is an additional ANO10 function linked to SCAR10 aetiology. Further functional investigation is essential to unravel the ANO10 mechanism of action and involvement in disease development.
Collapse
|
12
|
Polymodal Control of TMEM16x Channels and Scramblases. Int J Mol Sci 2022; 23:ijms23031580. [PMID: 35163502 PMCID: PMC8835819 DOI: 10.3390/ijms23031580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., TMEM16A and TMEM16B) serve as CaCCs, while others are lipid scramblases, combine channel and scramblase function, or perform additional cellular roles. TMEM16x proteins are typically activated by agonist-induced Ca2+ release evoked by Gq-protein-coupled receptor (GqPCR) activation; thus, TMEM16x proteins link Ca2+-signalling with cell electrical activity and/or lipid transport. Recent studies demonstrate that a range of other cellular factors—including plasmalemmal lipids, pH, hypoxia, ATP and auxiliary proteins—also control the activity of the TMEM16A channel and its paralogues, suggesting that the TMEM16x proteins are effectively polymodal sensors of cellular homeostasis. Here, we review the molecular pathophysiology, structural biology, and mechanisms of regulation of TMEM16x proteins by multiple cellular factors.
Collapse
|
13
|
Hawn MB, Akin E, Hartzell H, Greenwood IA, Leblanc N. Molecular mechanisms of activation and regulation of ANO1-Encoded Ca 2+-Activated Cl - channels. Channels (Austin) 2021; 15:569-603. [PMID: 34488544 PMCID: PMC8480199 DOI: 10.1080/19336950.2021.1975411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 01/13/2023] Open
Abstract
Ca2+-activated Cl- channels (CaCCs) perform a multitude of functions including the control of cell excitability, regulation of cell volume and ionic homeostasis, exocrine and endocrine secretion, fertilization, amplification of olfactory sensory function, and control of smooth muscle cell contractility. CaCCs are the translated products of two members (ANO1 and ANO2, also known as TMEM16A and TMEM16B) of the Anoctamin family of genes comprising ten paralogs. This review focuses on recent progress in understanding the molecular mechanisms involved in the regulation of ANO1 by cytoplasmic Ca2+, post-translational modifications, and how the channel protein interacts with membrane lipids and protein partners. After first reviewing the basic properties of native CaCCs, we then present a brief historical perspective highlighting controversies about their molecular identity in native cells. This is followed by a summary of the fundamental biophysical and structural properties of ANO1. We specifically address whether the channel is directly activated by internal Ca2+ or indirectly through the intervention of the Ca2+-binding protein Calmodulin (CaM), and the structural domains responsible for Ca2+- and voltage-dependent gating. We then review the regulation of ANO1 by internal ATP, Calmodulin-dependent protein kinase II-(CaMKII)-mediated phosphorylation and phosphatase activity, membrane lipids such as the phospholipid phosphatidyl-(4,5)-bisphosphate (PIP2), free fatty acids and cholesterol, and the cytoskeleton. The article ends with a survey of physical and functional interactions of ANO1 with other membrane proteins such as CLCA1/2, inositol trisphosphate and ryanodine receptors in the endoplasmic reticulum, several members of the TRP channel family, and the ancillary Κ+ channel β subunits KCNE1/5.
Collapse
Affiliation(s)
- M. B. Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - E. Akin
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - H.C. Hartzell
- Department of Cell Biology, Emory University School of Medicine, USA
| | - I. A. Greenwood
- Department of Vascular Pharmacology, St. George’s University of London, UK
| | - N. Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| |
Collapse
|
14
|
Calmodulin-Dependent Regulation of Overexpressed but Not Endogenous TMEM16A Expressed in Airway Epithelial Cells. MEMBRANES 2021; 11:membranes11090723. [PMID: 34564540 PMCID: PMC8471323 DOI: 10.3390/membranes11090723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
Regulation of the Ca2+-activated Cl− channel TMEM16A by Ca2+/calmodulin (CAM) is discussed controversially. In the present study, we compared regulation of TMEM16A by Ca2+/calmodulin (holo-CAM), CAM-dependent kinase (CAMKII), and CAM-dependent phosphatase calcineurin in TMEM16A-overexpressing HEK293 cells and TMEM16A expressed endogenously in airway and colonic epithelial cells. The activator of the Ca2+/CAM-regulated K+ channel KCNN4, 1-EBIO, activated TMEM16A in overexpressing cells, but not in cells with endogenous expression of TMEM16A. Evidence is provided that CAM-interaction with TMEM16A modulates the Ca2+ sensitivity of the Cl− channel. Enhanced Ca2+ sensitivity of overexpressed TMEM16A explains its activity at basal (non-elevated) intracellular Ca2+ levels. The present results correspond well to a recent report that demonstrates a Ca2+-unbound form of CAM (apo-CAM) that is pre-associated with TMEM16A and mediates a Ca2+-dependent sensitization of activation (and inactivation). However, when using activators or inhibitors for holo-CAM, CAMKII, or calcineurin, we were unable to detect a significant impact of CAM, and limit evidence for regulation by CAM-dependent regulatory proteins on receptor-mediated activation of endogenous TMEM16A in airway or colonic epithelial cells. We propose that regulatory properties of TMEM16A and and other members of the TMEM16 family as detected in overexpression studies, should be validated for endogenous TMEM16A and physiological stimuli such as activation of phospholipase C (PLC)-coupled receptors.
Collapse
|
15
|
Okada Y, Sato-Numata K, Sabirov RZ, Numata T. Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 2: Functional and Molecular Properties of ASOR/PAC Channels and Their Roles in Cell Volume Dysregulation and Acidotoxic Cell Death. Front Cell Dev Biol 2021; 9:702317. [PMID: 34307382 PMCID: PMC8299559 DOI: 10.3389/fcell.2021.702317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
For survival and functions of animal cells, cell volume regulation (CVR) is essential. Major hallmarks of necrotic and apoptotic cell death are persistent cell swelling and shrinkage, and thus they are termed the necrotic volume increase (NVI) and the apoptotic volume decrease (AVD), respectively. A number of ubiquitously expressed anion and cation channels play essential roles not only in CVR but also in cell death induction. This series of review articles address the question how cell death is induced or protected with using ubiquitously expressed ion channels such as swelling-activated anion channels, acid-activated anion channels, and several types of TRP cation channels including TRPM2 and TRPM7. In the Part 1, we described the roles of swelling-activated VSOR/VRAC anion channels. Here, the Part 2 focuses on the roles of the acid-sensitive outwardly rectifying (ASOR) anion channel, also called the proton-activated chloride (PAC) anion channel, which is activated by extracellular protons in a manner sharply dependent on ambient temperature. First, we summarize phenotypical properties, the molecular identity, and the three-dimensional structure of ASOR/PAC. Second, we highlight the unique roles of ASOR/PAC in CVR dysfunction and in the induction of or protection from acidotoxic cell death under acidosis and ischemic conditions.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan.,Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.,Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kaori Sato-Numata
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ravshan Z Sabirov
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Tomohiro Numata
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
16
|
Kostritskii AY, Machtens JP. Molecular mechanisms of ion conduction and ion selectivity in TMEM16 lipid scramblases. Nat Commun 2021; 12:2826. [PMID: 33990555 PMCID: PMC8121942 DOI: 10.1038/s41467-021-22724-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023] Open
Abstract
TMEM16 lipid scramblases transport lipids and also operate as ion channels with highly variable ion selectivities and various physiological functions. However, their molecular mechanisms of ion conduction and selectivity remain largely unknown. Using computational electrophysiology simulations at atomistic resolution, we identified the main ion-conductive state of TMEM16 lipid scramblases, in which an ion permeation pathway is lined by lipid headgroups that directly interact with permeating ions in a voltage polarity-dependent manner. We found that lipid headgroups modulate the ion-permeability state and regulate ion selectivity to varying degrees in different scramblase isoforms, depending on the amino-acid composition of the pores. Our work has defined the structural basis of ion conduction and selectivity in TMEM16 lipid scramblases and uncovered the mechanisms responsible for the direct effects of membrane lipids on the conduction properties of ion channels.
Collapse
Affiliation(s)
- Andrei Y. Kostritskii
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany ,grid.1957.a0000 0001 0728 696XInstitute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany ,grid.1957.a0000 0001 0728 696XDepartment of Physics, RWTH Aachen University, Aachen, Germany
| | - Jan-Philipp Machtens
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany ,grid.1957.a0000 0001 0728 696XInstitute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
17
|
Kolesnikov D, Perevoznikova A, Gusev K, Glushankova L, Kaznacheyeva E, Shalygin A. Electrophysiological Properties of Endogenous Single Ca 2+ Activated Cl - Channels Induced by Local Ca 2+ Entry in HEK293. Int J Mol Sci 2021; 22:4767. [PMID: 33946319 PMCID: PMC8124839 DOI: 10.3390/ijms22094767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Microdomains formed by proteins of endoplasmic reticulum and plasma membrane play a key role in store-operated Ca2+ entry (SOCE). Ca2+ release through inositol 1,4,5-trisphosphate receptor (IP3R) and subsequent Ca2+ store depletion activate STIM (stromal interaction molecules) proteins, sensors of intraluminal Ca2+, which, in turn, open the Orai channels in plasma membrane. Downstream to this process could be activated TRPC (transient receptor potential-canonical) calcium permeable channels. Using single channel patch-clamp technique we found that a local Ca2+ entry through TRPC1 channels activated endogenous Ca2+-activated chloride channels (CaCCs) with properties similar to Anoctamin6 (TMEM16F). Our data suggest that their outward rectification is based on the dependence from membrane potential of both the channel conductance and the channel activity: (1) The conductance of active CaCCs highly depends on the transmembrane potential (from 3 pS at negative potentials till 60 pS at positive potentials); (2) their activity (NPo) is enhanced with increasing Ca2+ concentration and/or transmembrane potential, conversely lowering of intracellular Ca2+ concentration reduced the open state dwell time; (3) CaCC amplitude is only slightly increased by intracellular Ca2+ concentration. Experiments with Ca2+ buffering by EGTA or BAPTA suggest close local arrangement of functional CaCCs and TRPC1 channels. It is supposed that Ca2+-activated chloride channels are involved in Ca2+ entry microdomains.
Collapse
Affiliation(s)
| | | | | | | | - Elena Kaznacheyeva
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (D.K.); (A.P.); (K.G.); (L.G.)
| | - Alexey Shalygin
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (D.K.); (A.P.); (K.G.); (L.G.)
| |
Collapse
|
18
|
ANO7: Insights into topology, function, and potential applications as a biomarker and immunotherapy target. Tissue Cell 2021; 72:101546. [PMID: 33940566 DOI: 10.1016/j.tice.2021.101546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/21/2021] [Accepted: 04/11/2021] [Indexed: 01/01/2023]
Abstract
Anoctamin 7 (ANO7) is a member of the transmembrane protein TMEM16 family. It has a conservative topology similar to other members in this family, such as the typical eight-transmembrane domain, but it also has unique features. Although the ion channel role of ANO7 has been well accepted, evolutionary analyses and relevant studies suggest that ANO7 may be a multi-facet protein in function. Studies have shown that ANO7 may also function as a scramblase. ANO7 is highly expressed in prostate cancer as well as normal prostate tissues. A considerable amount of evidence has confirmed that ANO7 is associated with human physiology and pathology, particularly with the development of prostate cancer, which makes ANO7 a good candidate as a diagnostic and prognostic biomarker. In addition, ANO7 may be a potential target for prostate cancer immunotherapy. Antibody-based or T cell-mediated immunotherapies against prostate cancer by targeting ANO7 have been highly anticipated. ANO7 may also correlate with several other types of cancers or diseases, where further studies are warranted.
Collapse
|
19
|
Prediction of Functional Consequences of Missense Mutations in ANO4 Gene. Int J Mol Sci 2021; 22:ijms22052732. [PMID: 33800471 PMCID: PMC7962975 DOI: 10.3390/ijms22052732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
The anoctamin (TMEM16) family of transmembrane protein consists of ten members in vertebrates, which act as Ca2+-dependent ion channels and/or Ca2+-dependent scramblases. ANO4 which is primarily expressed in the CNS and certain endocrine glands, has been associated with various neuronal disorders. Therefore, we focused our study on prioritizing missense mutations that are assumed to alter the structure and stability of ANO4 protein. We employed a wide array of evolution and structure based in silico prediction methods to identify potentially deleterious missense mutations in the ANO4 gene. Identified pathogenic mutations were then mapped to the modeled human ANO4 structure and the effects of missense mutations were studied on the atomic level using molecular dynamics simulations. Our data show that the G80A and A500T mutations significantly alter the stability of the mutant proteins, thus providing new perspective on the role of missense mutations in ANO4 gene. Results obtained in this study may help to identify disease associated mutations which affect ANO4 protein structure and function and might facilitate future functional characterization of ANO4.
Collapse
|
20
|
Melanotic Neuroectodermal Tumor of Infancy (MNTI) and Pineal Anlage Tumor (PAT) Harbor A Medulloblastoma Signature by DNA Methylation Profiling. Cancers (Basel) 2021; 13:cancers13040706. [PMID: 33572349 PMCID: PMC7916108 DOI: 10.3390/cancers13040706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Melanotic neuroectodermal tumor of infancy (MNTI) is a rare tumor of uncertain origin, morphologically overlapping other rare neoplasms such as pineal anlage tumor (PAT) and a subset of medulloblastomas (i.e., melanotic medulloblastoma). Despite the similarities with MNTI, their possible histogenetic relationship has been traditionally disregarded based on their aggressive behavior and dismal prognosis. The aim of this study was to further characterize the molecular features of MNTI and PAT based on DNA-methylation and copy number variation profiling analysis. We found that MNTI shares a methylation profile with group 3 high-risk medulloblastoma, and potentially with PAT, suggesting a common histogenesis. Most MNTIs in our series lacked copy number variation alterations, whereas their presence in the one PAT deserves further study in larger cohorts to better determine their impact in prognosis and biologic behavior. Abstract MNTI is a rare tumor of indeterminate histogenesis and molecular signature. We performed methylation and copy number variation (CNV) profiles in patients with MNTI (n = 7) and PAT (n = 1) compared to the methylation brain tumor classifier v11b4 (BT-C) and the medulloblastoma (MB) classifier group 3/4 v1.0 (MB3/4-C). The patients’ mean age was 8 months (range: 4–48). The BT-C classified five MNTIs and one PAT (relapse) as class family MB-G3/G4, subclass group 3 (score: >0.9). The remaining two MNTIs and PAT (primary) were classified as class family plexus tumor, subclass pediatric (scores: >0.45). The MB3/4-C classified all MNTIs as high-risk MB-G3, Subtype II (score: >0.45). The primary PAT was classified as subtype III (score: 0.99) and its relapse as subtype II/III. MNTI and PAT clustered close to MB-G3. CNV analysis showed multiple rearrangements in one PAT and two MNTIs. The median follow-up was 54 months (four MNTIs in remission, one PAT died). In conclusion, we demonstrated that MNTI shares a homogenous methylation profile with MB-G3, and possibly with PAT. The role of a multipotent progenitor cell (i.e., early cranial neural crest cell) in their histogenesis and the influence of the anatomical site, tumor microenvironment, and other cytogenetic events in their divergent biologic behavior deserve further investigation.
Collapse
|
21
|
Kaikkonen E, Takala A, Pursiheimo JP, Wahlström G, Schleutker J. The interactome of the prostate-specific protein Anoctamin 7. Cancer Biomark 2021; 28:91-100. [PMID: 32176628 PMCID: PMC7306890 DOI: 10.3233/cbm-190993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Elevated Anoctamin 7 (ANO7) expression is associated with poor survival in prostate cancer patients. OBJECTIVE The aim was to discover proteins that interact with ANO7 to understand its functions and regulatory mechanisms. METHODS The proximity-dependent biotin identification (BioID) method was utilized. ANO7 fused to biotin ligase was transiently transfected into LNCaP cells, and the biotinylated proteins were collected and analysed by mass spectrometry. Four identified proteins were stained with dual fluorescent immunostaining and visualized using Stimulated emission depletion microscopy (STED). RESULTS After bioinformatic filtering steps, 64 potentially ANO7-interacting proteins were identified and analysed with the GO enrichment analysis tool. One of the most prominently enriched cellular components was cellular vesicle. Co-localization was showed for staphylococcal nuclease and tudor domain containing 1 (SND1), heat shock protein family A (Hsp70) member 1A (HSPA1A), adaptor related protein complex 2 subunit beta 1 (AP2B1) and coatomer protein complex subunit gamma 2 (COPG2). CONCLUSIONS This is the first study in which ANO7 interacting proteins have been identified. Although further studies are needed, the findings reported here expand our understanding of the role and regulation of ANO7 in prostate cancer cells. Furthermore, these results are likely to introduce new targets for the novel cancer therapies.
Collapse
Affiliation(s)
- Elina Kaikkonen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Aliisa Takala
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| |
Collapse
|
22
|
Le SC, Yang H. Structure-Function of TMEM16 Ion Channels and Lipid Scramblases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:87-109. [PMID: 35138612 PMCID: PMC11020148 DOI: 10.1007/978-981-16-4254-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The TMEM16 protein family comprises two novel classes of structurally conserved but functionally distinct membrane transporters that function as Ca2+-dependent Cl- channels (CaCCs) or dual functional Ca2+-dependent ion channels and phospholipid scramblases. Extensive functional and structural studies have advanced our understanding of TMEM16 molecular mechanisms and physiological functions. TMEM16A and TMEM16B CaCCs control transepithelial fluid transport, smooth muscle contraction, and neuronal excitability, whereas TMEM16 phospholipid scramblases mediate the flip-flop of phospholipids across the membrane to allow phosphatidylserine externalization, which is essential in a plethora of important processes such as blood coagulation, bone development, and viral and cell fusion. In this chapter, we summarize the major methods in studying TMEM16 ion channels and scramblases and then focus on the current mechanistic understanding of TMEM16 Ca2+- and voltage-dependent channel gating as well as their ion and phospholipid permeation.
Collapse
Affiliation(s)
- Son C Le
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
23
|
Öhlinger T, Müllner EW, Fritz M, Sauer T, Werning M, Baron DM, Salzer U. Lysophosphatidic acid-induced pro-thrombotic phosphatidylserine exposure and ionophore-induced microvesiculation is mediated by the scramblase TMEM16F in erythrocytes. Blood Cells Mol Dis 2020; 83:102426. [PMID: 32222693 DOI: 10.1016/j.bcmd.2020.102426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/31/2022]
Abstract
Recent studies indicate that erythrocytes actively modulate blood clotting and thrombus formation. The lipid mediator lysophosphatidic acid (LPA) is produced by activated platelets, and triggers a signaling process in erythrocytes. This results in cellular calcium uptake and exposure of phosphatidylserine (PS) at the cell surface, thereby generating activated membrane binding sites for factors of the clotting cascade. Moreover, erythrocytes of patients with a bleeding disorder and mutations in the scramblase TMEM16F show impaired PS exposure and microvesiculation upon treatment with calcium ionophore. We report that TMEM16F inhibitors tannic acid (TA) and epigallocatechin-3-gallate (EGCG) inhibit LPA-induced PS exposure and calcium uptake at low micromolar concentrations; fluoxetine, an antidepressant and a known activator of TMEM16F, enhances these processes. These effectors likewise modulate erythrocyte PS exposure and microvesicle shedding induced by calcium ionophore treatment. Further, LPA-treated erythrocytes triggered thrombin generation in platelet-free plasma which was partially impaired in the presence of TA and EGCG. Thus, this study suggests that LPA activates the scramblase TMEM16F in erythrocytes, thereby possibly mediating a pro-thrombotic function in these cells. EGCG as well as fluoxetine, substances with potentially high plasma concentrations due to alimentation or medical treatment, should be considered as potential effectors of systemic hemostatic regulation.
Collapse
Affiliation(s)
- Thomas Öhlinger
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria; Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Ernst W Müllner
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Magdalena Fritz
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Thomas Sauer
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Maike Werning
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - David M Baron
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Ulrich Salzer
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
24
|
Targeting of Intracellular TMEM16 Proteins to the Plasma Membrane and Activation by Purinergic Signaling. Int J Mol Sci 2020; 21:ijms21114065. [PMID: 32517157 PMCID: PMC7312528 DOI: 10.3390/ijms21114065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 11/22/2022] Open
Abstract
Anoctamins such as TMEM16A and TMEM16B are Ca2+-dependent Cl− channels activated through purinergic receptor signaling. TMEM16A (ANO1), TMEM16B (ANO2) and TMEM16F (ANO6) are predominantly expressed at the plasma membrane and are therefore well accessible for functional studies. While TMEM16A and TMEM16B form halide-selective ion channels, TMEM16F and probably TMEM16E operate as phospholipid scramblases and nonselective ion channels. Other TMEM16 paralogs are expressed mainly in intracellular compartments and are therefore difficult to study at the functional level. Here, we report that TMEM16E (ANO5), -H (ANO8), -J (ANO9) and K (ANO10) are targeted to the plasma membrane when fused to a C-terminal CAAX (cysteine, two aliphatic amino acids plus methionin, serine, alanin, cystein or glutamin) motif. These paralogs produce Ca2+-dependent ion channels. Surprisingly, expression of the TMEM16 paralogs in the plasma membrane did not produce additional scramblase activity. In contrast, endogenous scrambling induced by stimulation of purinergic P2X7 receptors was attenuated, in parallel with reduced plasma membrane blebbing. This could suggest that intracellular TMEM16 paralogs operate differently when compared to plasma membrane-localized TMEM16F, and may even stabilize intracellular membranes. Alternatively, CAAX tagging, which leads to expression in non-raft compartments of the plasma membrane, may antagonize phosphatidylserine exposure by endogenous raft-located TMEM16F. CAAX-containing constructs may be useful to further investigate the molecular properties of intracellular TMEM16 proteins.
Collapse
|
25
|
He Y, Xu P, Wang C, Xia Y, Yu M, Yang Y, Yu K, Cai X, Qu N, Saito K, Wang J, Hyseni I, Robertson M, Piyarathna B, Gao M, Khan SA, Liu F, Chen R, Coarfa C, Zhao Z, Tong Q, Sun Z, Xu Y. Estrogen receptor-α expressing neurons in the ventrolateral VMH regulate glucose balance. Nat Commun 2020; 11:2165. [PMID: 32358493 PMCID: PMC7195451 DOI: 10.1038/s41467-020-15982-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
Brain glucose-sensing neurons detect glucose fluctuations and prevent severe hypoglycemia, but mechanisms mediating functions of these glucose-sensing neurons are unclear. Here we report that estrogen receptor-α (ERα)-expressing neurons in the ventrolateral subdivision of the ventromedial hypothalamic nucleus (vlVMH) can sense glucose fluctuations, being glucose-inhibited neurons (GI-ERαvlVMH) or glucose-excited neurons (GE-ERαvlVMH). Hypoglycemia activates GI-ERαvlVMH neurons via the anoctamin 4 channel, and inhibits GE-ERαvlVMH neurons through opening the ATP-sensitive potassium channel. Further, we show that GI-ERαvlVMH neurons preferentially project to the medioposterior arcuate nucleus of the hypothalamus (mpARH) and GE-ERαvlVMH neurons preferentially project to the dorsal Raphe nuclei (DRN). Activation of ERαvlVMH to mpARH circuit and inhibition of ERαvlVMH to DRN circuit both increase blood glucose. Thus, our results indicate that ERαvlVMH neurons detect glucose fluctuations and prevent severe hypoglycemia in mice.
Collapse
Affiliation(s)
- Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yan Xia
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Meng Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kaifan Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xing Cai
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Na Qu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kenji Saito
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Julia Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ilirjana Hyseni
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Matthew Robertson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Badrajee Piyarathna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Min Gao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sohaib A Khan
- Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Feng Liu
- Departments of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zheng Sun
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Munemasa T, Gao X, Melvin JE, Mukaibo T. Ano6 disruption impairs acinar cell regulatory volume decrease and protein secretion in murine submandibular salivary glands. J Cell Physiol 2020; 235:8533-8545. [PMID: 32329061 DOI: 10.1002/jcp.29697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 11/09/2022]
Abstract
The widely expressed Anoctamin 6 (Ano6) supports different Ca2+ -dependent functions, but little is known about its role in salivary glands. Mouse submandibular gland (SMG) acinar cells exhibited a robust regulatory volume decrease (RVD) following cell swelling that was reduced approximately 70% in Ano6-/- mice. Ca2+ -free conditions nearly eliminated the RVD response suggesting that Ano6 is an obligatory component of the cell volume-activated, Ca2+ -dependent RVD pathway in salivary gland acinar cells. Ex vivo agonist-stimulated secretion of water and ions was unaffected by Ano6 disruption under both isotonic and hypotonic conditions suggesting that Ano6 does not play a major role in fluid and electrolyte secretion. In contrast, the total amount of β-adrenergic-dependent protein secretion by the SMG was significantly reduced in Ano6-/- mice. Closer inspection of these latter results revealed that protein secretion was affected only in the female SMG by Ano6 disruption. These results indicate that Ano6 modulates the RVD response and protein secretion by salivary gland acinar cells.
Collapse
Affiliation(s)
- Takashi Munemasa
- Secretory Mechanisms and Dysfunctions Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.,Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Xin Gao
- Secretory Mechanisms and Dysfunctions Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - James E Melvin
- Secretory Mechanisms and Dysfunctions Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Taro Mukaibo
- Secretory Mechanisms and Dysfunctions Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.,Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
27
|
Shi S, Pang C, Guo S, Chen Y, Ma B, Qu C, Ji Q, An H. Recent progress in structural studies on TMEM16A channel. Comput Struct Biotechnol J 2020; 18:714-722. [PMID: 32257055 PMCID: PMC7118279 DOI: 10.1016/j.csbj.2020.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 11/26/2022] Open
Abstract
The calcium-activated chloride channel, also known as TMEM16A, shows both calcium and membrane potential dependent activation. The channel is expressed broadly and contributes to a variety of physiological processes, and it is expected to be a target for the treatment of diseases such as hypertension, pain, cystic fibrosis and lung cancer. A thorough understanding of the structural characteristics of TMEM16A is important to reveal its physiological and pathological roles. Recent studies have released several Cryo-EM structures of the channel, revealed the structural basis and mechanism of the gating of the channel. This review focused on the understandings of the structural basis and molecular mechanism of the gating and permeation of TMEM16A channel, which will provide important basis for the development of drugs targeting TMEM16A.
Collapse
Affiliation(s)
- Sai Shi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Chunli Pang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Shuai Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Biao Ma
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Chang Qu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Qiushuang Ji
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
28
|
Ion Channel Dysregulation in Head and Neck Cancers: Perspectives for Clinical Application. Rev Physiol Biochem Pharmacol 2020; 181:375-427. [PMID: 32789787 DOI: 10.1007/112_2020_38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Head and neck cancers are a highly complex and heterogeneous group of malignancies that involve very diverse anatomical structures and distinct aetiological factors, treatments and clinical outcomes. Among them, head and neck squamous cell carcinomas (HNSCC) are predominant and the sixth most common cancer worldwide with still low survival rates. Omic technologies have unravelled the intricacies of tumour biology, harbouring a large diversity of genetic and molecular changes to drive the carcinogenesis process. Nonetheless, this remarkable heterogeneity of molecular alterations opens up an immense opportunity to discover novel biomarkers and develop molecular-targeted therapies. Increasing evidence demonstrates that dysregulation of ion channel expression and/or function is frequently and commonly observed in a variety of cancers from different origin. As a consequence, the concept of ion channels as potential membrane therapeutic targets and/or biomarkers for cancer diagnosis and prognosis has attracted growing attention. This chapter intends to comprehensively and critically review the current state-of-art ion channel dysregulation specifically focusing on head and neck cancers and to formulate the major challenges and research needs to translate this knowledge into clinical application. Based on current reported data, various voltage-gated potassium (Kv) channels (i.e. Kv3.4, Kv10.1 and Kv11.1) have been found frequently aberrantly expressed in HNSCC as well as precancerous lesions and are highlighted as clinically and biologically relevant features in both early stages of tumourigenesis and late stages of disease progression. More importantly, they also emerge as promising candidates as cancer risk markers, tumour markers and potential anti-proliferative and anti-metastatic targets for therapeutic interventions; however, the oncogenic properties seem to be independent of their ion-conducting function.
Collapse
|
29
|
Maniero C, Scudieri P, Haris Shaikh L, Zhao W, Gurnell M, Galietta LJ, Brown MJ. ANO4 (Anoctamin 4) Is a Novel Marker of Zona Glomerulosa That Regulates Stimulated Aldosterone Secretion. Hypertension 2019; 74:1152-1159. [PMID: 31564164 PMCID: PMC6791498 DOI: 10.1161/hypertensionaha.119.13287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/14/2019] [Accepted: 08/25/2019] [Indexed: 11/16/2022]
Abstract
Microarray comparison of the transcriptomes of human adrenal zona glomerulosa (ZG) and zona fasciculata found several ZG-specific genes that negatively regulate aldosterone secretion. The third and most significantly upregulated ZG-gene (19.9-fold compared with zona fasciculata, P=6.58×10-24) was ANO4, a putative Ca2+-activated chloride channel. We have investigated the role of ANO4 in human adrenal, and whether it functions like the prototype anoctamin, ANO1. We evaluated ANO4 mRNA and protein expression in human adrenal by qPCR and immunohistochemistry, compared the effects of ANO4 and ANO1 overexpression on baseline and stimulated aldosterone secretion and cell proliferation in H295R cells, and analyzed ANO4 activity as a Ca2+-activated chloride channel in comparison with other anoctamins by a fluorescence-based functional assay. The expression of ANO4 in ZG was confirmed by qPCR as 23.21-fold upregulated compared with zona fasciculata (n=18; P=4.93×10-7). Immunohistochemistry found cytoplasmic, ZG-selective expression of ANO4 (anoctamin 4) protein. ANO4 overexpression in H295R cells attenuated calcium-mediated aldosterone secretion and cell proliferation in comparison to controls. The latter effects were in a different direction to those of ANO1. The functional assay showed that, in contrast to ANO1, ANO4 expression results in low levels of calcium-dependent anion transport. In conclusion, ANO4 is one of the most highly expressed genes in ZG. It attenuates stimulated aldosterone secretion and cell proliferation. Although belonging to a family of Ca2+-activated chloride channels, it does not generate significant plasma membrane chloride channel activity.
Collapse
Affiliation(s)
- Carmela Maniero
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom Clinical Pharmacology Unit (C.M., L.H.S., M.J.B.)
| | - Paolo Scudieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy (P.S., L.J.V.G.)
| | - Lalarukh Haris Shaikh
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom Clinical Pharmacology Unit (C.M., L.H.S., M.J.B.)
| | - Wanfeng Zhao
- Human Research Tissue Bank, Cambridge University, Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, United Kingdom (W.Z.)
| | - Mark Gurnell
- Metabolic Research Laboratories-Wellcome Trust-MRC Institute of Metabolic Science (M.G.)
| | - Luis J.V. Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy (P.S., L.J.V.G.)
| | - Morris J. Brown
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom Clinical Pharmacology Unit (C.M., L.H.S., M.J.B.)
| |
Collapse
|
30
|
Phuong TTT, An J, Park SH, Kim A, Choi HB, Kang TM. Deficiency of Anoctamin 5/TMEM16E causes nuclear positioning defect and impairs Ca 2+ signaling of differentiated C2C12 myotubes. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:539-547. [PMID: 31680776 PMCID: PMC6819897 DOI: 10.4196/kjpp.2019.23.6.539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/05/2022]
Abstract
Anoctamin 5 (ANO5)/TMEM16E belongs to a member of the ANO/TMEM16 family member of anion channels. However, it is a matter of debate whether ANO5 functions as a genuine plasma membrane chloride channel. It has been recognized that mutations in the ANO5 gene cause many skeletal muscle diseases such as limb girdle muscular dystrophy type 2L (LGMD2L) and Miyoshi muscular dystrophy type 3 (MMD3) in human. However, the molecular mechanisms of the skeletal myopathies caused by ANO5 defects are poorly understood. To understand the role of ANO5 in skeletal muscle development and function, we silenced the ANO5 gene in C2C12 myoblasts and evaluated whether it impairs myogenesis and myotube function. ANO5 knockdown (ANO5-KD) by shRNA resulted in clustered or aggregated nuclei at the body of myotubes without affecting differentiation or myotube formation. Nuclear positioning defect of ANO5-KD myotubes was accompanied with reduced expression of Kif5b protein, a kinesin-related motor protein that controls nuclear transport during myogenesis. ANO5-KD impaired depolarization-induced [Ca2+]i transient and reduced sarcoplasmic reticulum (SR) Ca2+ storage. ANO5-KD resulted in reduced protein expression of the dihydropyridine receptor (DHPR) and SR Ca2+-ATPase subtype 1. In addition, ANO5-KD compromised co-localization between DHPR and ryanodine receptor subtype 1. It is concluded that ANO5-KD causes nuclear positioning defect by reduction of Kif5b expression, and compromises Ca2+ signaling by downregulating the expression of DHPR and SERCA proteins.
Collapse
Affiliation(s)
- Tam Thi Thanh Phuong
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Jieun An
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Sun Hwa Park
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Ami Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Hyun Bin Choi
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Tong Mook Kang
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| |
Collapse
|
31
|
Ayon RJ, Hawn MB, Aoun J, Wiwchar M, Forrest AS, Cunningham F, Singer CA, Valencik ML, Greenwood IA, Leblanc N. Molecular mechanism of TMEM16A regulation: role of CaMKII and PP1/PP2A. Am J Physiol Cell Physiol 2019; 317:C1093-C1106. [PMID: 31461344 DOI: 10.1152/ajpcell.00059.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study explored the mechanism by which Ca2+-activated Cl- channels (CaCCs) encoded by the Tmem16a gene are regulated by calmodulin-dependent protein kinase II (CaMKII) and protein phosphatases 1 (PP1) and 2A (PP2A). Ca2+-activated Cl- currents (IClCa) were recorded from HEK-293 cells expressing mouse TMEM16A. IClCa were evoked using a pipette solution in which free Ca2+ concentration was clamped to 500 nM, in the presence (5 mM) or absence of ATP. With 5 mM ATP, IClCa decayed to <50% of the initial current magnitude within 10 min after seal rupture. IClCa rundown seen with ATP-containing pipette solution was greatly diminished by omitting ATP. IClCa recorded after 20 min of cell dialysis with 0 ATP were more than twofold larger than those recorded with 5 mM ATP. Intracellular application of autocamtide-2-related inhibitory peptide (5 µM) or KN-93 (10 µM), two specific CaMKII inhibitors, produced a similar attenuation of TMEM16A rundown. In contrast, internal application of okadaic acid (30 nM) or cantharidin (100 nM), two nonselective PP1 and PP2A blockers, promoted the rundown of TMEM16A in cells dialyzed with 0 ATP. Mutating serine 528 of TMEM16A to an alanine led to a similar inhibition of TMEM16A rundown to that exerted by either one of the two CaMKII inhibitors tested, which was not observed for three putative CaMKII consensus sites for phosphorylation (T273, T622, and S730). Our results suggest that TMEM16A-mediated CaCCs are regulated by CaMKII and PP1/PP2A. Our data also suggest that serine 528 of TMEM16A is an important contributor to the regulation of IClCa by CaMKII.
Collapse
Affiliation(s)
- Ramon J Ayon
- Division of Translational and Regenerative Medicine, Department of Medicine, College of Medicine, The University of Arizona College of Medicine, Arizona Health Sciences Center, Tucson, Arizona
| | - Matthew B Hawn
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada.,The Center for Cardiovascular Research, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Joydeep Aoun
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada.,The Center for Cardiovascular Research, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Michael Wiwchar
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Abigail S Forrest
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Fiona Cunningham
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Cherie A Singer
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Maria L Valencik
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Iain A Greenwood
- Institute of Molecular and Clinical Sciences, St. George's University of London, London, United Kingdom
| | - Normand Leblanc
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada.,The Center for Cardiovascular Research, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| |
Collapse
|
32
|
ANO5 mutations in the Polish limb girdle muscular dystrophy patients: Effects on the protein structure. Sci Rep 2019; 9:11533. [PMID: 31395899 PMCID: PMC6687736 DOI: 10.1038/s41598-019-47849-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/25/2019] [Indexed: 01/06/2023] Open
Abstract
LGMD2L is a subtype of limb-girdle muscular dystrophy (LGMD), caused by recessive mutations in ANO5, encoding anoctamin-5 (ANO5). We present the analysis of five patients with skeletal muscle weakness for whom heterozygous mutations within ANO5 were identified by whole exome sequencing (WES). Patients varied in the age of the disease onset (from 22 to 38 years) and severity of the morphological and clinical phenotypes. Out of the nine detected mutations one was novel (missense p.Lys132Met, accompanied by p.His841Asp) and one was not yet characterized in the literature (nonsense, p.Trp401Ter, accompanied by p.Asp81Gly). The p.Asp81Gly mutation was also identified in another patient carrying a p.Arg758Cys mutation as well. Also, a c.191dupA frameshift (p.Asn64LysfsTer15), the first described and common mutation was identified. Mutations were predicted by in silico tools to have damaging effects and are likely pathogenic according to criteria of the American College of Medical Genetics and Genomics (ACMG). Indeed, molecular modeling of mutations revealed substantial changes in ANO5 conformation that could affect the protein structure and function. In addition, variants in other genes associated with muscle pathology were identified, possibly affecting the disease progress. The presented data indicate that the identified ANO5 mutations contribute to the observed muscle pathology and broaden the genetic spectrum of LGMD myopathies.
Collapse
|
33
|
Ye W, Han TW, He M, Jan YN, Jan LY. Dynamic change of electrostatic field in TMEM16F permeation pathway shifts its ion selectivity. eLife 2019; 8:e45187. [PMID: 31318330 PMCID: PMC6690719 DOI: 10.7554/elife.45187] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
TMEM16F is activated by elevated intracellular Ca2+, and functions as a small-conductance ion channel and as a phospholipid scramblase. In contrast to its paralogs, the TMEM16A/B calcium-activated chloride channels, mouse TMEM16F has been reported as a cation-, anion-, or non-selective ion channel, without a definite conclusion. Starting with the Q559K mutant that shows no current rundown and less outward rectification in excised patch, we found that the channel shifted its ion selectivity in response to the change of intracellular Ca2+ concentration, with an increased permeability ratio of Cl- to Na+ (PCl-/PNa+) at a higher Ca2+ level. The gradual shift of relative ion permeability did not correlate with the channel activation state. Instead, it was indicative of an alteration of electrostatic field in the permeation pathway. The dynamic change of ion selectivity suggests a charge-screening mechanism for TMEM16F ion conduction, and it provides hints to further studies of TMEM16F physiological functions.
Collapse
Affiliation(s)
- Wenlei Ye
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Tina W Han
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Mu He
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Yuh Nung Jan
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoUnited States
| | - Lily Yeh Jan
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
34
|
Chandra G, Defour A, Mamchoui K, Pandey K, Mishra S, Mouly V, Sreetama S, Mahad Ahmad M, Mahjneh I, Morizono H, Pattabiraman N, Menon AK, Jaiswal JK. Dysregulated calcium homeostasis prevents plasma membrane repair in Anoctamin 5/TMEM16E-deficient patient muscle cells. Cell Death Discov 2019; 5:118. [PMID: 31341644 PMCID: PMC6639303 DOI: 10.1038/s41420-019-0197-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 01/30/2023] Open
Abstract
Autosomal recessive mutations in Anoctamin 5 (ANO5/TMEM16E), a member of the transmembrane 16 (TMEM16) family of Ca2+-activated ion channels and phospholipid scramblases, cause adult-onset muscular dystrophies (limb girdle muscular dystrophy 2L (LGMD2L) and Miyoshi Muscular Dystrophy (MMD3). However, the molecular role of ANO5 is unclear and ANO5 knockout mouse models show conflicting requirements of ANO5 in muscle. To study the role of ANO5 in human muscle cells we generated a myoblast line from a MMD3-patient carrying the c.2272C>T mutation, which we find causes the mutant protein to be degraded. The patient myoblasts exhibit normal myogenesis, but are compromised in their plasma membrane repair (PMR) ability. The repair deficit is linked to the poor ability of the endoplasmic reticulum (ER) to clear cytosolic Ca2+ increase caused by focal plasma membrane injury. Expression of wild-type ANO5 or pharmacological prevention of injury-triggered cytosolic Ca2+ overload enable injured patient muscle cells to repair. A homology model of ANO5 shows that several of the known LGMD2L/MMD3 patient mutations line the transmembrane region of the protein implicated in its channel activity. These results point to a role of cytosolic Ca2+ homeostasis in PMR, indicate a role for ANO5 in ER-mediated cytosolic Ca2+ uptake and identify normalization of cytosolic Ca2+ homeostasis as a potential therapeutic approach to treat muscular dystrophies caused by ANO5 deficit.
Collapse
Affiliation(s)
- Goutam Chandra
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA
| | - Aurelia Defour
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA.,7Present Address: Aix Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, 13385 Marseille, France
| | - Kamel Mamchoui
- 2Center for Research in Myology, Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Kalpana Pandey
- 3Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 USA
| | - Soumya Mishra
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA
| | - Vincent Mouly
- 2Center for Research in Myology, Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - SenChandra Sreetama
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA
| | - Mohammad Mahad Ahmad
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA
| | - Ibrahim Mahjneh
- 4Department of Neurology, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Hiroki Morizono
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA.,5Department of Genomics and Precision Medicine, George Washington University, Washington, DC 20037 USA
| | | | - Anant K Menon
- 3Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 USA
| | - Jyoti K Jaiswal
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA.,5Department of Genomics and Precision Medicine, George Washington University, Washington, DC 20037 USA
| |
Collapse
|
35
|
Valdivieso ÁG, Santa‐Coloma TA. The chloride anion as a signalling effector. Biol Rev Camb Philos Soc 2019; 94:1839-1856. [DOI: 10.1111/brv.12536] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Ángel G. Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina Buenos Aires 1107 Argentina
- The National Scientific and Technical Research Council of Argentina (CONICET) Buenos Aires 1107 Argentina
| | - Tomás A. Santa‐Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina Buenos Aires 1107 Argentina
- The National Scientific and Technical Research Council of Argentina (CONICET) Buenos Aires 1107 Argentina
| |
Collapse
|
36
|
Ousingsawat J, Schreiber R, Kunzelmann K. TMEM16F/Anoctamin 6 in Ferroptotic Cell Death. Cancers (Basel) 2019; 11:E625. [PMID: 31060306 PMCID: PMC6562394 DOI: 10.3390/cancers11050625] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022] Open
Abstract
Ca2+ activated Cl- channels (TMEM16A; ANO1) support cell proliferation and cancer growth. Expression of TMEM16A is strongly enhanced in different types of malignomas. In contrast, TMEM16F (ANO6) operates as a Ca2+ activated chloride/nonselective ion channel and scrambles membrane phospholipids to expose phosphatidylserine at the cell surface. Both phospholipid scrambling and cell swelling induced through activation of nonselective ion currents appear to destabilize the plasma membrane thereby causing cell death. There is growing evidence that activation of TMEM16F contributes to various forms of regulated cell death. In the present study, we demonstrate that ferroptotic cell death, occurring during peroxidation of plasma membrane phospholipids activates TMEM16F. Ferroptosis was induced by erastin, an inhibitor of the cystine-glutamate antiporter and RSL3, an inhibitor of glutathione peroxidase 4 (GPX4). Cell death was largely reduced in the intestinal epithelium, and in peritoneal macrophages isolated from mice with tissue-specific knockout of TMEM16F. We show that TMEM16F is activated during erastin and RSL3-induced ferroptosis. In contrast, inhibition of ferroptosis by ferrostatin-1 and by inhibitors of TMEM16F block TMEM16F currents and inhibit cell death. We conclude that activation of TMEM16F is a crucial component during ferroptotic cell death, a finding that may be useful to induce cell death in cancer cells.
Collapse
Affiliation(s)
- Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
37
|
Kunzelmann K, Ousingsawat J, Benedetto R, Cabrita I, Schreiber R. Contribution of Anoctamins to Cell Survival and Cell Death. Cancers (Basel) 2019; 11:E382. [PMID: 30893776 PMCID: PMC6468699 DOI: 10.3390/cancers11030382] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Before anoctamins (TMEM16 proteins) were identified as a family of Ca2+-activated chloride channels and phospholipid scramblases, the founding member anoctamin 1 (ANO1, TMEM16A) was known as DOG1, a marker protein for gastrointestinal stromal tumors (GIST). Meanwhile, ANO1 has been examined in more detail, and the role of ANO1 in cell proliferation and the development of different types of malignomas is now well established. While ANO5, ANO7, and ANO9 may also be relevant for growth of cancers, evidence has been provided for a role of ANO6 (TMEM16F) in regulated cell death. The cellular mechanisms by which anoctamins control cell proliferation and cell death, respectively, are just emerging; however, the pronounced effects of anoctamins on intracellular Ca2+ levels are likely to play a significant role. Recent results suggest that some anoctamins control membrane exocytosis by setting Ca2+i levels near the plasma membrane, and/or by controlling the intracellular Cl- concentration. Exocytosis and increased membrane trafficking induced by ANO1 and ANO6 may enhance membrane expression of other chloride channels, such as CFTR and volume activated chloride channels (VRAC). Notably, ANO6-induced phospholipid scrambling with exposure of phosphatidylserine is pivotal for the sheddase function of disintegrin and metalloproteinase (ADAM). This may support cell death and tumorigenic activity of IL-6 by inducing IL-6 trans-signaling. The reported anticancer effects of the anthelminthic drug niclosamide are probably related to the potent inhibitory effect on ANO1, apart from inducing cell cycle arrest through the Let-7d/CDC34 axis. On the contrary, pronounced activation of ANO6 due to a large increase in intracellular calcium, activation of phospholipase A2 or lipid peroxidation, can lead to ferroptotic death of cancer cells. It therefore appears reasonable to search for both inhibitors and potent activators of TMEM16 in order to interfere with cancer growth and metastasis.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Ines Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
38
|
Anoctamin-4 is a bona fide Ca 2+-dependent non-selective cation channel. Sci Rep 2019; 9:2257. [PMID: 30783137 PMCID: PMC6381168 DOI: 10.1038/s41598-018-37287-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022] Open
Abstract
Changes in cell function occur by specific patterns of intracellular Ca2+, activating Ca2+-sensitive proteins. The anoctamin (TMEM16) protein family has Ca2+-dependent ion channel activity, which provides transmembrane ion transport, and/or Ca2+-dependent phosphatidyl-scramblase activity. Using amino acid sequence analysis combined with measurements of ion channel function, we clarified the so far unknown Ano4 function as Ca2+-dependent, non-selective monovalent cation channel; heterologous Ano4 expression in HEK293 cells elicits Ca2+ activated conductance with weak selectivity of K+ > Na+ > Li+. Endogenously expressed Ca2+-dependent cation channels in the retinal pigment epithelium were identified as Ano4 by KO mouse-derived primary RPE cells and siRNA against Ano4. Exchanging a negatively charged amino acid in the putative pore region (AA702–855) into a positive one (E775K) turns Ano4-elicited currents into Cl− currents evidencing its importance for ion selectivity. The molecular identification of Ano4 as a Ca2+-activated cation channel advances the understanding of its role in Ca2+ signaling.
Collapse
|
39
|
Miner K, Labitzke K, Liu B, Wang P, Henckels K, Gaida K, Elliott R, Chen JJ, Liu L, Leith A, Trueblood E, Hensley K, Xia XZ, Homann O, Bennett B, Fiorino M, Whoriskey J, Yu G, Escobar S, Wong M, Born TL, Budelsky A, Comeau M, Smith D, Phillips J, Johnston JA, McGivern JG, Weikl K, Powers D, Kunzelmann K, Mohn D, Hochheimer A, Sullivan JK. Drug Repurposing: The Anthelmintics Niclosamide and Nitazoxanide Are Potent TMEM16A Antagonists That Fully Bronchodilate Airways. Front Pharmacol 2019; 10:51. [PMID: 30837866 PMCID: PMC6382696 DOI: 10.3389/fphar.2019.00051] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/18/2019] [Indexed: 01/21/2023] Open
Abstract
There is an unmet need in severe asthma where approximately 40% of patients exhibit poor β-agonist responsiveness, suffer daily symptoms and show frequent exacerbations. Antagonists of the Ca2+-activated Cl- channel, TMEM16A, offers a new mechanism to bronchodilate airways and block the multiple contractiles operating in severe disease. To identify TMEM16A antagonists we screened a library of ∼580,000 compounds. The anthelmintics niclosamide, nitazoxanide, and related compounds were identified as potent TMEM16A antagonists that blocked airway smooth muscle depolarization and contraction. To evaluate whether TMEM16A antagonists resist use- and inflammatory-desensitization pathways limiting β-agonist action, we tested their efficacy under harsh conditions using maximally contracted airways or airways pretreated with a cytokine cocktail. Stunningly, TMEM16A antagonists fully bronchodilated airways, while the β-agonist isoproterenol showed only partial effects. Thus, antagonists of TMEM16A and repositioning of niclosamide and nitazoxanide represent an important additional treatment for patients with severe asthma and COPD that is poorly controlled with existing therapies. It is of note that drug repurposing has also attracted wide interest in niclosamide and nitazoxanide as a new treatment for cancer and infectious disease. For the first time we identify TMEM16A as a molecular target for these drugs and thus provide fresh insights into their mechanism for the treatment of these disorders in addition to respiratory disease.
Collapse
Affiliation(s)
- Kent Miner
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Katja Labitzke
- Department of Therapeutic Discovery, Amgen Inc., Regensburg, Germany
| | - Benxian Liu
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Paul Wang
- Department of Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA, United States
| | - Kathryn Henckels
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Kevin Gaida
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Robin Elliott
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Jian Jeffrey Chen
- Department of Medicinal Chemistry, Amgen Inc., Thousand Oaks, CA, United States
| | - Longbin Liu
- Department of Medicinal Chemistry, Amgen Inc., Thousand Oaks, CA, United States
| | - Anh Leith
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Esther Trueblood
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Seattle, WA, United States
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, United States
- Department of Comparative Biology and Safety Sciences, Amgen Inc., South San Francisco, CA, United States
| | - Kelly Hensley
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Seattle, WA, United States
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, United States
- Department of Comparative Biology and Safety Sciences, Amgen Inc., South San Francisco, CA, United States
| | - Xing-Zhong Xia
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Oliver Homann
- Genome Analysis Unit, Amgen Inc., South San Francisco, CA, United States
| | - Brian Bennett
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Mike Fiorino
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - John Whoriskey
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Gang Yu
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Sabine Escobar
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Min Wong
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Teresa L. Born
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Alison Budelsky
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Mike Comeau
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Dirk Smith
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Jonathan Phillips
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - James A. Johnston
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Joseph G. McGivern
- Department of Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA, United States
| | - Kerstin Weikl
- Department of Therapeutic Discovery, Amgen Inc., Regensburg, Germany
| | - David Powers
- Department of Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA, United States
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Deanna Mohn
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | | | - John K. Sullivan
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| |
Collapse
|
40
|
Kunzelmann K, Ousingsawat J, Cabrita I, Doušová T, Bähr A, Janda M, Schreiber R, Benedetto R. TMEM16A in Cystic Fibrosis: Activating or Inhibiting? Front Pharmacol 2019; 10:3. [PMID: 30761000 PMCID: PMC6362895 DOI: 10.3389/fphar.2019.00003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022] Open
Abstract
The inflammatory airway disease cystic fibrosis (CF) is characterized by airway obstruction due to mucus hypersecretion, airway plugging, and bronchoconstriction. The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is dysfunctional in CF, leading to defects in epithelial transport. Although CF pathogenesis is still disputed, activation of alternative Cl- channels is assumed to improve lung function in CF. Two suitable non-CFTR Cl- channels are present in the airway epithelium, the Ca2+ activated channel TMEM16A and SLC26A9. Activation of these channels is thought to be feasible to improve hydration of the airway mucus and to increase mucociliary clearance. Interestingly, both channels are upregulated during inflammatory lung disease. They are assumed to support fluid secretion, necessary to hydrate excess mucus and to maintain mucus clearance. During inflammation, however, TMEM16A is upregulated particularly in mucus producing cells, with only little expression in ciliated cells. Recently it was shown that knockout of TMEM16A in ciliated cells strongly compromises Cl- conductance and attenuated mucus secretion, but does not lead to a CF-like lung disease and airway plugging. Along this line, activation of TMEM16A by denufosol, a stable purinergic ligand, failed to demonstrate any benefit to CF patients in earlier studies. It rather induced adverse effects such as cough. A number of studies suggest that TMEM16A is essential for mucus secretion and possibly also for mucus production. Evidence is now provided for a crucial role of TMEM16A in fusion of mucus-filled granules with the apical plasma membrane and cellular exocytosis. This is probably due to local Ca2+ signals facilitated by TMEM16A. Taken together, TMEM16A supports fluid secretion by ciliated airway epithelial cells, but also maintains excessive mucus secretion during inflammatory airway disease. Because TMEM16A also supports airway smooth muscle contraction, inhibition rather than activation of TMEM16A might be the appropriate treatment for CF lung disease, asthma and COPD. As a number of FDA-approved and well-tolerated drugs have been shown to inhibit TMEM16A, evaluation in clinical trials appears timely.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | | | - Inês Cabrita
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Tereza Doušová
- Department of Pediatrics, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| | - Andrea Bähr
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
- Innere Medizin I, Klinikum Rechts der Isar der TU München, München, Germany
| | - Melanie Janda
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
41
|
Ji Q, Guo S, Wang X, Pang C, Zhan Y, Chen Y, An H. Recent advances in TMEM16A: Structure, function, and disease. J Cell Physiol 2018; 234:7856-7873. [PMID: 30515811 DOI: 10.1002/jcp.27865] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
TMEM16A (also known as anoctamin 1, ANO1) is the molecular basis of the calcium-activated chloride channels, with ten transmembrane segments. Recently, atomic structures of the transmembrane domains of mouse TMEM16A (mTMEM16A) were determined by single-particle electron cryomicroscopy. This gives us a solid ground to discuss the electrophysiological properties and functions of TMEM16A. TMEM16A is reported to be dually regulated by Ca2+ and voltage. In addition, the dysfunction of TMEM16A has been found to be involved in many diseases including cystic fibrosis, various cancers, hypertension, and gastrointestinal motility disorders. TMEM16A is overexpressed in many cancers, including gastrointestinal stromal tumors, gastric cancer, head and neck squamous cell carcinoma (HNSCC), colon cancer, pancreatic ductal adenocarcinoma, and esophageal cancer. Furthermore, overexpression of TMEM16A is related to the occurrence, proliferation, and migration of tumor cells. To date, several studies have shown that many natural compounds and synthetic compounds have regulatory effects on TMEM16A. These small molecule compounds might be novel drugs for the treatment of diseases caused by TMEM16A dysfunction in the future. In addition, recent studies have shown that TMEM16A plays different roles in different diseases through different signal transduction pathways. This review discusses the topology, electrophysiological properties, modulators and functions of TMEM16A in mediates nociception, gastrointestinal dysfunction, hypertension, and cancer and focuses on multiple regulatory mechanisms regarding TMEM16A.
Collapse
Affiliation(s)
- Qiushuang Ji
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Shuai Guo
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Xuzhao Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Chunli Pang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yong Zhan
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| |
Collapse
|
42
|
Maduro MR. A Potentially New Tocolytic Agent. Reprod Sci 2018; 25:1529-1530. [PMID: 30326820 DOI: 10.1177/1933719118802730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Fujimoto M, Kito H, Kajikuri J, Ohya S. Transcriptional repression of human epidermal growth factor receptor 2 by ClC-3 Cl - /H + transporter inhibition in human breast cancer cells. Cancer Sci 2018; 109:2781-2791. [PMID: 29949674 PMCID: PMC6125433 DOI: 10.1111/cas.13715] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/23/2018] [Indexed: 12/13/2022] Open
Abstract
Recent studies have indicated that the intracellular concentration of chloride ions (Cl−) regulates gene expression in several types of cells and that Cl− modulators positively or negatively regulate the PI3K/AKT/mammalian target of rapamycin (mTOR) and signal transducer and activator of transcription (STAT)3 signaling pathways. We previously reported that the Ca2+‐activated Cl− channel anoctamine (ANO)1 regulated human epidermal growth factor receptor 2 (HER2) transcription in breast cancer YMB‐1 cells. However, the mechanisms underlying ANO1‐regulated HER2 gene expression have not yet been elucidated. In the present study, we showed the involvement of intracellular organelle ClC‐3 Cl−/H+ transporter in HER2 transcription in breast cancer MDA‐MB‐453 cells. The siRNA‐mediated inhibition of ClC‐3, but not ANO1, markedly repressed HER2 transcription in MDA‐MB‐453 cells. Subsequently, treatments with the AKT inhibitor AZD 5363 and mTOR inhibitor everolimus significantly enhanced HER2 transcription in MDA‐MB‐453 cells, whereas that with the STAT3 inhibitor 5,15‐diphenylporphyrin (5,15‐DPP) inhibited it. AKT and mTOR inhibitors also significantly enhanced HER2 transcription in YMB‐1 cells. The siRNA‐mediated inhibition of ClC‐3 and ANO1 resulted in increased AKT phosphorylation and decreased STAT3 phosphorylation in MDA‐MB‐453 and YMB‐1 cells, respectively. The intracellular Cl− channel protein CLIC1 was expressed in both cells; however, its siRNA‐mediated inhibition did not elicit the transcriptional repression of HER2. Collectively, our results demonstrate that intracellular Cl− regulation by ANO1/ClC‐3 participates in HER2 transcription, mediating the PI3K/AKT/mTOR and/or STAT3 signaling pathway(s) in HER2‐positive breast cancer cells, and support the potential of ANO1/ClC‐3 blockers as therapeutic options for patients with resistance to anti‐HER2 therapies.
Collapse
Affiliation(s)
- Mayu Fujimoto
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.,Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
44
|
Falzone ME, Malvezzi M, Lee BC, Accardi A. Known structures and unknown mechanisms of TMEM16 scramblases and channels. J Gen Physiol 2018; 150:933-947. [PMID: 29915161 PMCID: PMC6028493 DOI: 10.1085/jgp.201711957] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022] Open
Abstract
Falzone et al. interpret the mechanisms underlying the activity of TMEM16 family members from recent structural and functional work. The TMEM16 family of membrane proteins is composed of both Ca2+-gated Cl− channels and Ca2+-dependent phospholipid scramblases. The functional diversity of TMEM16s underlies their involvement in numerous signal transduction pathways that connect changes in cytosolic Ca2+ levels to cellular signaling networks. Indeed, defects in the function of several TMEM16s cause a variety of genetic disorders, highlighting their fundamental pathophysiological importance. Here, we review how our mechanistic understanding of TMEM16 function has been shaped by recent functional and structural work. Remarkably, the recent determination of near-atomic-resolution structures of TMEM16 proteins of both functional persuasions has revealed how relatively minimal rearrangements in the substrate translocation pathway are sufficient to precipitate the dramatic functional differences that characterize the family. These structures, when interpreted in the light of extensive functional analysis, point to an unusual mechanism for Ca2+-dependent activation of TMEM16 proteins in which substrate permeation is regulated by a combination of conformational rearrangements and electrostatics. These breakthroughs pave the way to elucidate the mechanistic bases of ion and lipid transport by the TMEM16 proteins and unravel the molecular links between these transport activities and their function in human pathophysiology.
Collapse
Affiliation(s)
- Maria E Falzone
- Department of Biochemistry, Weill Cornell Medical School, New York, NY
| | - Mattia Malvezzi
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY
| | - Byoung-Cheol Lee
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY
| | - Alessio Accardi
- Department of Biochemistry, Weill Cornell Medical School, New York, NY .,Department of Anesthesiology, Weill Cornell Medical School, New York, NY.,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical School, New York, NY
| |
Collapse
|
45
|
Münch J, Billig G, Hübner CA, Leinders-Zufall T, Zufall F, Jentsch TJ. Ca 2+-activated Cl - currents in the murine vomeronasal organ enhance neuronal spiking but are dispensable for male-male aggression. J Biol Chem 2018; 293:10392-10403. [PMID: 29769308 DOI: 10.1074/jbc.ra118.003153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/06/2018] [Indexed: 01/11/2023] Open
Abstract
Ca2+-activated Cl- currents have been observed in many physiological processes, including sensory transduction in mammalian olfaction. The olfactory vomeronasal (or Jacobson's) organ (VNO) detects molecular cues originating from animals of the same species or from predators. It then triggers innate behaviors such as aggression, mating, or flight. In the VNO, Ca2+-activated Cl- channels (CaCCs) are thought to amplify the initial pheromone-evoked receptor potential by mediating a depolarizing Cl- efflux. Here, we confirmed the co-localization of the Ca2+-activated Cl- channels anoctamin 1 (Ano1, also called TMEM16A) and Ano2 (TMEM16B) in microvilli of apically and basally located vomeronasal sensory neurons (VSNs) and their absence in supporting cells of the VNO. Both channels were expressed as functional isoforms capable of giving rise to Ca2+-activated Cl- currents. Although these currents persisted in the VNOs of mice lacking Ano2, they were undetectable in olfactory neuron-specific Ano1 knockout mice irrespective of the presence of Ano2 The loss of Ca2+-activated Cl- currents resulted in diminished spontaneous and drastically reduced pheromone-evoked spiking of VSNs. Although this indicated an important role of anoctamin channels in VNO signal amplification, the lack of this amplification did not alter VNO-dependent male-male territorial aggression in olfactory Ano1/Ano2 double knockout mice. We conclude that Ano1 mediates the bulk of Ca2+-activated Cl- currents in the VNO and that Ano2 plays only a minor role. Furthermore, vomeronasal signal amplification by CaCCs appears to be dispensable for the detection of male-specific pheromones and for near-normal aggressive behavior in mice.
Collapse
Affiliation(s)
- Jonas Münch
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie, D-13125 Berlin, Germany.,the Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany.,the Graduate Program, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Gwendolyn Billig
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie, D-13125 Berlin, Germany.,the Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany
| | - Christian A Hübner
- Institut für Humangenetik, Universitätsklinikum Jena, D-07747 Jena, Germany
| | - Trese Leinders-Zufall
- the Center for Integrative Physiology and Molecular Medicine, Saarland University, D-66421 Homburg, Germany, and
| | - Frank Zufall
- the Center for Integrative Physiology and Molecular Medicine, Saarland University, D-66421 Homburg, Germany, and
| | - Thomas J Jentsch
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie, D-13125 Berlin, Germany, .,the Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany.,the NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, D-10117 Berlin, Germany
| |
Collapse
|
46
|
Di Zanni E, Gradogna A, Scholz-Starke J, Boccaccio A. Gain of function of TMEM16E/ANO5 scrambling activity caused by a mutation associated with gnathodiaphyseal dysplasia. Cell Mol Life Sci 2018; 75:1657-1670. [PMID: 29124309 PMCID: PMC5897490 DOI: 10.1007/s00018-017-2704-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/10/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022]
Abstract
Mutations in the human TMEM16E (ANO5) gene are associated both with the bone disease gnathodiaphyseal dysplasia (GDD; OMIM: 166260) and muscle dystrophies (OMIM: 611307, 613319). However, the physiological function of TMEM16E has remained unclear. We show here that human TMEM16E, when overexpressed in mammalian cell lines, displayed partial plasma membrane localization and gave rise to phospholipid scrambling (PLS) as well as non-selective ionic currents with slow time-dependent activation at highly depolarized membrane potentials. While the activity of wild-type TMEM16E depended on elevated cytosolic Ca2+ levels, a mutant form carrying the GDD-causing T513I substitution showed PLS and large time-dependent ion currents even at low cytosolic Ca2+ concentrations. Contrarily, mutation of the homologous position in the Ca2+-activated Cl- channel TMEM16B paralog hardly affected its function. In summary, these data provide the first direct demonstration of Ca2+-dependent PLS activity for TMEM16E and suggest a gain-of-function phenotype related to a GDD mutation.
Collapse
Affiliation(s)
- Eleonora Di Zanni
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149, Genova, Italy
| | - Antonella Gradogna
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149, Genova, Italy
| | - Joachim Scholz-Starke
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149, Genova, Italy.
| | - Anna Boccaccio
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149, Genova, Italy.
| |
Collapse
|
47
|
Boisseau P, Bene MC, Besnard T, Pachchek S, Giraud M, Talarmain P, Robillard N, Gourlaouen MA, Bezieau S, Fouassier M. A new mutation of ANO6 in two familial cases of Scott syndrome. Br J Haematol 2018; 180:750-752. [PMID: 27879994 DOI: 10.1111/bjh.14439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Pierre Boisseau
- Service de Génétique médicale, CHU de Nantes, Nantes, France
| | - Marie C Bene
- Service d'Hématologie biologique, CHU de Nantes, Nantes, France
| | - Thomas Besnard
- Service de Génétique médicale, CHU de Nantes, Nantes, France
| | | | - Mathilde Giraud
- Service de Génétique médicale, CHU de Nantes, Nantes, France
| | | | - Nelly Robillard
- Service d'Hématologie biologique, CHU de Nantes, Nantes, France
| | | | | | - Marc Fouassier
- Service d'Hématologie biologique, CHU de Nantes, Nantes, France
- Centre de Traitement de l'Hémophilie, CHU de Nantes, Nantes, France
| |
Collapse
|
48
|
Contribution of TMEM16F to pyroptotic cell death. Cell Death Dis 2018; 9:300. [PMID: 29463790 PMCID: PMC5833444 DOI: 10.1038/s41419-018-0373-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 02/08/2023]
Abstract
Pyroptosis is a highly inflammatory form of programmed cell death that is caused by infection with intracellular pathogens and activation of canonical or noncanonical inflammasomes. The purinergic receptor P2X7 is activated by the noncanonical inflammasome and contributes essentially to pyroptotic cell death. The Ca2+ activated phospholipid scramblase and ion channel TMEM16F has been shown earlier to control cellular effects downstream of purinergic P2X7 receptors that ultimately lead to cell death. As pyroptotic cell death is accompanied by an increases in intracellular Ca2+, we asked whether TMEM16F is activated during pyroptosis. The N-terminal cleavage product of gasdermin D (GD-N) is an executioner of pyroptosis by forming large plasma membrane pores. Expression of GD-N enhanced basal Ca2+ levels and induced cell death. We observed that GD-N induced cell death in HEK293 and HAP1 cells, which was depending on expression of endogenous TMEM16F. GD-N activated large whole cell currents that were suppressed by knockdown or inhibition of TMEM16F. The results suggest that whole cell currents induced by the pore forming domain of gasdermin-D, are at least in part due to activation of TMEM16F. Knockdown of other TMEM16 paralogues expressed in HAP1 cells suggest TMEM16F as a crucial element during pyroptosis and excluded a role of other TMEM16 proteins. Thus TMEM16F supports pyroptosis and other forms of inflammatory cell death such as ferroptosis. Its potent inhibition by tannic acid may be part of the anti-inflammatory effects of flavonoids.
Collapse
|
49
|
Pelz T, Drose DR, Fleck D, Henkel B, Ackels T, Spehr M, Neuhaus EM. An ancestral TMEM16 homolog from Dictyostelium discoideum forms a scramblase. PLoS One 2018; 13:e0191219. [PMID: 29444117 PMCID: PMC5812556 DOI: 10.1371/journal.pone.0191219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/29/2017] [Indexed: 01/11/2023] Open
Abstract
TMEM16 proteins are a recently identified protein family comprising Ca2+-activated Cl- channels that generate outwardly rectifying ionic currents in response to intracellular Ca2+ elevations. Some TMEM16 family members, such as TMEM16F/ANO6 are also essential for Ca2+-dependent phospholipid scrambling. TMEM16-like genes are present in the genomes of most eukaryotic species, the function(s) of TMEM16 family members from evolutionary ancient eukaryotes is not completely clear. Here, we provide insight into the evolution of these TMEM16 proteins by similarity searches for ancestral sequences. All eukaryotic genomes contain TMEM16 homologs, but only vertebrates have the full repertoire of ten distinct subtypes. TMEM16 homologs studied so far belong to the opisthokont branch of the phylogenetic tree, which includes the animal and fungal kingdoms. An organism outside this group is Dictyostelium discoideum, a representative of the amoebozoa group that diverged from the metazoa before fungi. We here functionally investigated the TMEM16 family member from Dictyostelium discoideum. When recombinantly expressed in HEK293 cells, DdTMEM16 induces phospholipid scrambling. However, in several electrophysiological experiments we did not find evidence for a Ca2+-activated Cl- channel function of DdTMEM16.
Collapse
Affiliation(s)
- Thomas Pelz
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela R. Drose
- Department of Chemosensation, Institute for Biology II, RWTH-Aachen University, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH-Aachen University, Aachen, Germany
| | - Bastian Henkel
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Ackels
- Department of Chemosensation, Institute for Biology II, RWTH-Aachen University, Aachen, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH-Aachen University, Aachen, Germany
| | - Eva M. Neuhaus
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
50
|
Schreiber R, Ousingsawat J, Wanitchakool P, Sirianant L, Benedetto R, Reiss K, Kunzelmann K. Regulation of TMEM16A/ANO1 and TMEM16F/ANO6 ion currents and phospholipid scrambling by Ca 2+ and plasma membrane lipid. J Physiol 2018; 596:217-229. [PMID: 29134661 PMCID: PMC5767690 DOI: 10.1113/jp275175] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS TMEM16 proteins can operate as Ca2+ -activated Cl- channels or scramble membrane phospholipids, which are both highly relevant mechanisms during disease. Overexpression of TMEM16A and TMEM16F were found to be partially active at 37°C and at resting intracellular Ca2+ concentrations. We show that TMEM16 Cl- currents and phospholipid scrambling can be activated by modification of plasma membrane phospholipids, through reactive oxygen species and phospholipase A2. While phospholipids and Cl- ions are likely to use the same pore within TMEM16F, TMEM16A only conducts Cl- ions. Lipid regulation of TMEM16 proteins is highly relevant during inflammation and regulated cell death such as apoptosis and ferroptosis. ABSTRACT TMEM16/anoctamin (ANO) proteins form Ca2+ -activated ion channels or phospholipid scramblases. We found that both TMEM16A/ANO1 and TMEM16F/ANO6 produced Cl- currents when activated by intracellular Ca2+ , but only TMEM16F was able to expose phosphatidylserine to the outer leaflet of the plasma membrane. Mutations within TMEM16F or TMEM16A/F chimeras similarly changed Cl- currents and phospholipid scrambling, suggesting the same intramolecular pathway for Cl- and phospholipids. When overexpressed, TMEM16A and TMEM16F produced spontaneous Cl- currents at 37°C even at resting intracellular Ca2+ levels, which was abolished by inhibition of phospholipase A2 (PLA2 ). Connversely, activation of PLA2 or application of active PLA2 , as well as lipid peroxidation induced by reactive oxygen species (ROS) using staurosporine or tert-butyl hydroperoxide, enhanced ion currents by TMEM16A/F and in addition activated phospholipid scrambling by TMEM16F. Thus, TMEM16 proteins are activated by an increase in intracellular Ca2+ , or independent of intracellular Ca2+ , by modifications occurring in plasma and intracellular membrane phospholipids. These results may help to explain why regions distant to the TMEM16 pore and the Ca2+ binding sites control Cl- currents and phospholipid scrambling. Regulation of TMEM16 proteins through modification of membrane phospholipids occurs during regulated cell death such as apoptosis and ferroptosis. It contributes to inflammatory and nerve injury-induced hypersensitivity and generation of pain and therefore provides a regulatory mechanism that is particularly relevant during disease.
Collapse
Affiliation(s)
- Rainer Schreiber
- Institut für PhysiologieUniversität RegensburgUniversitätsstraße 31D‐93053RegensburgGermany
| | - Jiraporn Ousingsawat
- Institut für PhysiologieUniversität RegensburgUniversitätsstraße 31D‐93053RegensburgGermany
| | | | - Lalida Sirianant
- Institut für PhysiologieUniversität RegensburgUniversitätsstraße 31D‐93053RegensburgGermany
| | - Roberta Benedetto
- Institut für PhysiologieUniversität RegensburgUniversitätsstraße 31D‐93053RegensburgGermany
| | - Karina Reiss
- Department of DermatologyUniversity of KielSchittenhelmstrasse 7Kiel24105Germany
| | - Karl Kunzelmann
- Institut für PhysiologieUniversität RegensburgUniversitätsstraße 31D‐93053RegensburgGermany
| |
Collapse
|