1
|
Chen T, Zhou H, Yuan S, Deng X, Li Y, Chen N, You J, Li R, Li T, Zheng Y, Luo M, Lv H, Wu J, Wang L. Glycation of fibronectin impairs angiopoietin-1/Tie-2 signaling through uncoupling Tie-2-α5β1 integrin crosstalk. Cell Signal 2023; 112:110916. [PMID: 37806542 DOI: 10.1016/j.cellsig.2023.110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The dysfunction of angiopoietin-1 (Ang-1)/Tie-2 signaling pathways has been implicated in diabetic complications. However, the underlying molecular mechanisms remain unclear. Fibronectin (FN) is thought to have an important role in regulating Ang-1/Tie-2 signaling activation. But no previous study has investigated the effects of FN glycation on Ang-1/Tie-2 signaling. In the present study, FN was glycated by methylglyoxal (MGO) to investigate whether the glycation of FN contributes to diabetes-induced Ang-1/Tie-2 signaling impairment and to understand the molecular mechanisms involved. The results demonstrated that MGO-glycated FN significantly impaired Ang-1-evoked phosphorylation of Tie-2 and Akt, Ang-1-induced endothelial cell migration and tube formation and Ang-1-mediated cell survival. The glycation of FN also inhibited the binding of α5β1 integrin to Tie-2. Moreover, FN was remarkably modified by AGEs in aortae derived from db/db mice, indicating the glycation of FN in vivo. Ang-1-induced aortic ring vessel outgrowth and Ang-1-mediated cell survival were also both significantly inhibited in aortae from db/db mice compared to that from the wild type littermates. Moreover, FN, rather than glycated FN partly restored aortic ring angiogenesis in db/db mice, indicating that the angiogenesis defect in the db/db mice are due to FN glycation. Collectively, the results in the present study suggest that the glycation of FN impairs Ang-1/Tie-2 signaling pathway by uncoupling Tie-2-α5β1 integrin crosstalk. This may provide a mechanism for Ang-1/Tie-2 signaling dysfunction and angiogenesis failure in diabetic ischaemic diseases.
Collapse
Affiliation(s)
- Tangting Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Haiyan Zhou
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Shuangshuang Yuan
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Xin Deng
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Yongjie Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Ni Chen
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Jingcan You
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Rong Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Tian Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Hongbin Lv
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jianbo Wu
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China.
| | - Liqun Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China; Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China.
| |
Collapse
|
2
|
Maldonado H, Leyton L. CSK-mediated signalling by integrins in cancer. Front Cell Dev Biol 2023; 11:1214787. [PMID: 37519303 PMCID: PMC10382208 DOI: 10.3389/fcell.2023.1214787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Cancer progression and metastasis are processes heavily controlled by the integrin receptor family. Integrins are cell adhesion molecules that constitute the central components of mechanosensing complexes called focal adhesions, which connect the extracellular environment with the cell interior. Focal adhesions act as key players in cancer progression by regulating biological processes, such as cell migration, invasion, proliferation, and survival. Src family kinases (SFKs) can interplay with integrins and their downstream effectors. SFKs also integrate extracellular cues sensed by integrins and growth factor receptors (GFR), transducing them to coordinate metastasis and cell survival in cancer. The non-receptor tyrosine kinase CSK is a well-known SFK member that suppresses SFK activity by phosphorylating its specific negative regulatory loop (C-terminal Y527 residue). Consequently, CSK may play a pivotal role in tumour progression and suppression by inhibiting SFK oncogenic effects in several cancer types. Remarkably, CSK can localise near focal adhesions when SFKs are activated and even interact with focal adhesion components, such as phosphorylated FAK and Paxillin, among others, suggesting that CSK may regulate focal adhesion dynamics and structure. Even though SFK oncogenic signalling has been extensively described before, the specific role of CSK and its crosstalk with integrins in cancer progression, for example, in mechanosensing, remain veiled. Here, we review how CSK, by regulating SFKs, can regulate integrin signalling, and focus on recent discoveries of mechanotransduction. We additionally examine the cross talk of integrins and GFR as well as the membrane availability of these receptors in cancer. We also explore new pharmaceutical approaches to these signalling pathways and analyse them as future therapeutic targets.
Collapse
Affiliation(s)
- Horacio Maldonado
- Receptor Dynamics in Cancer Laboratory, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Kim JH, Kim S, Han S, Ahn EK, Cho YR, Jeong W, Kim SJ, Bae GU, Oh JS, Seo DW. Broussonin A- and B-mediated inhibition of angiogenesis by blockade of VEGFR-2 signalling pathways and integrin β1 expression. J Cell Mol Med 2022; 26:1194-1205. [PMID: 34994065 PMCID: PMC8831976 DOI: 10.1111/jcmm.17173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022] Open
Abstract
In the present study, we demonstrate the regulatory effects and mechanism of broussonin A and B, diphenylpropane derivatives isolated from Broussonetia kazinoki, on vascular endothelial growth factor‐A (VEGF‐A)–stimulated endothelial cell responses in vitro and microvessel sprouting ex vivo. Treatment with broussonin A or B suppressed VEGF‐A‐stimulated endothelial cell proliferation by regulating the expression of cell cycle–related proteins and the phosphorylation status of retinoblastoma protein. In addition, treatment with broussonin A or B abrogated VEGF‐A‐stimulated angiogenic responses including endothelial cell migration, invasion, tube formation and microvessel formation from rat aortic rings. These anti‐angiogenic activities of broussonin A and B were mediated through inactivation of VEGF‐A‐stimulated downstream signalling pathways, localization of vascular endothelial‐cadherin at cell‐cell contacts, and down‐regulation of integrin β1 and integrin‐liked kinase. Furthermore, treatment with broussonin A or B inhibited proliferation and invasion of non–small cell lung cancer and ovarian cancer cells. Taken together, our findings suggest the pharmacological potential of broussonin A and B in the regulation of angiogenesis, cancer cell growth and progression.
Collapse
Affiliation(s)
- Jae Hyeon Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Sunho Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Surim Han
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Eun-Kyung Ahn
- Biocenter, Gyeonggi Business & Science Accelerator, Suwon, Republic of Korea
| | - Young-Rak Cho
- Biocenter, Gyeonggi Business & Science Accelerator, Suwon, Republic of Korea
| | - Wonsik Jeong
- Biocenter, Gyeonggi Business & Science Accelerator, Suwon, Republic of Korea
| | - Sung Joon Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Gyu-Un Bae
- Department of Pharmacy, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Joa Sub Oh
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Dong-Wan Seo
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
4
|
|
5
|
Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration. Prog Retin Eye Res 2021; 85:100966. [PMID: 33775825 DOI: 10.1016/j.preteyeres.2021.100966] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Integrins are a class of transmembrane receptors that are involved in a wide range of biological functions. Dysregulation of integrins has been implicated in many pathological processes and consequently, they are attractive therapeutic targets. In the ophthalmology arena, there is extensive evidence suggesting that integrins play an important role in diabetic retinopathy (DR), age-related macular degeneration (AMD), glaucoma, dry eye disease and retinal vein occlusion. For example, there is extensive evidence that arginyl-glycyl-aspartic acid (Arg-Gly-Asp; RGD)-binding integrins are involved in key disease hallmarks of DR and neovascular AMD (nvAMD), specifically inflammation, vascular leakage, angiogenesis and fibrosis. Based on such evidence, drugs that engage integrin-linked pathways have received attention for their potential to block all these vision-threatening pathways. This review focuses on the pathophysiological role that RGD-binding integrins can have in complex multifactorial retinal disorders like DR, diabetic macular edema (DME) and nvAMD, which are leading causes of blindness in developed countries. Special emphasis will be given on how RGD-binding integrins can modulate the intricate molecular pathways and regulate the underlying pathological mechanisms. For instance, the interplay between integrins and key molecular players such as growth factors, cytokines and enzymes will be summarized. In addition, recent clinical advances linked to targeting RGD-binding integrins in the context of DME and nvAMD will be discussed alongside future potential for limiting progression of these diseases.
Collapse
|
6
|
Ahmed I, Sozmen M. Expression of PDGF-A, PDGFRA, integrin subunit alpha V and selectin E is increased in canine cutaneous fibrosarcomas. Biotech Histochem 2020; 96:546-554. [PMID: 33034211 DOI: 10.1080/10520295.2020.1832256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We investigated the expression of platelet derived growth factor alpha (PDGFA); its receptor, PDGFRA; integrin subunit alpha V; and selectin E in cutaneous fibrosarcomas in dogs. Ten cases of canine fibrosarcomas were obtained from the archive of the Department of Pathology, Ondokuz Mayis University, Samsun. Tissue sections were cut and stained with hematoxylin and eosin, Alcian blue-periodic acid Schiff, Masson's trichrome, and also immunostained. Eight tumors classified as spontaneous fibrosarcomas exhibited interwoven bundles of spindle shaped cells with oval to plump nuclei and scant cytoplasm, while two tumors exhibited features of injection site fibrosarcoma with peripheral infiltration of mononuclear cells and intratumor necrosis. We found that neoplastic cells from all cases exhibited cytoplasmic expression of PDGFA, and cytoplasmic and nuclear staining for PDGFRA. Integrin subunit alpha V immunostaining was observed in all cases, while selectin E expression was observed in vascular endothelial cells and neoplastic cells. A significant positive correlation was found between the expression of PDGFA and integrin subunit alpha V. Our findings indicate that PDGFA, PDGFRA, integrin subunit alpha V and selectin E are expressed strongly in canine cutaneous fibrosarcomas and may contribute to tumor progression.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- Department of Pathology, University of Veterinary and Animal Sciences , Lahore, Pakistan
| | - Mahmut Sozmen
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University , Samsun, Turkey
| |
Collapse
|
7
|
The Psoriasis Therapeutic Potential of a Novel Short Laminin Peptide C16. Int J Mol Sci 2019; 20:ijms20133144. [PMID: 31252620 PMCID: PMC6651782 DOI: 10.3390/ijms20133144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 01/18/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by excessive growth of keratinocytes and hyperkeratosis in the epidermis. An abnormality of the non-lesional epidermis at an early stage of psoriasis is involved in triggering inflammatory cell infiltration into the dermis. Integrin α5β1 acts as a receptor for fibronectin and has been found to be overexpressed in non-lesional psoriatic epidermis. To investigate whether α5β1 integrin has a potential as a drug target for psoriasis treatment, the α5β1 integrin-binding peptide, C16, was used to obstruct the HaCat keratinocyte cellular responses induced by fibronectin (Fn) in culture and psoriasis-like skin inflammation induced in mice by imiquimod (IMQ). The C16 exhibited antagonistic activity against α5β1 integrin in HaCat cells, with evidence of suppression of the Fn-mediated proliferative, cytoskeletal, and inflammatory responses. Topical treatment with C16 greatly reduced the IMQ-induced epidermal hyperplasia, infiltration of neutrophils/macrophages, and expression of pro-inflammatory mediators in mouse skin. The C16SP (C16-derived short peptide; DITYVRLKF) also exhibited antagonistic activity, suppressing α5β1 integrin activity in culture, and reducing IMQ-induced skin inflammation. Taken together, this study provides the first evidence that α5β1 integrin may be a potential drug target for psoriasis. The synthetic C16 peptide may serve as an agent for psoriasis therapy.
Collapse
|
8
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
9
|
Bazzazi H, Zhang Y, Jafarnejad M, Popel AS. Computational modeling of synergistic interaction between αVβ3 integrin and VEGFR2 in endothelial cells: Implications for the mechanism of action of angiogenesis-modulating integrin-binding peptides. J Theor Biol 2018; 455:212-221. [PMID: 30036530 DOI: 10.1016/j.jtbi.2018.06.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/13/2018] [Accepted: 06/25/2018] [Indexed: 01/06/2023]
Abstract
Cooperation between VEGFR2 and integrin αVβ3 is critical for neovascularization in wound healing, cardiovascular ischemic diseases, ocular diseases, and tumor angiogenesis. In the present study, we developed a rule-based computational model to investigate the potential mechanism by which the Src-induced integrin association with VEGFR2 enhances VEGFR2 activation. Simulations demonstrated that the main function of integrin is to reduce the degradation of VEGFR2 and hence stabilize the activation signal. In addition, receptor synthesis rate and recruitment from internal compartment were found to be sensitive determinants of the activation state of VEGFR2. The model was then applied to simulate the effect of integrin-binding peptides such as tumstatin and cilengitide on VEGFR2 signaling. Further, computational modeling proposed potential molecular mechanisms for the angiogenesis-modulating activity of other integrin-binding peptides. The model highlights the complexity of the crosstalk between αVβ3 integrin and VEGFR2 and the necessity of utilizing models to elucidate potential mechanisms in angiogenesis-modulating peptide therapy.
Collapse
Affiliation(s)
- Hojjat Bazzazi
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Yu Zhang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States.
| | - Mohammad Jafarnejad
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
10
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
11
|
Seong J, Huang M, Sim KM, Kim H, Wang Y. FRET-based Visualization of PDGF Receptor Activation at Membrane Microdomains. Sci Rep 2017; 7:1593. [PMID: 28487538 PMCID: PMC5431615 DOI: 10.1038/s41598-017-01789-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 03/31/2017] [Indexed: 11/09/2022] Open
Abstract
Platelet-derived growth factor receptor (PDGFR) senses extracellular growth factors and transfer the signals inside the cells regulating cell proliferation, migration and survival. It has been controversial at which membrane microdomains PDGFRs reside and how they control such diverse intracellular signaling pathways. Here, we developed a novel PDGFR biosensor based on fluorescence resonance energy transfer (FRET), which can detect the real-time PDGFR activity in live cells with high spatiotemporal resolutions. To study subcellular PDGFR activity at membrane microdomains, this PDGFR biosensor was further targeted in or outside lipid rafts via different lipid modification signals. The results suggest that, in response to PDGF stimulation, PDGFR activity is evenly distributed at different membrane microdomains, while integrin-mediated signaling events have inhibitory effects on the activation of PDGFR specifically located in lipid rafts but not outside rafts, implying the role of lipid microdomains as segregated signaling platforms.
Collapse
Affiliation(s)
- Jihye Seong
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA. .,Convergence Research Center for Diagnosis Treatment Care of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea. .,Biological Chemistry Program, Korea University of Science and Technology (UST), Daejeon, 34113, South Korea. .,Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, South Korea.
| | - Min Huang
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kyoung Mi Sim
- Convergence Research Center for Diagnosis Treatment Care of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Hyunbin Kim
- Convergence Research Center for Diagnosis Treatment Care of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.,Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, South Korea
| | - Yingxiao Wang
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Bioengineering, University of California, San Diego, CA, 92093, USA.
| |
Collapse
|
12
|
Interaction of Src and Alpha-V Integrin Regulates Fibroblast Migration and Modulates Lung Fibrosis in A Preclinical Model of Lung Fibrosis. Sci Rep 2017; 7:46357. [PMID: 28397850 PMCID: PMC5387740 DOI: 10.1038/srep46357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/15/2017] [Indexed: 01/01/2023] Open
Abstract
Src kinase is known to regulate fibroblast migration. However, the contribution of integrin and Src kinase interaction to lung fibrosis has not been mechanistically investigated. Our data demonstrate that integrin alpha v (αV) recruited Src kinase and that leads to subsequent Src activation in fibroblasts plated on fibrotic matrix, osteopontin. Src interaction with integrin αV is required for integrin αV-mediated Src activation, and the subsequent fibroblast migration. The study identified that β5 and β3 are the major integrins for this effect on osteopontin. In contrast, integrins β1, β6, and β8 did not have a critical role in this phenomenon. Importantly, Src inhibitor significantly reduces fibroblast migration stimulated by PDGF-BB and reduced in vivo lung fibrosis in mice. Src inhibitor reduced Src activation and blocked the signaling transduction by integrin αV, inhibited migration signaling pathways and reduced extracellular matrix protein production, and blocked myofibroblast differentiation in vivo in mouse lung tissues. The present study supports that the interaction of Src Kinase and integrins plays a critical role in the development of lung fibrosis and the signaling involved may present a novel opportunity to target deadly fibrotic diseases.
Collapse
|
13
|
Singh A, Fedele C, Lu H, Nevalainen MT, Keen JH, Languino LR. Exosome-mediated Transfer of αvβ3 Integrin from Tumorigenic to Nontumorigenic Cells Promotes a Migratory Phenotype. Mol Cancer Res 2016; 14:1136-1146. [PMID: 27439335 DOI: 10.1158/1541-7786.mcr-16-0058] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/13/2016] [Accepted: 07/03/2016] [Indexed: 12/20/2022]
Abstract
The αvβ3 integrin is known to be highly upregulated during cancer progression and promotes a migratory and metastatic phenotype in many types of tumors. We hypothesized that the αvβ3 integrin is transferred through exosomes and, upon transfer, has the ability to support functional aberrations in recipient cells. Here, for the first time, it is demonstrated that αvβ3 is present in exosomes released from metastatic PC3 and CWR22Pc prostate cancer cells. Exosomal β3 is transferred as a protein from donor to nontumorigenic and tumorigenic cells as β3 protein or mRNA levels remain unaffected upon transcription or translation inhibition in recipient cells. Furthermore, it is shown that upon exosome uptake, de novo expression of an αvβ3 increases adhesion and migration of recipient cells on an αvβ3 ligand, vitronectin. To evaluate the relevance of these findings, exosomes were purified from the blood of TRAMP mice carrying tumors where the expression of αvβ3 is found higher than in exosomes from wild-type mice. In addition, it is demonstrated that αvβ3 is coexpressed with synaptophysin, a biomarker for aggressive neuroendocrine prostate cancer. IMPLICATIONS Overall this study reveals that the αvβ3 integrin is transferred from tumorigenic to nontumorigenic cells via exosomes, and its de novo expression in recipient cells promotes cell migration on its ligand. The increased expression of αvβ3 in exosomes from mice bearing tumors points to its clinical relevance and potential use as a biomarker. Mol Cancer Res; 14(11); 1136-46. ©2016 AACR.
Collapse
Affiliation(s)
- Amrita Singh
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Carmine Fedele
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Huimin Lu
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marja T Nevalainen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - James H Keen
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. .,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Zhao XK, Cheng Y, Liang Cheng M, Yu L, Mu M, Li H, Liu Y, Zhang B, Yao Y, Guo H, Wang R, Zhang Q. Focal Adhesion Kinase Regulates Fibroblast Migration via Integrin beta-1 and Plays a Central Role in Fibrosis. Sci Rep 2016; 6:19276. [PMID: 26763945 PMCID: PMC4725867 DOI: 10.1038/srep19276] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/29/2015] [Indexed: 11/09/2022] Open
Abstract
Lung fibrosis is a major medical problem for the aging population worldwide. Fibroblast migration plays an important role in fibrosis. Focal Adhesion Kinase (FAK) senses the extracellular stimuli and initiates signaling cascades that promote cell migration. This study first examined the dose and time responses of FAK activation in human lung fibroblasts treated with platelet derived growth factor BB (PDGF-BB). The data indicate that FAK is directly recruited by integrin β1 and the subsequent FAK activation is required for fibroblast migration on fibronectin. In addition, the study has identified that α5β1 and α4β1 are the major integrins for FAK-mediated fibroblast migration on fibronect. In contrast, integrins αvβ3, αvβ6, and αvβ8 play a minor but distinct role in fibroblast migration on fibronectin. FAK inhibitor significantly reduces PDGF-BB stimulated fibroblast migration. Importantly, FAK inhibitor protects bleomycin-induced lung fibrosis in mice. FAK inhibitor blocks FAK activation and significantly reduces signaling cascade of fibroblast migration in bleomycin-challenged mice. Furthermore, FAK inhibitor decreases lung fibrotic score, collagen accumulation, fibronectin production, and myofibroblast differentiation in in bleomycin-challenged mice. These data demonstrate that FAK mediates fibroblast migration mainly via integrin β1. Furthermore, the findings suggest that targeting FAK signaling is an effective therapeutic strategy against fibrosis.
Collapse
Affiliation(s)
- Xue-Ke Zhao
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Yiju Cheng
- Department of Infectious Diseases, the First Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Ming Liang Cheng
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Lei Yu
- Prenatal Diagnostic Center, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Mao Mu
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Hong Li
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Yang Liu
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Baofang Zhang
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Yumei Yao
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Hui Guo
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Rong Wang
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Quan Zhang
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
15
|
Tissue inhibitor of metalloproteinase-3 (TIMP3) promotes endothelial apoptosis via a caspase-independent mechanism. Apoptosis 2016; 20:523-34. [PMID: 25558000 DOI: 10.1007/s10495-014-1076-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tissue inhibitor of metalloproteinases-3 (TIMP3) is a tumor suppressor and a potent inhibitor of angiogenesis. TIMP3 exerts its anti-angiogenic effect via a direct interaction with vascular endothelial growth factor (VEGF) receptor-2 (KDR) and inhibition of proliferation, migration and tube formation of endothelial cells (ECs). TIMP3 has also been shown to induce apoptosis in some cancer cells and vascular smooth muscle cells via MMP inhibition and caspase-dependent mechanisms. In this study, we examined the molecular mechanisms of TIMP3-mediated apoptosis in endothelial cells. We have previously demonstrated that mice developed smaller tumors with decreased vascularity when injected with breast carcinoma cells overexpressing TIMP3, than with control breast carcinoma cells. TIMP3 overexpression resulted in increased apoptosis in human breast carcinoma (MDA-MB435) in vivo but not in vitro. However, TIMP3 could induce apoptosis in ECs in vitro. The apoptotic activity of TIMP3 in ECs appears to be independent of MMP inhibitory activity. Furthermore, the equivalent expression of functional TIMP3 promoted apoptosis and caspase activation in ECs expressing KDR (PAE/KDR), but not in ECs expressing PDGF beta-receptor (PAE/β-R). Surprisingly, the apoptotic activity of TIMP3 appears to be independent of caspases. TIMP3 inhibited matrix-induced focal adhesion kinase (FAK) tyrosine phosphorylation and association with paxillin and disrupted the incorporation of β3 integrin, FAK and paxillin into focal adhesion contacts on the matrix, which were not affected by caspase inhibitors. Thus, TIMP3 may induce apoptosis in ECs by triggering a caspase-independent cell death pathway and targeting a FAK-dependent survival pathway.
Collapse
|
16
|
Liu S. Radiolabeled Cyclic RGD Peptide Bioconjugates as Radiotracers Targeting Multiple Integrins. Bioconjug Chem 2015; 26:1413-38. [PMID: 26193072 DOI: 10.1021/acs.bioconjchem.5b00327] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiogenesis is a requirement for tumor growth and metastasis. The angiogenic process depends on vascular endothelial cell migration and invasion, and is regulated by various cell adhesion receptors. Integrins are such a family of receptors that facilitate the cellular adhesion to and migration on extracellular matrix proteins in the intercellular spaces and basement membranes. Among 24 members of the integrin family, αvβ3 is studied most extensively for its role in tumor angiogenesis and metastasis. The αvβ3 is expressed at relatively low levels on epithelial cells and mature endothelial cells, but it is highly expressed on the activated endothelial cells of tumor neovasculature and some tumor cells. This restricted expression makes αvβ3 an excellent target to develop antiangiogenic drugs and diagnostic molecular imaging probes. Since αvβ3 is a receptor for extracellular matrix proteins with one or more RGD tripeptide sequence, many radiolabeled cyclic RGD peptides have been evaluated as "αvβ3-targeted" radiotracers for tumor imaging over the past decade. This article will use the dimeric and tetrameric cyclic RGD peptides developed in our laboratories as examples to illustrate basic principles for development of αvβ3-targeted radiotracers. It will focus on different approaches to maximize the radiotracer tumor uptake and tumor/background ratios. This article will also discuss some important assays for preclinical evaluations of integrin-targeted radiotracers. In general, multimerization of cyclic RGD peptides increases their integrin binding affinity and the tumor uptake and retention times of their radiotracers. Regardless of their multiplicity, the capability of cyclic RGD peptides to bind other integrins (namely, αvβ5, α5β1, α6β4, α4β1, and αvβ6) is expected to enhance the radiotracer tumor uptake due to the increased integrin population. The results from preclinical and clinical studies clearly show that radiolabeled cyclic RGD peptides (such as (99m)Tc-3P-RGD2, (18)F-Alfatide-I, and (18)F-Alfatide-II) are useful as the molecular imaging probes for early cancer detection and noninvasive monitoring of the tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Shuang Liu
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Michaelis UR. Mechanisms of endothelial cell migration. Cell Mol Life Sci 2014; 71:4131-48. [PMID: 25038776 PMCID: PMC11113960 DOI: 10.1007/s00018-014-1678-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/23/2014] [Accepted: 07/07/2014] [Indexed: 01/13/2023]
Abstract
Cell migration plays a central role in a variety of physiological and pathological processes during our whole life. Cellular movement is a complex, tightly regulated multistep process. Although the principle mechanisms of migration follow a defined general motility cycle, the cell type and the context of moving influences the detailed mode of migration. Endothelial cells migrate during vasculogenesis and angiogenesis but also in a damaged vessel to restore vessel integrity. Depending on the situation they migrate individually, in chains or sheets and complex signaling, intercellular signals as well as environmental cues modulate the process. Here, the different modes of cell migration, the peculiarities of endothelial cell migration and specific guidance molecules controlling this process will be reviewed.
Collapse
Affiliation(s)
- U Ruth Michaelis
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany,
| |
Collapse
|
18
|
Lu S, Seong J, Wang Y, Chang SC, Eichorst JP, Ouyang M, Li JYS, Chien S, Wang Y. Decipher the dynamic coordination between enzymatic activity and structural modulation at focal adhesions in living cells. Sci Rep 2014; 4:5756. [PMID: 25056908 PMCID: PMC4108961 DOI: 10.1038/srep05756] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/23/2014] [Indexed: 02/06/2023] Open
Abstract
Focal adhesions (FAs) are dynamic subcellular structures crucial for cell adhesion, migration and differentiation. It remains an enigma how enzymatic activities in these local complexes regulate their structural remodeling in live cells. Utilizing biosensors based on fluorescence resonance energy transfer (FRET), we developed a correlative FRET imaging microscopy (CFIM) approach to quantitatively analyze the subcellular coordination between the enzymatic Src activation and the structural FA disassembly. CFIM reveals that the Src kinase activity only within the microdomain of lipid rafts at the plasma membrane is coupled with FA dynamics. FA disassembly at cell periphery was linearly dependent on this raft-localized Src activity, although cells displayed heterogeneous levels of response to stimulation. Within lipid rafts, the time delay between Src activation and FA disassembly was 1.2 min in cells seeded on low fibronectin concentration ([FN]) and 4.3 min in cells on high [FN]. CFIM further showed that the level of Src-FA coupling, as well as the time delay, was regulated by cell-matrix interactions, as a tight enzyme-structure coupling occurred in FA populations mediated by integrin αvβ₃, but not in those by integrin α₅β₁. Therefore, different FA subpopulations have distinctive regulation mechanisms between their local kinase activity and structural FA dynamics.
Collapse
Affiliation(s)
- Shaoying Lu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093-0435
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jihye Seong
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Current address: Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Yi Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Shiou-chi Chang
- Department of Chemical Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - John Paul Eichorst
- Center of Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, Department of Molecular and Integrative Physiology and, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Mingxing Ouyang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093-0435
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Julie Y.-S. Li
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093-0435
| | - Shu Chien
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093-0435
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093-0435
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Center of Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, Department of Molecular and Integrative Physiology and, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
19
|
Porsch H, Mehić M, Olofsson B, Heldin P, Heldin CH. Platelet-derived growth factor β-receptor, transforming growth factor β type I receptor, and CD44 protein modulate each other's signaling and stability. J Biol Chem 2014; 289:19747-57. [PMID: 24860093 DOI: 10.1074/jbc.m114.547273] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Growth factors, such as platelet-derived growth factor BB (PDGF-BB) and transforming growth factor β (TGFβ), are key regulators of cellular functions, including proliferation, migration, and differentiation. Growth factor signaling is modulated by context-dependent cross-talk between different signaling pathways. We demonstrate in this study that PDGF-BB induces phosphorylation of Smad2, a downstream mediator of the canonical TGFβ pathway, in primary dermal fibroblasts. The PDGF-BB-mediated Smad2 phosphorylation was dependent on the kinase activities of both TGFβ type I receptor (TβRI) and PDGF β-receptor (PDGFRβ), and it was prevented by inhibitory antibodies against TGFβ. Inhibition of the activity of the TβRI kinase greatly reduced the PDGF-BB-dependent migration in dermal fibroblasts. Moreover, we demonstrate that the receptors for PDGF-BB and TGFβ interact physically in primary dermal fibroblasts and that stimulation with PDGF-BB induces internalization not only of PDGFRβ but also of TβRI. In addition, silencing of PDGFRβ by siRNA decreased the stability of TβRI and delayed TGFβ-induced signaling. We further show that the hyaluronan receptor CD44 interacts with both PDGFRβ and TβRI. Depletion of CD44 by siRNA increased signaling via PDGFRβ and TβRI by stabilizing the receptor proteins. Our data suggest that cross-talk between PDGFRβ and TβRI occurs in dermal fibroblasts and that CD44 negatively modulates signaling via these receptors.
Collapse
Affiliation(s)
- Helena Porsch
- From the Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Biomedical Center, Box 595, SE-75124 Uppsala, Sweden
| | - Merima Mehić
- From the Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Biomedical Center, Box 595, SE-75124 Uppsala, Sweden
| | - Berit Olofsson
- From the Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Biomedical Center, Box 595, SE-75124 Uppsala, Sweden
| | - Paraskevi Heldin
- From the Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Biomedical Center, Box 595, SE-75124 Uppsala, Sweden
| | - Carl-Henrik Heldin
- From the Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Biomedical Center, Box 595, SE-75124 Uppsala, Sweden
| |
Collapse
|
20
|
Koohestani F, Braundmeier AG, Mahdian A, Seo J, Bi J, Nowak RA. Extracellular matrix collagen alters cell proliferation and cell cycle progression of human uterine leiomyoma smooth muscle cells. PLoS One 2013; 8:e75844. [PMID: 24040420 PMCID: PMC3770620 DOI: 10.1371/journal.pone.0075844] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 08/22/2013] [Indexed: 12/25/2022] Open
Abstract
Uterine leiomyomas (ULs) are benign tumors occurring in the majority of reproductive aged women. Despite the high prevalence of these tumors, little is known about their etiology. A hallmark of ULs is the excessive deposition of extracellular matrix (ECM), primarily collagens. Collagens are known to modulate cell behavior and function singularly or through interactions with integrins and growth factor-mediated mitogenic pathways. To better understand the pathogenesis of ULs and the role of ECM collagens in their growth, we investigated the interaction of leiomyoma smooth muscle cells (LSMCs) with two different forms of collagen, non-polymerized collagen (monomeric) and polymerized collagen (fibrillar), in the absence or presence of platelet-derived growth factor (PDGF), an abundant growth factor in ULs. Primary cultures of human LSMCS from symptomatic patients were grown on these two different collagen matrices and their morphology, cytoskeletal organization, cellular proliferation, and signaling pathways were evaluated. Our results showed that LSMCs had distinct morphologies on the different collagen matrices and their basal as well as PDGF-stimulated proliferation varied on these matrices. These differences in proliferation were accompanied by changes in cell cycle progression and p21, an inhibitory cell cycle protein. In addition we found alterations in the phosphorylation of focal adhesion kinase, cytoskeletal reorganization, and activation of the mitogen activated protein kinase (MAPK) signaling pathway. In conclusion, our results demonstrate a direct effect of ECM on the proliferation of LSMCs through interplay between the collagen matrix and the PDGF-stimulated MAPK pathway. In addition, these findings will pave the way for identifying novel therapeutic approaches for ULs that target ECM proteins and their signaling pathways in ULs.
Collapse
Affiliation(s)
- Faezeh Koohestani
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | | | | | | | | | | |
Collapse
|
21
|
Mainali D, Smith EA. Select cytoplasmic and membrane proteins increase the percentage of immobile integrins but do not affect the average diffusion coefficient of mobile integrins. Anal Bioanal Chem 2013; 405:8561-8. [DOI: 10.1007/s00216-013-7279-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 12/25/2022]
|
22
|
Ji S, Zhou Y, Voorbach MJ, Shao G, Zhang Y, Fox GB, Albert DH, Luo Y, Liu S, Mudd SR. Monitoring tumor response to linifanib therapy with SPECT/CT using the integrin αvβ3-targeted radiotracer 99mTc-3P-RGD2. J Pharmacol Exp Ther 2013; 346:251-8. [PMID: 23750021 PMCID: PMC3716312 DOI: 10.1124/jpet.112.202622] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/21/2013] [Indexed: 01/17/2023] Open
Abstract
The objective of this study was to determine the utility of (99m)Tc-3P-Arg-Gly-Asp (RGD2) single photon emission computed tomography (SPECT)/computed tomography (CT) for noninvasive monitoring of integrin αvβ3-expression response to antiangiogenic treatment with linifanib. Linifanib or vehicle therapy was carried out in female athymic nu/nu mice bearing U87MG glioma (high αvβ3 expression) or PC-3 prostate (low αvβ3 expression) tumors at 12.5 mg/kg twice daily. The average tumor volume was 180 ± 90 mm(3) the day prior to baseline SPECT/CT. Longitudinal (99m)Tc-3P-RGD2 SPECT/CT imaging was performed at baseline (-1 day) and days 1, 4, 11, and 18. Tumors were harvested at all imaging time points for histopathological analysis with H&E and immunohistochemistry. A significant difference in tumor volumes between vehicle- and linifanib-treated groups was observed after 4 days of linifanib therapy in the U87MG model. The percent injected dose (%ID) tumor uptake of (99m)Tc-3P-RGD2 peaked in the vehicle-treated group at day 11, while the %ID/cm(3) tumor uptake decreased slowly over the whole study period. During the first 2 days of linifanib treatment, a rapid decrease in both %ID/cm(3) tumor uptake and tumor/muscle ratios of (99m)Tc-3P-RGD2 was observed, followed by a slow decrease until day 18. No decrease in tumor uptake of (99m)Tc-3P-RGD2 or tumor volume was observed for either treatment group in the PC-3 model. Changes in tumor vasculature were confirmed by histopathological H&E analysis and immunohistochemistry. Longitudinal imaging using (99m)Tc-3P-RGD2 SPECT/CT may be a useful tool for monitoring the downstream biologic effects of linifanib therapy.
Collapse
Affiliation(s)
- Shundong Ji
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang C, Yang C, Wang R, Jiao Y, Ampah KK, Wang X, Zeng X. c-Abl Kinase Is a Regulator of αvβ3 Integrin Mediated Melanoma A375 Cell Migration. PLoS One 2013; 8:e66108. [PMID: 23805201 PMCID: PMC3689700 DOI: 10.1371/journal.pone.0066108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/02/2013] [Indexed: 01/03/2023] Open
Abstract
Integrins are heterodimeric transmembrane receptors that physically link the extracellular matrix (ECM) to the intracellular actin cytoskeleton, and are also signaling molecules that transduce signals bi-directionally across the plasma membrane. Integrin regulation is essential for tumor cell migration in response to growth factors. c-Abl kinase is a nonreceptor tyrosine kinase and is critical for signaling transduction from various receptors. Here we show that c-Abl kinase is involved in A375 cell migration mediated by αvβ3 integrin in response to PDGF stimulation. c-Abl kinase colocalizes with αvβ3 integrin dynamically and affects αvβ3 integrin affinity by regulating its cluster. The interaction between c-Abl kinase and αvβ3 integrin was dependent on the activity of c-Abl kinase induced by PDGF stimulation, but was not dependent on the binding of αvβ3 integrin with its ligands, suggesting that c-Abl kinase is not involved in the outside-in signaling of αvβ3 integrin. Talin head domain was required for the interaction between c-Abl kinase and αvβ3 integrin, and the SH3 domain of c-Abl kinase was involved in its interaction with talin and αvβ3 integrin. Taken together, we have uncovered a novel and critical role of c-Abl kinase in αvβ3 integrin mediated melanoma cell migration.
Collapse
Affiliation(s)
- Chunmei Zhang
- Department of Cell Biology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province, China
| | - Chao Yang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Ruifei Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Yang Jiao
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Khamal Kwesi Ampah
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Xiaoguang Wang
- Department of Bioscience, Changchun Teachers College, Changchun, Jilin Province, China
- * E-mail: (XZ); (XW)
| | - Xianlu Zeng
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
- * E-mail: (XZ); (XW)
| |
Collapse
|
24
|
Longitudinal expression analysis of αv integrins in human gliomas reveals upregulation of integrin αvβ3 as a negative prognostic factor. J Neuropathol Exp Neurol 2013; 72:194-210. [PMID: 23399898 DOI: 10.1097/nen.0b013e3182851019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Integrin inhibitors targeting αv series integrins are being tested for their therapeutic potential in patients with brain tumors, but pathologic studies have been limited by lack of antibodies suitable for immunohistochemistry (IHC) on formalin-fixed, paraffin-embedded specimens. We compared the expression of αv integrins by IHC in brain tumor and normal human brain samples with gene expression data in a public database using new rabbit monoclonal antibodies against αvβ3, αvβ5, αvβ6, and αvβ8 complexes using both manual and automated microscopy analyses. Glial tumors usually shared an αvβ3-positive/αvβ5-positive/αvβ8-positive/αvβ6-negative phenotype. In 94 WHO (World Health Organization) grade II astrocytomas, 85 anaplastic astrocytomas WHO grade III, and 324 glioblastomas from archival sources, expression of integrins generally increased with grade of malignancy. Integrins αvβ3 and αvβ5 were expressed in many glioma vessels; the intensity of vascular expression of αvβ3 increased with grade of malignancy, whereas αvβ8 was absent. Analysis of gene expression in an independent cohort showed a similar increase in integrin expression with tumor grade, particularly of ITGB3 and ITGB8; ITGB6 was not expressed, consistent with the IHC data. Parenchymal αvβ3 expression and ITGB3 gene overexpression in glioblastomas were associated with a poor prognosis, as revealed by survival analysis (Kaplan-Meier logrank, p = 0.016). Together, these data strengthen the rationale for anti-integrin treatment of glial tumors.
Collapse
|
25
|
The antagonistic roles of PDGF and integrin αvβ3 in regulating ROS production at focal adhesions. Biomaterials 2013; 34:3807-15. [PMID: 23465490 DOI: 10.1016/j.biomaterials.2013.01.092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/26/2013] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) have been shown to play crucial roles in regulating various cellular functions, e.g. focal adhesion (FA) dynamics and cell migration upon growth factor stimulation. However, it is not clear how ROS are regulated at subcellular FA sites to impact cell migration. We have developed a biosensor capable of monitoring ROS production at FA sites in live cells with high sensitivity and specificity, utilizing fluorescence resonance energy transfer (FRET). The results revealed that platelet derived growth factor (PDGF) can induce ROS production at FA sites, which is mediated by Rac1 activation. In contrast, integrins, specifically integrin αvβ3, inhibits this local ROS production. The RhoA activity can mediate this inhibitory role of integrins in regulating ROS production. Therefore, PDGF and integrin αvβ3 coordinate to have an antagonistic effect in the ROS production at FA sites to regulate cell adhesion and migration.
Collapse
|
26
|
Higuchi M, Kihara R, Okazaki T, Aoki I, Suetsugu S, Gotoh Y. Akt1 promotes focal adhesion disassembly and cell motility through phosphorylation of FAK in growth factor-stimulated cells. J Cell Sci 2012; 126:745-55. [PMID: 23264741 DOI: 10.1242/jcs.112722] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The crosstalk between spatial adhesion signals and temporal soluble signals is key in regulating cellular responses such as cell migration. Here we show that soluble growth factors enhance integrin signaling through Akt phosphorylation of FAK at Ser695 and Thr700. PDGF treatment or overexpression of active Akt1 in fibroblasts increased autophosphorylation of FAK at Tyr397, an essential event for integrin turnover and cell migration. Phosphorylation-defective mutants of FAK (S695A and T700A) underwent autophosphorylation at Tyr397 and promoted cell migration in response to the integrin ligand fibronectin, but importantly, not in response to PDGF. This study has unveiled a novel function of Akt as an 'ignition kinase' of FAK in growth factor signaling and may shed light on the mechanism by which growth factors regulate integrin signaling.
Collapse
Affiliation(s)
- Maiko Higuchi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Nam JO, Son HN, Jun E, Cha K, Lee BH, Park RW, Kim IS. FAS1 domain protein inhibits VEGF165-induced angiogenesis by targeting the interaction between VEGFR-2 and αvβ3 integrin. Mol Cancer Res 2012; 10:1010-20. [PMID: 22710795 DOI: 10.1158/1541-7786.mcr-11-0600] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is known that VEGF receptors (VEGFR) and integrins interact with each other to regulate angiogenesis. We reported previously that the fasciclin 1 (FAS1) domain-containing protein, TGFBIp/βig-h3 (TGF-β-induced protein) is an angiogenesis regulator that inhibits both endothelial cell migration and growth via αvβ3 integrin. In an attempt to target the interaction between VEGFR-2 and αvβ3 integrin, we determined whether the FAS1 domain region of TGFBIp/βig-h3 (FAS1 domain protein) can block the interaction between the two receptors, leading to the suppression of angiogenesis. In this study, we showed that FAS1 domain protein inhibits VEGF165-induced endothelial cell proliferation and migration via αvβ3 integrin, resulting in the inhibition of VEGF165-induced angiogenesis. We also defined a molecular mechanism by which FAS1 domain protein blocks the association between αvβ3 integrin and VEGFR-2, showing that it binds to αvβ3 integrin but not to VEGFR-2. Blocking the association of these major angiogenic receptors with FAS1 domain protein inhibits signaling pathways downstream of VEGFR-2. Collectively, our results indicate that FAS1 domain protein, in addition to its inhibitory effect on αvβ3 integrin-mediated angiogenesis, also inhibits VEGF165-induced angiogenesis. Thus, FAS1 domain protein can be further developed into a potent anticancer drug that targets two principal angiogenic pathways.
Collapse
Affiliation(s)
- Ju-Ock Nam
- Department of Ecological Environment Conservation, Kyungpook National University, Gyeongsangbuk-do, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Kushiro K, Asthagiri AR. Modular design of micropattern geometry achieves combinatorial enhancements in cell motility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4357-62. [PMID: 22313398 PMCID: PMC3560351 DOI: 10.1021/la204872c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Basic micropattern shapes, such as stripes and teardrops, affect individual facets of cell motility, such as migration speed and directional bias, respectively. Here, we test the idea that these individual effects on cell motility can be brought together to achieve multidimensional improvements in cell behavior through the modular reconstruction of the simpler "building block" micropatterns. While a modular design strategy is conceptually appealing, current evidence suggests that combining environmental cues, especially molecular cues, such as growth factors and matrix proteins, elicits a highly nonlinear, synergistic cell response. Here, we show that, unlike molecular cues, combining stripe and teardrop geometric cues into a hybrid, spear-shaped micropattern yields combinatorial benefits in cell speed, persistence, and directional bias. Furthermore, cell migration speed and persistence are enhanced in a predictable, additive manner on the modular spear-shaped design. Meanwhile, the spear micropattern also improved the directional bias of cell movement compared to the standard teardrop geometry, revealing that combining geometric features can also lead to unexpected synergistic effects in certain aspects of cell motility. Our findings demonstrate that the modular design of hybrid micropatterns from simpler building block shapes achieves combinatorial improvements in cell motility. These findings have implications for engineering biomaterials that effectively mix and match micropatterns to modulate and direct cell motility in applications, such as tissue engineering and lab-on-a-chip devices.
Collapse
Affiliation(s)
| | - Anand R. Asthagiri
- To whom correspondence should be addressed. Northeastern University, 360 Huntington Ave., Boston, MA 02115, Phone: (617) 373-2996,
| |
Collapse
|
29
|
Hee CK, Dines JS, Solchaga LA, Shah VR, Hollinger JO. Regenerative tendon and ligament healing: opportunities with recombinant human platelet-derived growth factor BB-homodimer. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:225-34. [PMID: 22145770 DOI: 10.1089/ten.teb.2011.0603] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intrinsic tendon healing in response to injury is a reparative process that often results in formation of scar tissue with functional and mechanical properties inferior to those of the native tendon. Development of therapies that can promote regenerative, rather than reparative, healing hold the promise of improving patient recovery from tendon and ligament injuries by producing tissue that is morphologically and functionally equivalent to the native tissue. One therapeutic approach that has been a frequent topic of investigation in the preclinical literature is the use of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) to augment tendon and ligament repair. The chemotactic, mitogenic, and pro-angiogenic properties of rhPDGF-BB have been shown to result in recruitment and proliferation of tenogenic cells and a commensurate boost in extracellular matrix deposition and organization, improving the morphological and biomechanical properties of healing tendons and ligaments. The outcomes of the preclinical studies reviewed here strongly suggest that rhPDGF-BB will provide a new therapeutic opportunity to improve the treatment of injured tendons and ligaments.
Collapse
|
30
|
Motegi SI, Garfield S, Feng X, Sárdy M, Udey MC. Potentiation of platelet-derived growth factor receptor-β signaling mediated by integrin-associated MFG-E8. Arterioscler Thromb Vasc Biol 2012; 31:2653-64. [PMID: 21868707 DOI: 10.1161/atvbaha.111.233619] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Pericytes/pericyte precursors produce milk fat globule-associated protein with epidermal growth factor and factor VIII-like domains (MFG-E8) in vivo, and this α(v) integrin ligand enhances angiogenesis in tumors and in oxygen-induced retinopathy in mice. Inhibition of MFG-E8 production or function attenuates platelet-derived growth factor-BB (PDGF-BB)-induced migration of pericyte/pericyte precursor-like 10T1/2 cells in vitro. Herein, we describe mechanisms by which MFG-E8 modulates PDGF-BB:PDGF receptor β (PDGFRβ) signaling in 10T1/2 cells. METHODS AND RESULTS Small interfering RNA depletion of MFG-E8 from 10T1/2 cells or antibody inhibition of MFG-E8 action enhanced PDGF-BB-dependent degradation of PDGFRβ and attenuated signaling. Coimmunoprecipitation revealed transient association of MFG-E8 with PDGFRβ in PDGF-BB-treated 10T1/2 cells and reduced PDGFRβ-focal adhesion kinase association in MFG-E8-depleted cells. Confocal microscopy demonstrated that MFG-E8 binding to 10T1/2 cells was RGD motif and α(v) dependent but PDGF-BB treatment independent, whereas colocalization of MFG-E8 with PDGFRβ was enhanced by PDGF-BB. Ubiquitination of PDGFRβ was also increased in MFG-E8 small interfering RNA-transfected cells. CONCLUSION Integrin α(v)-bound MFG-E8 associates with PDGFRβ and focal adhesion kinase after PDGF-BB treatment, results in cell surface retention of PDGFRβ, delays receptor degradation, potentiates downstream signaling, and enhances migration of 10T1/2 cells. MFG-E8 may promote angiogenesis, in part, via cell autonomous actions on pericytes or pericyte precursors that result in enhanced PDGF-BB:PDGFRβ signaling mediated via integrin-growth factor receptor cross-talk.
Collapse
Affiliation(s)
- Sei-ichiro Motegi
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20802-1908, USA
| | | | | | | | | |
Collapse
|
31
|
Fukumoto Y, Kurita S, Takai Y, Ogita H. Role of scaffold protein afadin dilute domain-interacting protein (ADIP) in platelet-derived growth factor-induced cell movement by activating Rac protein through Vav2 protein. J Biol Chem 2011; 286:43537-48. [PMID: 22027834 DOI: 10.1074/jbc.m111.308858] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell movement is an important cellular function not only in physiological but also in pathological conditions. Although numerous studies have been conducted to reveal the mechanism of cell movement, the full picture has yet to be depicted, likely due to the complex features of cell movement. We show here that the scaffold protein afadin dilute domain-interacting protein (ADIP), an afadin-binding protein, is involved in the regulation of cell movement. ADIP localized at the leading edge of moving cells in response to platelet-derived growth factor (PDGF) and was required for the formation of the leading edge and the promotion of cell movement. Impaired cell movement observed in ADIP knockdown cells was not rescued by expression of an ADIP mutant that is incapable of binding to afadin, leading to the notion that the function of ADIP in moving cells depends on its interaction with afadin. Knockdown of ADIP as well as knockdown of afadin inhibited the activation of the small G protein Rac, which is important for the formation of the leading edge and the promotion of cell movement. Furthermore, ADIP interacted with Vav2, a GDP/GTP exchange factor for Rac, in a Src phosphorylation-dependent manner, suggesting that ADIP mediates the activation of Rac through Vav2. These results indicate that ADIP plays an essential role in PDGF-induced cell movement by interacting with afadin and Vav2 and regulating the activation of Rac.
Collapse
Affiliation(s)
- Yuri Fukumoto
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | | | | | | |
Collapse
|
32
|
Ishigaki T, Imanaka-Yoshida K, Shimojo N, Matsushima S, Taki W, Yoshida T. Tenascin-C enhances crosstalk signaling of integrin αvβ3/PDGFR-β complex by SRC recruitment promoting PDGF-induced proliferation and migration in smooth muscle cells. J Cell Physiol 2011; 226:2617-24. [PMID: 21792920 DOI: 10.1002/jcp.22614] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Migration and proliferation of smooth muscle cells (SMCs) are key events during neointimal formation in pathological conditions of vessels. Tenascin-C (TNC) is upregulated in the developing neointima of lesions. We evaluated the effects of TNC on responses of SMCs against platelet-derived growth factor (PDGF) stimulation. TNC coated on substrate promoted PDGF-BB-induced proliferation and migration of rat SMC cell line A10 in BrdU incorporation and transwell assays, respectively. Immunoblotting showed that TNC substrate enhanced autophosphorylation of PDGFR-β after PDGF-BB stimulation. Integrin αvβ3 is known to be a receptor for TNC in SMCs. In immunofluorescence and immunoblot of integrin αv subunit, clustering of αv-positive focal adhesions and upregulated αv expression were observed in the cells on TNC substrate. Immunoprecipitation using anti-integrin αvβ3 antibody demonstrated that PDGFR-β and integrin αvβ3 were co-precipitated and that the relative amount of PDGFR-β after the stimulation was increased by TNC treatment. TNC also promoted phosphorylation of focal adhesion kinase (FAK) at tyrosine (Y) 397 and Y925. The phosphorylated FAK was localized at focal adhesions in immunofluorescence. Phosphorylated SRC at Y418 was also seen at focal adhesions. Immunoprecipitation with αv antibody showed increased SRC association with the integrin signaling complex in the cells on TNC after PDGF treatment. In the cells on TNC substrate, crosstalk signaling between integrin αvβ3 and PDGFR-β could be amplified by SRC and FAK recruited to focal adhesions, followed by enhanced proliferation and migration of A10 cells by PDGF-BB.
Collapse
Affiliation(s)
- Tomoki Ishigaki
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Kurita S, Ogita H, Takai Y. Cooperative role of nectin-nectin and nectin-afadin interactions in formation of nectin-based cell-cell adhesion. J Biol Chem 2011; 286:36297-303. [PMID: 21880730 DOI: 10.1074/jbc.m111.261768] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nectin cell adhesion molecules interact in trans with each other through their extracellular regions and with afadin through their cytoplasmic tails, forming adherens junctions in cooperation with cadherins. In a single cell, Necl-5 (nectin-like molecule-5) localizes at the leading edge and regulates directional cell movement in response to a chemoattractant. In such a single cell, afadin also localizes at the leading edge without interacting with nectins or Necl-5. It remains unknown how the nectin-nectin and nectin-afadin interactions are initiated when moving cells contact each other to initiate the formation of adherens junctions. We show here that the Necl-5-nectin interaction induced by cell-cell contact enhances the nectin-afadin interaction. This interaction then enhances the nectin-nectin interaction, which further enhances the nectin-afadin interaction in a positive feedback manner. Thus, the Necl-5-nectin, nectin-nectin, and nectin-afadin interactions cooperatively increase the clustering of the nectin-afadin complex at the cell-cell contact sites, promoting the formation of the nectin-based cell-cell adhesion.
Collapse
Affiliation(s)
- Souichi Kurita
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | | | | |
Collapse
|
34
|
Polizio AH, Chinchilla P, Chen X, Kim S, Manning DR, Riobo NA. Heterotrimeric Gi proteins link Hedgehog signaling to activation of Rho small GTPases to promote fibroblast migration. J Biol Chem 2011; 286:19589-96. [PMID: 21474452 DOI: 10.1074/jbc.m110.197111] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Evidence supporting the functionality of Smoothened (SMO), an essential transducer in most pathways engaged by Hedgehog (Hh), as a G(i)-coupled receptor contrasts with the lack of an apparently consistent requirement for G(i) in Hh signal transduction. In the present study, we sought to evaluate the role of SMO-G(i) coupling in fibroblast migration induced by Sonic Hedgehog (Shh). Our results demonstrate an absolute requirement for G(i) in Shh-induced fibroblast migration. We found that Shh acutely stimulates the small Rho GTPases Rac1 and RhoA via SMO through a G(i) protein- and PI3K-dependent mechanism, and that these are required for cell migration. These responses were independent of transcription by Gli and of the C-terminal domain of SMO, as we show using a combination of molecular and genetic tools. Our findings provide a mechanistic model for fibroblast migration in response to Shh and underscore the role of SMO-G(i) coupling in non-canonical Hh signaling.
Collapse
Affiliation(s)
- Ariel H Polizio
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 1910, USA
| | | | | | | | | | | |
Collapse
|
35
|
Veevers-Lowe J, Ball SG, Shuttleworth A, Kielty CM. Mesenchymal stem cell migration is regulated by fibronectin through α5β1-integrin-mediated activation of PDGFR-β and potentiation of growth factor signals. J Cell Sci 2011; 124:1288-300. [PMID: 21429937 DOI: 10.1242/jcs.076935] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cell migration during vascular remodelling is regulated by crosstalk between growth factor receptors and integrin receptors, which together coordinate cytoskeletal and motogenic changes. Here, we report extracellular matrix (ECM)-directed crosstalk between platelet-derived growth factor receptor (PDGFR)-β and α5β1-integrin, which controls the migration of mesenchymal stem (stromal) cells (MSCs). Cell adhesion to fibronectin induced α5β1-integrin-dependent phosphorylation of PDGFR-β in the absence of growth factor stimulation. Phosphorylated PDGFR-β co-immunoprecipitated with α5-integrin and colocalised with α5β1-integrin in the transient tidemarks of focal adhesions. Adhesion to fibronectin also strongly potentiated PDGF-BB-induced PDGFR-β phosphorylation and focal adhesion kinase (FAK) activity, in an α5β1-integrin-dependent manner. PDGFR-β-induced phosphoinositide 3-kinase (PI3K) and Akt activity, actin reorganisation and cell migration were all regulated by fibronectin and α5β1-integrin. This synergistic relationship between α5β1-integrin and PDGFR-β is a fundamental determinant of cell migration. Thus, fibronectin-rich matrices can prime PDGFR-β to recruit mesenchymal cells at sites of vascular remodelling.
Collapse
Affiliation(s)
- Jennifer Veevers-Lowe
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
36
|
King SJ, Worth DC, Scales TME, Monypenny J, Jones GE, Parsons M. β1 integrins regulate fibroblast chemotaxis through control of N-WASP stability. EMBO J 2011; 30:1705-18. [PMID: 21427700 PMCID: PMC3101992 DOI: 10.1038/emboj.2011.82] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/24/2011] [Indexed: 12/15/2022] Open
Abstract
Chemotactic migration of fibroblasts towards growth factors, such as during development and wound healing, requires precise spatial coordination of receptor signalling. However, the mechanisms regulating this remain poorly understood. Here, we demonstrate that β1 integrins are required both for fibroblast chemotaxis towards platelet-derived growth factor (PDGF) and growth factor-induced dorsal ruffling. Mechanistically, we show that β1 integrin stabilises and spatially regulates the actin nucleating endocytic protein neuronal Wiskott–Aldrich syndrome protein (N-WASP) to facilitate PDGF receptor traffic and directed motility. Furthermore, we show that in intact cells, PDGF binding leads to rapid activation of β1 integrin within newly assembled actin-rich membrane ruffles. Active β1 in turn controls assembly of N-WASP complexes with both Cdc42 and WASP-interacting protein (WIP), the latter of which acts to stabilise the N-WASP. Both of these protein complexes are required for PDGF internalisation and fibroblast chemotaxis downstream of β1 integrins. This represents a novel mechanism by which integrins cooperate with growth factor receptors to promote localised signalling and directed cell motility.
Collapse
Affiliation(s)
- Samantha J King
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, UK
| | | | | | | | | | | |
Collapse
|
37
|
Rikitake Y, Takai Y. Directional Cell Migration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:97-143. [DOI: 10.1016/b978-0-12-386043-9.00003-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Kanazawa S, Fujiwara T, Matsuzaki S, Shingaki K, Taniguchi M, Miyata S, Tohyama M, Sakai Y, Yano K, Hosokawa K, Kubo T. bFGF regulates PI3-kinase-Rac1-JNK pathway and promotes fibroblast migration in wound healing. PLoS One 2010; 5:e12228. [PMID: 20808927 PMCID: PMC2923192 DOI: 10.1371/journal.pone.0012228] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 07/25/2010] [Indexed: 01/06/2023] Open
Abstract
Fibroblast proliferation and migration play important roles in wound healing. bFGF is known to promote both fibroblast proliferation and migration during the process of wound healing. However, the signal transduction of bFGF-induced fibroblast migration is still unclear, because bFGF can affect both proliferation and migration. Herein, we investigated the effect of bFGF on fibroblast migration regardless of its effect on fibroblast proliferation. We noticed involvement of the small GTPases of the Rho family, PI3-kinase, and JNK. bFGF activated RhoA, Rac1, PI3-kinase, and JNK in cultured fibroblasts. Inhibition of RhoA did not block bFGF-induced fibroblast migration, whereas inhibition of Rac1, PI3-kinase, or JNK blocked the fibroblast migration significantly. PI3-kinase-inhibited cells down-regulated the activities of Rac1 and JNK, and Rac1-inhibited cells down-regulated JNK activity, suggesting that PI3-kinase is upstream of Rac1 and that JNK is downstream of Rac1. Thus, we concluded that PI3-kinase, Rac1, and JNK were essential for bFGF-induced fibroblast migration, which is a novel pathway of bFGF-induced cell migration.
Collapse
Affiliation(s)
- Shigeyuki Kanazawa
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshihiro Fujiwara
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinsuke Matsuzaki
- Department of Anatomy and Neuroscience, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenta Shingaki
- Department of Anatomy and Neuroscience, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Manabu Taniguchi
- Department of Anatomy and Neuroscience, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shingo Miyata
- Department of Anatomy and Neuroscience, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaya Tohyama
- Department of Anatomy and Neuroscience, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuo Sakai
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenji Yano
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ko Hosokawa
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tateki Kubo
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
39
|
Integrin alpha1beta1 regulates epidermal growth factor receptor activation by controlling peroxisome proliferator-activated receptor gamma-dependent caveolin-1 expression. Mol Cell Biol 2010; 30:3048-58. [PMID: 20368353 DOI: 10.1128/mcb.00892-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Integrin alpha1beta1 negatively regulates the generation of profibrotic reactive oxygen species (ROS) by inhibiting epidermal growth factor receptor (EGFR) activation; however, the mechanism by which it does this is unknown. In this study, we show that caveolin-1 (Cav-1), a scaffolding protein that binds integrins and controls growth factor receptor signaling, participates in integrin alpha1beta1-mediated EGFR activation. Integrin alpha1-null mesangial cells (MCs) have reduced Cav-1 levels, and reexpression of the integrin alpha1 subunit increases Cav-1 levels, decreases EGFR activation, and reduces ROS production. Downregulation of Cav-1 in wild-type MCs increases EGFR phosphorylation and ROS synthesis, while overexpression of Cav-1 in the integrin alpha1-null MCs decreases EGFR-mediated ROS production. We further show that integrin alpha1-null MCs have increased levels of activated extracellular signal-regulated kinase (ERK), which leads to reduced activation of peroxisome proliferator-activated receptor gamma (PPARgamma), a transcription factor that positively regulates Cav-1 expression. Moreover, activation of PPARgamma or inhibition of ERK increases Cav-1 levels in the integrin alpha1-null MCs. Finally, we show that glomeruli of integrin alpha1-null mice have reduced levels of Cav-1 and activated PPARgamma but increased levels of phosphorylated EGFR both at baseline and following injury. Thus, integrin alpha1beta1 negatively regulates EGFR activation by positively controlling Cav-1 levels, and the ERK/PPARgamma axis plays a key role in regulating integrin alpha1beta1-dependent Cav-1 expression and consequent EGFR-mediated ROS production.
Collapse
|
40
|
OGITA H, RIKITAKE Y, MIYOSHI J, TAKAI Y. Cell adhesion molecules nectins and associating proteins: Implications for physiology and pathology. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:621-629. [PMID: 20551598 PMCID: PMC3081173 DOI: 10.2183/pjab.86.621] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 03/26/2010] [Indexed: 05/28/2023]
Abstract
Nectins have recently been identified as new cell adhesion molecules (CAMs) consisting of four members. They show immunoglobulin-like structures and exclusively localize at adherens junctions (AJs) between two neighboring cells. During the formation of cell-cell junctions, nectins function in cooperation with or independently of cadherins, major CAMs at AJs. Similar to cadherins, which are linked to the actin cytoskeleton by binding to catenins, nectins also bind to afadin through their C-terminal region and are linked to the actin cytoskeleton. In addition to nectins, there are nectin-like molecules (Necls), which resemble nectins in their structures and consist of five members. Nectins and Necls are involved in the formation of various kinds of cell-cell adhesion, and also play key roles in diverse cellular functions including cell movement, proliferation, survival, and differentiation. Thus, nectins and Necls are crucial for physiology and pathology of multicellular organisms.(Communicated by Shigetada NAKANISHI, M.J.A.).
Collapse
Affiliation(s)
- Hisakazu OGITA
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Yoshiyuki RIKITAKE
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
- Division of Signal Transduction, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Jun MIYOSHI
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Yoshimi TAKAI
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| |
Collapse
|
41
|
Miyata M, Ogita H, Komura H, Nakata S, Okamoto R, Ozaki M, Majima T, Matsuzawa N, Kawano S, Minami A, Waseda M, Fujita N, Mizutani K, Rikitake Y, Takai Y. Localization of nectin-free afadin at the leading edge and its involvement in directional cell movement induced by platelet-derived growth factor. J Cell Sci 2009; 122:4319-29. [DOI: 10.1242/jcs.048439] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Afadin is an actin-filament-binding protein that binds to nectin, an immunoglobulin-like cell-cell adhesion molecule, and plays an important role in the formation of adherens junctions. Here, we show that afadin, which did not bind to nectin and was localized at the leading edge of moving cells, has another role: enhancement of the directional, but not random, cell movement. When NIH3T3 cells were stimulated with platelet-derived growth factor (PDGF), afadin colocalized with PDGF receptor, αvβ3 integrin and nectin-like molecule-5 at the leading edge and facilitated the formation of leading-edge structures and directional cell movement in the direction of PDGF stimulation. However, these phenotypes were markedly perturbed by knockdown of afadin, and were dependent on the binding of afadin to active Rap1. Binding of Rap1 to afadin was necessary for the recruitment of afadin and the tyrosine phosphatase SHP-2 to the leading edge. SHP-2 was previously reported to tightly regulate the activation of PDGF receptor and its downstream signaling pathway for the formation of the leading edge. These results indicate that afadin has a novel role in PDGF-induced directional cell movement, presumably in cooperation with active Rap1 and SHP-2.
Collapse
Affiliation(s)
- Muneaki Miyata
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hisakazu Ogita
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hitomi Komura
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Shinsuke Nakata
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871 Japan
| | - Ryoko Okamoto
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871 Japan
| | - Misa Ozaki
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takashi Majima
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871 Japan
| | - Naomi Matsuzawa
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Satoshi Kawano
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Akihiro Minami
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Masumi Waseda
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Naoyuki Fujita
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871 Japan
| | - Kiyohito Mizutani
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshiyuki Rikitake
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshimi Takai
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
42
|
Isa M, Ohta Y, Namiki S, Hirose K. Artificial control of subtype-specific platelet-derived growth factor-receptor signaling. J Pharmacol Sci 2009; 111:312-6. [PMID: 19881227 DOI: 10.1254/jphs.09136sc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Platelet-derived growth factor (PDGF) signaling controls various physiological functions via two receptor subtypes: PDGF receptor (PDGFR) alpha and PDGFRbeta. Nevertheless, our understanding of their roles is limited because of a lack of pharmacological tools to discriminate subtype-specific signaling. We developed a chimeric receptor by combining ligand-binding-domain truncated PDGFRbeta with anti-fluorescein single chain antibody, expecting the control of PDGFRbeta-specific signaling by oligomerized fluorescein as an artificial agonist. Results show that calcium mobilization, Cdc42 activation, and cell migration were elicited specifically by the artificial ligand in cells expressing the chimeric receptor. Our method is expected to be useful to understand the subtype-specific roles of PDGFRs in various cellular functions.
Collapse
Affiliation(s)
- Masayuki Isa
- Department of Neurobiology, Graduate School of Medicine, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
43
|
Somanath PR, Malinin NL, Byzova TV. Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 2009; 12:177-85. [PMID: 19267251 DOI: 10.1007/s10456-009-9141-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/16/2009] [Indexed: 11/30/2022]
Abstract
The cross-talk between receptor tyrosine kinases and integrin receptors are known to be crucial for a number of cellular functions. On endothelial cells, an interaction between integrin alphavbeta3 and VEGFR2 seems to be particularly important process during vascularization. Importantly, the functional association between VEGFR2 and integrin alphavbeta3 is of reciprocal nature since each receptor is able to promote activation of its counterpart. This mutually beneficial relationship regulates a number of cellular activities involved in angiogenesis, including endothelial cell migration, survival and tube formation, and hematopoietic cell functions within vasculature. This article discusses several possible mechanisms reported by different labs which mediate formation of the complex between VEGFR-2 and alphavbeta3 on endothelial cells. The pathological consequences and regulatory events involved in this receptor cross-talk are also presented.
Collapse
Affiliation(s)
- Payaningal R Somanath
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, NB50, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
44
|
Escher R, Cung T, Stutz M, Haeberli A, Djonov V, Berchtold P, Hlushchuk R. Antiaggregatory and proangiogenic effects of a novel recombinant human dual specificity anti-integrin antibody. J Thromb Haemost 2009; 7:460-9. [PMID: 19054322 DOI: 10.1111/j.1538-7836.2008.03251.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND beta(3)-Integrins are involved in platelet aggregation via alpha(IIb)beta(3) [glycoprotein (GP)IIb-GPIIIa], and in angiogenesis via endothelial alpha(V)beta(3). Cross-reactive ligands with antiaggregatory and proangiogenic effects, both desirable in peripheral vasculopathies, have not yet been described. OBJECTIVES In vitro and in vivo characterization of antiaggregatory and proangiogenic effects of two recombinant human Fab fragments, with emphasis on beta(3)-integrins. METHODS Recombinant Fab fragments were obtained by phage display technology. Specificity, affinity and IC(50) were determined by immunodot assays, enzyme-linked immunosorbent assay (ELISA), and Scatchard plot analysis, and by means of human umbilical vein endothelial cells (HUVECs). Functional analyses included ELISA for interaction with fibrinogen binding to GPIIb-GPIIIa, flow cytometry for measurement of activation parameters and competitive inhibition experiments, human platelet aggregometry, and proliferation, tube formation and the chorioallantoic membrane (CAM) assay for measurement of angiogenic effects. RESULTS We observed specific and high-affinity binding to an intact GPIIb-GPIIIa receptor complex of two human Fab autoantibody fragments, with no platelet activation. Dose-dependent fibrinogen binding to GPIIb-GPIIIa and platelet aggregation were completely inhibited. One Fab fragment was competitively inhibited by abciximab and its murine analog monoclonal antibody (mAb) 7E3, whereas the other Fab fragment bound to cultured HUVECs, suggesting cross-reactivity with alpha(V)beta(3), and also demonstrated proangiogenic effects in tube formation and CAM assays. CONCLUSIONS These Fab fragments are the first entirely human anti-GPIIb-GPIIIa Fab fragments with full antiaggregatory properties; furthermore, they do not activate platelets. The unique dual-specificity anti-beta(3)-integrin Fab fragment may represent a new tool for the study and management of peripheral arterial vasculopathies.
Collapse
Affiliation(s)
- R Escher
- Department of General Internal Medicine and Central Haematology Laboratory, University Hospital Berne, Berne, Switzwerland.
| | | | | | | | | | | | | |
Collapse
|
45
|
Takai Y, Ikeda W, Ogita H, Rikitake Y. The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annu Rev Cell Dev Biol 2008; 24:309-42. [PMID: 18593353 DOI: 10.1146/annurev.cellbio.24.110707.175339] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nectins are immunoglobulin-like cell adhesion molecules (CAMs) that compose a family of four members. Nectins homophilically and heterophilically interact in trans with each other to form cell-cell adhesions. In addition, they heterophilically interact in trans with other immunoglobulin-like CAMs. Nectins bind afadin, an actin filament (F-actin)-binding protein, at its cytoplasmic tail and associate with the actin cytoskeleton. Afadin additionally serves as an adaptor protein by further binding many scaffolding proteins and F-actin-binding proteins and contributes to the association of nectins with other cell-cell adhesion and intracellular signaling systems. Nectins and afadin play roles in the formation of a variety of cell-cell junctions cooperatively with, or independently of, cadherins. Cooperation between nectins and cadherins is required for the formation of cell-cell junctions; cadherins alone are not sufficient. Additionally, nectins regulate many other cellular activities (such as movement, proliferation, survival, differentiation, polarization, and the entry of viruses) in cooperation with other CAMs and cell surface membrane receptors.
Collapse
Affiliation(s)
- Yoshimi Takai
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | | | | | |
Collapse
|
46
|
Amano H, Ikeda W, Kawano S, Kajita M, Tamaru Y, Inoue N, Minami Y, Yamada A, Takai Y. Interaction and localization of Necl-5 and PDGF receptor beta at the leading edges of moving NIH3T3 cells: Implications for directional cell movement. Genes Cells 2008; 13:269-84. [PMID: 18298801 DOI: 10.1111/j.1365-2443.2008.01167.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It was previously shown that platelet-derived growth factor (PDGF) receptor physically and functionally interacts with integrin alpha(v)beta(3), effectively inducing cell movement. We previously showed that Necl-5, originally identified as a poliovirus receptor, interacts with integrin alpha(v)beta(3) and enhances its clustering and the formation of focal complexes at the leading edges of moving cells, resulting in an enhancement of cell movement. We showed here that Necl-5 additionally interacts with PDGF receptor in NIH3T3 cells and regulates the interaction between PDGF receptor and integrin alpha(v)beta(3), effectively inducing directional cell movement. PDGF receptor co-localized with Necl-5 and integrin alpha(v)beta(3) at peripheral ruffles over lamellipodia, which were formed at the leading edges of moving cells in response to PDGF, but not at the focal complexes under these ruffles, whereas Necl-5 and integrin alpha(v)beta(3) co-localized at these focal complexes. The clustering of these three molecules at peripheral ruffles required the activation of integrin alpha(v)beta(3) by vitronectin and the PDGF-induced activation of the small G protein Rac and subsequent re-organization of the actin cytoskeleton. These results indicate a key role of Necl-5 in directional cell movement by physically and functionally interacting with both integrin alpha(v)beta(3) and PDGF receptor.
Collapse
Affiliation(s)
- Hisayuki Amano
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Takai Y, Miyoshi J, Ikeda W, Ogita H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol 2008; 9:603-15. [PMID: 18648374 DOI: 10.1038/nrm2457] [Citation(s) in RCA: 442] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nectins and nectin-like molecules (Necls) are immunoglobulin-like transmembrane cell adhesion molecules that are expressed in various cell types. Homophilic and heterophilic engagements between family members provide cells with molecular tools for intercellular communications. Nectins primarily regulate cell-cell adhesions, whereas Necls are involved in a greater variety of cellular functions. Recent studies have revealed that nectins and NECL-5, in cooperation with integrin alphavbeta3 and platelet-derived growth factor receptor, are crucial for the mechanisms that underlie contact inhibition of cell movement and proliferation; this has important implications for the development and tissue regeneration of multicellular organisms and the phenotypes of cancer cells.
Collapse
Affiliation(s)
- Yoshimi Takai
- Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | |
Collapse
|
48
|
Wang Z, Wang M, Carr BI. Integrin alpha5-induced EGFR activation by prothrombin triggers hepatocyte apoptosis via the JNK signaling pathway. J Cell Physiol 2008; 216:551-7. [PMID: 18330891 DOI: 10.1002/jcp.21429] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have previously shown that prothrombin, a blood coagulation factor, can cause an inhibition of DNA synthesis in normal rat hepatocytes. To explore the mechanisms of this prothrombin action, we examined its effects on the activation of fibronectin receptor integrin alpha5, since fibronectin was found to be degraded by prothrombin actions in primary hepatocyte cultures. We found that prothrombin treatment of rat hepatocytes without addition of any growth factor induced tyrosine phosphorylation of integrin alpha5 and interaction of integrin alpha5 with epidermal growth factor receptor (EGFR), leading to EGFR tyrosine phosphorylation at tyrosine residues Tyr-845 and Tyr-1173. EGFR tyrosine phosphorylation triggered phosphorylation of its down-stream target Shc and the activation of the c-Jun N-terminal kinase (JNK) pathway. Prothrombin also induced hepatocyte apoptosis, a change in cell shape and activation of caspase 3 pathway. The JNK pathway is most likely involved in prothrombin-induced hepatocyte apoptosis, because pre-treatment of hepatocytes with JNK kinase inhibitor II (SP600125) antagonized these prothrombin actions. The data suggest that integrin-related EGFR activation by prothrombin can induce cell growth inhibition and apoptosis via an EGFR-JNK signaling pathway.
Collapse
Affiliation(s)
- Ziqiu Wang
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
49
|
Lössner D, Abou-Ajram C, Benge A, Reuning U. Integrin alphavbeta3 mediates upregulation of epidermal growth-factor receptor expression and activity in human ovarian cancer cells. Int J Biochem Cell Biol 2008; 40:2746-61. [PMID: 18577466 DOI: 10.1016/j.biocel.2008.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 05/21/2008] [Accepted: 05/22/2008] [Indexed: 12/30/2022]
Abstract
Upon overexpression of integrin alphavbeta3 and its engagement by vitronectin, we previously showed enhanced adhesion, proliferation, and motility of human ovarian cancer cells. By studying differential expression of genes possibly related to these tumor biological events, we identified the epidermal growth-factor receptor (EGF-R) to be under control of alphavbeta3 expression levels. Thus in the present study we characterized alphavbeta3-dependent changes of EGF-R and found significant upregulation of its expression and activity which was reflected by prominent changes of EGF-R promoter activity. Upon disruption of DNA-binding motifs for the transcription factors p53, ETF, the repressor ETR, p50, and c-rel, respectively, we sought to identify DNA elements contributing to alphavbeta3-mediated EGF-R promoter induction. Both, the p53- and ETF-mutant, while exhibiting considerably lower EGF-R promoter activity than the wild type promoter, retained inducibility by alphavbeta3. Mutation of the repressor motif ETR, as expected, enhanced EGF-R promoter activity with a further moderate increase upon alphavbeta3 elevation. The p50-mutant displayed EGF-R promoter activity almost comparable to that of the wild type promoter with no impairment of induction by alphavbeta3. However, the activity of an EGF-R promoter mutant displaying a disrupted c-rel-binding motif did not only prominently decline, but, moreover, was not longer responsive to enhanced alphavbeta3, involving this DNA element in alphavbeta3-dependent EGF-R upregulation. Moreover, alphavbeta3 did not only increase the EGF-R but, moreover, also led to obvious co-clustering on the cancer cell surface. By studying alphavbeta3/EGF-R-effects on the focal adhesion kinase (FAK) and the mitogen activated protein kinases (MAPK) p44/42 (erk(-1)/erk(-2)), having important functions in synergistic crosstalk between integrins and growth-factor receptors, we found for both significant enhancement of expression and activity upon alphavbeta3/VN interaction and cell stimulation by EGF. Upregulation of the EGF-R by integrin alphavbeta3, both receptor molecules with a well-defined role as targets for cancer treatment, might represent an additional mechanism to adapt synergistic receptor signaling and crosstalk in response to an altered tumor cell microenvironment during ovarian cancer progression.
Collapse
Affiliation(s)
- Daniela Lössner
- Klinische Forschergruppe der Frauenklinik der Technischen Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, 81675 München, Germany
| | | | | | | |
Collapse
|
50
|
Abraham S, Kogata N, Fässler R, Adams RH. Integrin β1 Subunit Controls Mural Cell Adhesion, Spreading, and Blood Vessel Wall Stability. Circ Res 2008; 102:562-70. [DOI: 10.1161/circresaha.107.167908] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sabu Abraham
- From the Cancer Research UK London Research Institute (S.A., N.K., R.H.A.), Vascular Development Laboratory, London, UK; Max-Planck-Institute of Biochemistry (R.F.), Department of Molecular Medicine, Martinsried, Germany; Max-Planck-Institute for Molecular Biomedicine (R.H.A.), Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Münster, Germany
| | - Naoko Kogata
- From the Cancer Research UK London Research Institute (S.A., N.K., R.H.A.), Vascular Development Laboratory, London, UK; Max-Planck-Institute of Biochemistry (R.F.), Department of Molecular Medicine, Martinsried, Germany; Max-Planck-Institute for Molecular Biomedicine (R.H.A.), Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Münster, Germany
| | - Reinhard Fässler
- From the Cancer Research UK London Research Institute (S.A., N.K., R.H.A.), Vascular Development Laboratory, London, UK; Max-Planck-Institute of Biochemistry (R.F.), Department of Molecular Medicine, Martinsried, Germany; Max-Planck-Institute for Molecular Biomedicine (R.H.A.), Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Münster, Germany
| | - Ralf H. Adams
- From the Cancer Research UK London Research Institute (S.A., N.K., R.H.A.), Vascular Development Laboratory, London, UK; Max-Planck-Institute of Biochemistry (R.F.), Department of Molecular Medicine, Martinsried, Germany; Max-Planck-Institute for Molecular Biomedicine (R.H.A.), Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Münster, Germany
| |
Collapse
|