1
|
Castro-Arnau J, Chauvigné F, González A, Finn RN, Carrascal M, Cerdà J. Post-testicular spermatozoa of a marine teleost can conduct de novo cytoplasmic and mitochondrial translation. iScience 2025; 28:111537. [PMID: 39801836 PMCID: PMC11719862 DOI: 10.1016/j.isci.2024.111537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Translational silence of spermatozoa has long been considered the norm in animals. However, studies in mammals have shown that the mitochondrial ribosomal machinery is selectively activated during capacitation in the female reproductive tract, while cytosolic ribosomes remain inactive. Here, using quantitative proteomics in a piscine model species, we show that proteins involved in mRNA processing and cytoplasmic translation are predominantly accumulated in immature spermatozoa within the extratesticular excurrent ducts, while those related to flagellar motility are enriched in ejaculated (mature) sperm. Based upon in vitro incubation of isolated spermatozoa, motility assays and polysome profiling, we further show that 80S cytoplasmic and 55S mitochondrial ribosomes are actively involved in the translation of motility- and osmoadaptation-related proteins. These findings thus reveal that post-testicular piscine spermatozoa can maintain de novo protein synthesis through both mitochondrial and cytoplasmic ribosomal activity, which is necessary for the acquisition of full sperm function.
Collapse
Affiliation(s)
- Júlia Castro-Arnau
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - François Chauvigné
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Asier González
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Roderick Nigel Finn
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| | - Montserrat Carrascal
- Biological and Environmental Proteomics Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC/IDIBAPS), 08036 Barcelona, Spain
| | - Joan Cerdà
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
2
|
Morita M, Hanahara N, Teramoto MM, Tarigan AI. Conservation of Protein Kinase A Substrates in the Cnidarian Coral Spermatozoa Among Animals and Their Molecular Evolution. J Mol Evol 2024; 92:217-257. [PMID: 38662235 DOI: 10.1007/s00239-024-10168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
The coral Acropora spp., known for its reef-building abilities, is a simultaneous hermaphroditic broadcast spawning species. Acropora spp. release gametes into seawater, activating sperm motility. This activation is mediated by adenylyl cyclase (AC) and protein kinase A (PKA). Notably, membrane-permeable cAMP (8-bromo-cAMP) promotes sperm motility activation of Acropora florida. While the signal transduction for PKA-dependent motility activation is highly conserved among animals, the downstream signaling of PKA remains unclear. In this study, we used mass spectrometry (MS) analyses to identify sperm proteins in the coral Acropora digitifera, as well as the serine/threonine residues of potential PKA substrates, and then, we investigated the conservation of these proteins from corals to vertebrates. We identified 148 sperm proteins of A. digitifera with typical PKA recognition motifs, namely RRXT and RRXS. We subsequently used ORTHOSCOPE to screen for orthologs encoding these 148 proteins from corals to vertebrates. Among the isolated orthologs, we identified positive selection in 48 protein-encoding genes from 18 Acropora spp. Subsequently, we compared the conservation rates of the PKA phosphorylation motif residues between the orthologs under positive and purifying selections. Notably, the serine residues of the orthologs under positive selection were more conserved. Therefore, adaptive evolution might have occurred in the orthologs of PKA substrate candidates from corals to vertebrates, accompanied by phosphorylation residue conservation. Collectively, our findings suggest that while PKA signal transduction, including substrates in sperm, may have been conserved, the substrates may have evolved to adapt to diverse fertilization conditions, such as synchronous broadcast spawning.
Collapse
Affiliation(s)
- Masaya Morita
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Motobu, Okinawa, 905-0227, Japan.
| | - Nozomi Hanahara
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Motobu, Okinawa, 905-0227, Japan
- Okinawa Churahima Foundation, 888 Ishikawa, Motobu, Okinawa, 905-0206, Japan
| | - Mariko M Teramoto
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Motobu, Okinawa, 905-0227, Japan
| | - Ariyo Imanuel Tarigan
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Motobu, Okinawa, 905-0227, Japan
| |
Collapse
|
3
|
Improving motility and fertilization capacity of low-quality sperm of sterlet Acipenser ruthenus during storage. Theriogenology 2020; 156:90-96. [PMID: 32682180 DOI: 10.1016/j.theriogenology.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Improvement of sperm quality with low motility by storage could ensure higher success of fertilization and maintain higher genetic diversity, especially for sturgeons, which as endangered species have limited broodstock and gametes. Sperm was collected from mature male sterlet Acipenser ruthenus and motility was evaluated using the CASA system; samples were categorized as GS 'good sperm' (>80%) or BS 'bad sperm' (<20%). Samples from both groups were incubated with seminal plasma from good- (GSP) and bad-quality sperm (BSP), respectively for 15 min, 6 h, 24 h and 96 h at 4 °C. Motility of BS incubated in GSP increased after different storage times compared to BS incubated in BSP, while the motility and velocity of GS incubated in BSP decreased compared to GS incubated in GSP. Fertilization rates were evaluated with samples stored for 15 min and 6 h post-stripping; fertilization and hatching rate of BS after incubation in GSP increased significantly compared to the BS incubated in BSP. Inorganic ion (Na+, K+, Cl-) concentrations and osmolality of BSP were significantly lower than that of GSP. These results indicated that sterlet sperm quality can be revitalized by incubation with GSP. Further, fertilization capacity of BS after incubation in GSP can reach similar levels to the good quality sperm (∼70%). Low ion concentration and osmolality in BSP may be a partial cause of low sperm quality. The current study is the first report on the capability to revitalize low quality sterlet sperm by storage in GSP.
Collapse
|
4
|
Silveira CR, Varela Junior AS, Corcini CD, Soares SL, Anciuti AN, Kütter MT, Martínez PE. Effects of Bisphenol A on redox balance in red blood and sperm cells and spermatic quality in zebrafish Danio rerio. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:913-922. [PMID: 31396792 DOI: 10.1007/s10646-019-02091-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol-A (BPA) is a potential endocrine disruptor besides being associated with oxidative damage in several vertebrate classes. In the present study we investigated oxidative effects in erythrocytes and sperm cells as well as spermatic quality in Danio rerio exposed to 14 days at BPA concentrations of 2, 10 and 100 μg/L. Organelles structure, reactive species of oxygen (ROS) and lipoperoxidation (LPO) on erythrocytes and sperm cells were measured by flow cytometry and spermatic parameters were analyzed by the computer-assisted sperm analysis (CASA) system. For both cell types, when compared with control BPA treatment induced a significant increase in ROS and LPO production causing the membrane fluidity disorder, loss of membrane integrity and mitochondrial functionality. Furthermore, it was found a significant increase in DNA fragmentation in erythrocytes of zebrafish BPA exposed. Regarding the spermatic quality, results showed lower sperm motility in animals exposed to BPA, and alterations on velocity parameters of spermatozoa. Thus, the present study concludes that BPA affects the oxidative balance of both cell types, and that can directly affects the reproductive success of the adult Danio rerio. The sensitivity of erythrocytes to oxidative damage induced by BPA was similar to sperm cells, indicating a potential use of blood cells as indicators of oxidative damage present in fish sperm.
Collapse
Affiliation(s)
- C R Silveira
- Reprodução Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - A S Varela Junior
- Reprodução Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - C D Corcini
- Reprodução Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - S L Soares
- Reprodução Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - A N Anciuti
- Reprodução Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - M T Kütter
- Reprodução Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - P E Martínez
- Reprodução Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil.
| |
Collapse
|
5
|
Lee-Estevez M, Herrera L, Díaz R, Beltrán J, Figueroa E, Dumorné K, Ulloa-Rodríguez P, Short S, Risopatrón J, Valdebenito I, Farías J. Effects of cryopreservation on cAMP-dependent protein kinase and AMP-activated protein kinase in Atlantic salmon (Salmo salar) spermatozoa: Relation with post-thaw motility. Anim Reprod Sci 2019; 209:106133. [PMID: 31514940 DOI: 10.1016/j.anireprosci.2019.106133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023]
Abstract
Sperm motility in fish with external fertilization is critical for reproductive efficiency in aquaculture, especially in salmonids. Gamete preservation techniques, such as cryopreservation, however, reduce sperm motility and fertilizing capacity. Very few studies have addressed cryodamage from energetic and cell signalling approaches. In this study, cAMP-dependent protein kinase (PKA) and AMP-activated kinase (AMPK) activities were quantified in fresh and cryopreserved spermatozoa of Atlantic salmon (Salmo salar); and the relation with motility was analysed. Results indicate there was a decrease in membrane integrity and motility in post-thawed spermatozoa compared to fresh samples, however, there was about 30% of cells with intact plasma membrane but incapable of motility. The PKA and AMPK activities were less after cryopreservation, indicating that loss of motility may be related to alteration of these key enzymes. Furthermore, PKA and AMPK activities were positively correlated with each other and with motility; and inhibition decreased motility, indicating there is a functional relationship between PKA and AMPK. The PKA inhibition also decreased AMPK activity, but results from protein-protein docking analyses indicated AMPK activation directly by PKA is unlikely, thus an indirect mechanism may exist. There have been no previous reports of these kinase actions in fish spermatozoa, making these findings worthy of assessment when there are future studies being planned, and may serve as base knowledge for optimization of cryopreservation procedures and development of biotechnologies to improve reproduction efficiency in the aquaculture industry.
Collapse
Affiliation(s)
- Manuel Lee-Estevez
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145 Box 54D, Temuco, Chile; Center of Biotechnology of Reproduction (CEBIOR), Bioresources Research Nucleus (BIOREN), Universidad de La Frontera, Montevideo 0870, Temuco, Chile
| | - Lisandra Herrera
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145 Box 54D, Temuco, Chile
| | - Rommy Díaz
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145 Box 54D, Temuco, Chile; Center of Biotechnology of Reproduction (CEBIOR), Bioresources Research Nucleus (BIOREN), Universidad de La Frontera, Montevideo 0870, Temuco, Chile
| | - Jorge Beltrán
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145 Box 54D, Temuco, Chile; Center of Biotechnology of Reproduction (CEBIOR), Bioresources Research Nucleus (BIOREN), Universidad de La Frontera, Montevideo 0870, Temuco, Chile
| | - Elías Figueroa
- School of Aquaculture. Catholic University of Temuco, Av. Rudecindo Ortega 02950, Temuco, Chile; Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Kelly Dumorné
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145 Box 54D, Temuco, Chile; Center of Biotechnology of Reproduction (CEBIOR), Bioresources Research Nucleus (BIOREN), Universidad de La Frontera, Montevideo 0870, Temuco, Chile
| | - Patricio Ulloa-Rodríguez
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145 Box 54D, Temuco, Chile; Center of Biotechnology of Reproduction (CEBIOR), Bioresources Research Nucleus (BIOREN), Universidad de La Frontera, Montevideo 0870, Temuco, Chile
| | - Stefanía Short
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145 Box 54D, Temuco, Chile; Center of Biotechnology of Reproduction (CEBIOR), Bioresources Research Nucleus (BIOREN), Universidad de La Frontera, Montevideo 0870, Temuco, Chile
| | - Jennie Risopatrón
- Center of Biotechnology of Reproduction (CEBIOR), Bioresources Research Nucleus (BIOREN), Universidad de La Frontera, Montevideo 0870, Temuco, Chile
| | - Ivan Valdebenito
- School of Aquaculture. Catholic University of Temuco, Av. Rudecindo Ortega 02950, Temuco, Chile
| | - Jorge Farías
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145 Box 54D, Temuco, Chile; Center of Biotechnology of Reproduction (CEBIOR), Bioresources Research Nucleus (BIOREN), Universidad de La Frontera, Montevideo 0870, Temuco, Chile.
| |
Collapse
|
6
|
Alavi SMH, Cosson J, Bondarenko O, Linhart O. Sperm motility in fishes: (III) diversity of regulatory signals from membrane to the axoneme. Theriogenology 2019; 136:143-165. [PMID: 31265944 DOI: 10.1016/j.theriogenology.2019.06.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
Fish spermatozoa acquire potential for motility in the sperm duct where they are immotile. Osmolality of the seminal plasma is a key factor to maintain spermatozoa in the quiescent state in either freshwater or marine fishes. However, potassium (K+) ions prevent spermatozoa motility in salmonid and sturgeon fishes, while CO2 inhibits spermatozoa motility in flatfishes. Once, spermatozoa are released at spawning, their motility is initiated in hypo-osmotic and hyper-osmotic environments in freshwater and marine fishes, respectively. Some substances produced by the testes (a progestin), or released from oocytes (peptides) induce spermatozoa hypermotility in some marine fishes including the Atlantic croaker and Pacific herrings, respectively. Duration of spermatozoa motility is short, lasting for a few seconds to few minutes in most fishes due to rapid depletion of energy required for the beating of the motility apparatus called axoneme. In the osmotic-activated spermatozoa, K+ and water effluxes occur in freshwater and marine fishes, respectively, which trigger spermatozoa motility signaling. In general, initiation of axonemal beating is associated with an increase in intracellular calcium (Ca2+) ions in spermatozoa of both freshwater and marine fishes and a post- or pre-increase in intracellular pH, while cyclic adenosine monophosphate (cAMP) remains unchanged. However, axonemal beating is cAMP-dependent in demembranated spermatozoa of salmonid and sturgeon fishes. Calcium from extracellular environment or intracellular stores supply required Ca2+ concentration for axonemal beating. Several axonemal proteins have been so far identified in fishes that are activated by Ca2+ and cAMP, directly or mediated by protein kinase C and protein kinase A, respectively. The present study reviews differences and similarities in complex regulatory signals controlling spermatozoa motility initiation in fishes, and notes physiological mechanisms that await elucidation.
Collapse
Affiliation(s)
| | - Jacky Cosson
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, 389 25, Czech Republic.
| | - Olga Bondarenko
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, 389 25, Czech Republic
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, 389 25, Czech Republic.
| |
Collapse
|
7
|
Li S, Ao L, Yan Y, Jiang J, Chen B, Duan Y, Shen F, Chen J, Inglis B, Ni R, Ji W, Si W. Differential motility parameters and identification of proteomic profiles of human sperm cryopreserved with cryostraw and cryovial. Clin Proteomics 2019; 16:24. [PMID: 31244561 PMCID: PMC6582484 DOI: 10.1186/s12014-019-9244-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 06/08/2019] [Indexed: 01/10/2023] Open
Abstract
Background Although sperm cryopreservation has been widely used in human reproductive medicine as an integral infertility management in infertility clinics and for banking sperm in sperm banks, the freezing/thawing protocols are not optimal. The freezing and thawing processes result in changes at both structural and molecular levels, some even detrimental, in human sperm when compared with fresh sperm. The change of sperm proteins after cryopreservation may play negative roles for fertilization and early embryo development. Conventionally, cryostraws (CS) and cryovials (CV) are the most widely used cryopreservation carriers (CPCs) for human sperm cryopreservation accompanied with the use of egg yolk free commercial media. However, the influence of cryopreservation on the proteomic profile of human sperm preserved with the two CPCs is unknown. Therefore the purpose of the present study was to compare the frozen-thawed motility, investigate the proteomic profile of human sperm cryopreserved with the two types of CPCs, and identify the susceptible proteins that play key roles for sperm function and fertility. Methods The present study compared the cryosurvival of human sperm frozen with the two different CPCs and identified the sperm proteomic changes by using the isobaric tags for relative and absolute quantification labeling technique coupled with 2D LC–MS/MS analysis after freezing and thawing. Results Our results indicated that sperm cryopreserved with CV showed higher values for percentage of motile sperm and forward activity rate than those with CS. Compared to fresh sperm, 434 and 432 proteins were differentially identified in human sperm cryopreserved with CS and CV, respectively. Conclusion The proteomic profiles of human sperm are greatly affected by cryopreservation with either type of CPC. GO analysis revealed that most of the differentially identified sperm proteins enriched in the extracellular membrane-bounded organelles, cytoplasm and cytosol. In addition, 106 susceptible proteins having known identities related to sperm functions were identified. In general, cryovial seems to be the preferred CPC for human sperm cryopreservation based on the post-thaw motility parameters and the effect on sperm proteomic profiles. These results are beneficial for the insight into the understanding of the cryoinjury mechanism of sperm and the development of human sperm cryopreservation strategies. Electronic supplementary material The online version of this article (10.1186/s12014-019-9244-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanshan Li
- 1Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| | - Lei Ao
- Kunming Sino-UK Angel Women's & Children's Hospital, Kunming, Yunnan China
| | - Yaping Yan
- 1Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| | - Jiang Jiang
- 3Department of Obstetrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan China
| | - Bingbing Chen
- 1Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| | - Yanchao Duan
- 1Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| | - Fei Shen
- Kunming Sino-UK Angel Women's & Children's Hospital, Kunming, Yunnan China
| | - Jinbao Chen
- Kunming Sino-UK Angel Women's & Children's Hospital, Kunming, Yunnan China
| | - Briauna Inglis
- 1Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| | - Renmin Ni
- Kunming Sino-UK Angel Women's & Children's Hospital, Kunming, Yunnan China
| | - Weizhi Ji
- 1Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| | - Wei Si
- 1Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| |
Collapse
|
8
|
Nynca J, Słowińska M, Judycka S, Ciereszko A. Maladaptation of trout spermatozoa to fresh water is related to oxidative stress and proteome changes. Reproduction 2019; 157:485-499. [PMID: 30921765 DOI: 10.1530/rep-19-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/01/2019] [Indexed: 11/08/2022]
Abstract
Rainbow trout sperm are 'maladapted' to freshwater spawning, resulting in shorter duration of sperm motility in fresh water compared to buffered saline solution. We hypothesized that different sperm motility-activating media have various effects on sperm motility characteristics and oxidative stress, as well as on the protein profiles of rainbow trout sperm. We designed an experimental model for activation of rainbow trout sperm motility in different osmotic conditions: (i) isosmotic and (ii) hypoosmotic. Spermatozoa activation with hypoosmotic solution was associated with lower values for sperm motility parameters (52%) and an induced increase in ROS level (19.4%) in comparison to isosmotic activation with isosmotic solution (67 and 9.5% for sperm motility and ROS, respectively). Hypoosmotic activation resulted in a higher number of differentially abundant sperm proteins (out of which 50 were identified) compared to isosmotic conditions, where only two spots of protein disulfide-isomerase 6 were changed in abundance. The proteins are mainly involved in the TCA cycle, tight and gap junction signaling, Sertoli cell-Sertoli cell junction signaling and asparagine degradation. Our results, for the first time, indicate that during hypoosmotic activation of sperm motility, osmotic stress triggers oxidative stress and disturbances mostly to structural proteins and metabolic enzymes. Our results strongly suggest that comparative physiological and biochemical analysis of rainbow trout sperm characteristics in isosmotic and hypoosmotic conditions could be a useful model for studying the mechanism of sperm activation in salmonid fish.
Collapse
Affiliation(s)
- J Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - M Słowińska
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - S Judycka
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - A Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
9
|
Dietrich MA, Nynca J, Ciereszko A. Proteomic and metabolomic insights into the functions of the male reproductive system in fishes. Theriogenology 2019; 132:182-200. [PMID: 31029849 DOI: 10.1016/j.theriogenology.2019.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 02/08/2023]
Abstract
Proteomics and metabolomics are emerging and powerful tools to unravel the complex molecular mechanisms regulating reproduction in male fish. So far, numerous proteins and metabolites have been identified that provide us with valuable information to conduct a comprehensive analysis on seminal plasma and spermatozoa components and their functions. These analyses have allowed a better understanding of the blood-testis barrier functions, the molecular mechanisms underlying spermatogenesis, spermatozoa maturation, motility signaling, and competition as well as the mechanism of cryodamage to sperm structure and functions. To extend, proteins that undergo posttranslational modification, such as phosphorylation and oxidation in response to spermatozoa motility activation and cryopreservation, respectively, have been identified. Proteomic studies resulted in identification of potential proteins that can be used as biomarkers for sperm quality and freezability to enable the control of artificial reproduction, and to improve methods for long-term preservation (cryopreservation) of sperm. The different proteins expressed in the spermatozoa of neomales and normal males can also provide new insights into development of methods for separating X and Y fish sperm, and changes in the protein profiles in haploid and diploid spermatozoa will provide new perspectives to better understand the mechanism of male polyploidy. Overall, the knowledge gained by proteomic and metabolomic studies is important from basic to applied sciences for the development and/or optimisation of techniques in controlled fish reproduction.
Collapse
Affiliation(s)
- Mariola A Dietrich
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Joanna Nynca
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Andrzej Ciereszko
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
10
|
Dzyuba B, Legendre M, Baroiller JF, Cosson J. Sperm motility of the Nile tilapia (Oreochromis niloticus): Effects of temperature on the swimming characteristics. Anim Reprod Sci 2019; 202:65-72. [PMID: 30717995 DOI: 10.1016/j.anireprosci.2019.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 11/19/2022]
Abstract
Results of previous studies with different fish species, mostly from temperate- or cold-water habitats, indicate a species-specific diversity regarding the relationship between environmental temperature and values for sperm motility variables. In the current study, there was appraisal of environmental temperature effects on sperm motility of tilapia Oreochromis niloticus, a tropical fish species selected because of its aquaculture importance and capacity to reproduce in a broad range of water temperatures. Effects of environmental temperature on the spermatozoa motility characteristics were studied by temperature-controlled video-microscopy and CASA analysis at temperature range from 5 to 50 °C. It appeared that the Nile tilapia spermatozoa exhibit an unexpected capacity to express very different velocity characteristics over this temperature range. In the lower temperature range (5-10 °C), the percentage of motile cells was markedly variable among males. An abrupt increase in the linearity index was observed between 15 and 20 °C suggesting a physiological threshold in sperm movement at about 20 °C which is the minimum temperature for reproduction in the Nile tilapia. With faster spermatozoa velocity, there was a reduction of the motility duration at the greater temperatures. Initially, there is an increase in sperm velocity as the temperature increased until the maximal velocity occurred at 40 to 50 °C which is a temperature beyond that which occurs in natural spawning conditions. Results of the present study clearly indicate the importance of considering ambient temperature when charactering sperm motility and in determining optimal temperature conditions for fertilization in fish.
Collapse
Affiliation(s)
- Borys Dzyuba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Marc Legendre
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Jean François Baroiller
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France; CIRAD, UMR ISEM, F-34398 Montpellier, France
| | - Jacky Cosson
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
11
|
Phosphorylation of axonemal 21 kDa and 26 kDa proteins modulates activation of sperm motility in the ascidian, Ciona intestinalis. ZYGOTE 2018. [DOI: 10.1017/s0967199400130291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein phosphorylation is highly coupled with sperm motility activation in several animal species. The micro-tubule based flagellar motor protein, dynein, is a candidate for a phosphoprotein related to sperm activation in many animal species (Morisawa & Hayashi, 1985; Hayashi et al., 1987; Dey & Brokaw, 1991; Stephens & Prior, 1992; Inaba et al., 1998, 1999). Sperm motility of the ascidians Ciona intestinalis and C. savignyi is activated by a factor derived from unfertilised eggs named sperm activating and attracting factor (SAAF). SAAF elevates the intracellular cyclic AMP (cAMP) level by a mechanism dependent on membrane hyperpolarisation and extracellular Ca2+ (Yoshida et al., 1994; Izumi et al., 1999). Experiments using demembranated Ciona sperm showed that cAMP is required prior to ATP for the activation of axonemal movement (Opreska & Brokaw, 1983; Morisawa et al., 1984; Brokaw, 1985; Dey & Brokaw, 1991; Chaudhry et al., 1995) and that many sperm flagellar proteins including dynein light chain are phosphorylated during incubation of demembranated sperm with ATP and cAMP (Dey & Brokaw, 1991). However, there is no evidence of which proteins are phosphorylated during the SAAF-dependent activation of Ciona sperm motility.
Collapse
|
12
|
Dziewulska K, Pilarska M. Inhibitory effect of K+ ions and influence of other ions and osmolality on the spermatozoa motility of European burbot (Lota lota L.). PLoS One 2018; 13:e0196415. [PMID: 29768446 PMCID: PMC5955499 DOI: 10.1371/journal.pone.0196415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/12/2018] [Indexed: 11/20/2022] Open
Abstract
Background In fish with external fertilization, two main start-up mechanisms of the path that blocks or activates the spermatozoan motility apparatus are known. The main factor managing the path is osmolality or potassium ion. In burbot from the European and North American population, contradictory findings regarding the factors influencing the onset of spermatozoa motility were reported. The objective of the current study was to determine the effect of potassium and osmolality on the spermatozoa activation of European burbot, Lota lota (Actinopterygii, Gadiformes, Lotidae). Moreover, the influence of pH, as well as sodium ion concentrations on spermatozoa motility was investigated. Seven parameters characterising motility were traced by means of computer-assisted sperm analysis (CASA). Principal findings The spermatozoa of European burbot are K+ ion-sensitive. A 6-mM KCl solution significantly decreased motility, and above 12-mM (50 mOsm kg-1) totally ceased spermatozoa movement. Sucrose and Na+ solutions inhibited spermatozoa movement only at concentrations > 450–480 mOsm kg-1. Greater differences in the percentage of motile sperm between individuals were noted in solutions containing high concentrations of chemicals triggering sperm motility. The optimum osmolality for spermatozoa motility is in the range of 100–200 mOsm kg-1. The burbot spermatozoa were motile over a wide range of pH values with the best activation at pH 9. Conclusion It was demonstrated that the spermatozoa of European burbot are inhibited by K+ ions similarly as in North American burbot. Other electrolyte and non-electrolyte solutions inhibit spermatozoa movement only if their osmolality is greater than that of the physiological osmolality of seminal plasma. The data provided on basic knowledge of burbot spermatozoa allow to ensure appropriate conditions during artificial reproduction and scientific research.
Collapse
Affiliation(s)
- Katarzyna Dziewulska
- Department of General Zoology, Faculty of Biology, University of Szczecin, Szczecin, Poland
- Centre of Molecular Biology and Biotechnology, University of Szczecin, Szczecin, Poland
- * E-mail:
| | - Malwina Pilarska
- Department of General Zoology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| |
Collapse
|
13
|
Inaba K, Shiba K. Microscopic analysis of sperm movement: links to mechanisms and protein components. Microscopy (Oxf) 2018; 67:144-155. [DOI: 10.1093/jmicro/dfy021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/25/2018] [Indexed: 01/07/2023] Open
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| |
Collapse
|
14
|
Hu F, Xu K, Zhou Y, Wu C, Wang S, Xiao J, Wen M, Zhao R, Luo K, Tao M, Duan W, Liu S. Different expression patterns of sperm motility-related genes in testis of diploid and tetraploid cyprinid fish†. Biol Reprod 2018; 96:907-920. [PMID: 28340181 PMCID: PMC5441299 DOI: 10.1093/biolre/iox010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/01/2017] [Indexed: 11/25/2022] Open
Abstract
Sperm motility is an important standard to measure the fertility of male. In our previous study, we found that the diploid spermatozoa from allotetraploid hybrid (4nAT) had longer durations of rapid and slow progressive motility than haploid spermatozoa from common carp (COC). In this study, to explore sperm motility-related molecular mechanisms, we compared the testis tissues transcriptomes from 2-year-old male COC and 4nAT. The RNA-seq data revealed that 2985 genes were differentially expressed between COC and 4nAT, including 2216 upregulated and 769 downregulated genes in 4nAT. Some differentially expressed genes, such as tubulin genes, dynein, axonemal, heavy chain(dnah) genes, mitogen-activated protein kinase(mapk) genes, tektin 4, FOX transcription factors, proteasome genes, and ubiquitin carboxyl-terminal hydrolase(uchl) genes, are involved in the regulation of cell division, flagellar and ciliary motility, gene transcription, cytoskeleton, energy metabolism, and the ubiquitin–proteasome system, suggesting that these genes were related to sperm motility of the 4nAT. We confirmed the differential expression of 12 such genes in 4nAT by quantitative PCR. By western blotting, we also confirmed increased expression of Uchl3 in 4nAT testis. In addition, we identified 1915 and 2551 predicted long noncoding RNA (lncRNA) transcripts from testis tissue transcriptomes of COC and 4nAT, respectively. Of these, 1575 lncRNAs were specifically expressed in 4nAT and 939 were specifically expressed in COC. This study provides insights into the transcriptome profile of testis tissues from diploid and tetraploid, which are useful for research on regulatory mechanisms behind sperm motility in male polyploidy.
Collapse
Affiliation(s)
- Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Kang Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Yunfan Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Min Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Wei Duan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| |
Collapse
|
15
|
Crystal structure of a Ca 2+-dependent regulator of flagellar motility reveals the open-closed structural transition. Sci Rep 2018; 8:2014. [PMID: 29386625 PMCID: PMC5792641 DOI: 10.1038/s41598-018-19898-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/10/2018] [Indexed: 12/28/2022] Open
Abstract
Sperm chemotaxis toward a chemoattractant is very important for the success of fertilization. Calaxin, a member of the neuronal calcium sensor protein family, directly acts on outer-arm dynein and regulates specific flagellar movement during sperm chemotaxis of ascidian, Ciona intestinalis. Here, we present the crystal structures of calaxin both in the open and closed states upon Ca2+ and Mg2+ binding. The crystal structures revealed that three of the four EF-hands of a calaxin molecule bound Ca2+ ions and that EF2 and EF3 played a critical role in the conformational transition between the open and closed states. The rotation of α7 and α8 helices induces a significant conformational change of a part of the α10 helix into the loop. The structural differences between the Ca2+- and Mg2+-bound forms indicates that EF3 in the closed state has a lower affinity for Mg2+, suggesting that calaxin tends to adopt the open state in Mg2+-bound form. SAXS data supports that Ca2+-binding causes the structural transition toward the closed state. The changes in the structural transition of the C-terminal domain may be required to bind outer-arm dynein. These results provide a novel mechanism for recognizing a target protein using a calcium sensor protein.
Collapse
|
16
|
Activation of free sperm and dissociation of sperm bundles (spermatozeugmata) of an endangered viviparous fish, Xenotoca eiseni. Comp Biochem Physiol A Mol Integr Physiol 2018; 218:35-45. [PMID: 29371117 DOI: 10.1016/j.cbpa.2018.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/18/2022]
Abstract
Knowledge of sperm motility activation for viviparous fishes has been limited to study of several species in Poeciliidae, and the dissociation of sperm bundles is even less understood. The goal of this study was to use the endangered Redtail Splitfin (Xenotoca eiseni) as a model to investigate the activation of sperm from viviparous fishes by study of free sperm and spermatozeugmata (unencapsulated sperm bundles). The specific objectives were to evaluate the effects of: (1) osmotic pressure and refrigerated storage (4 °C) on activation of free sperm, (2) osmotic pressure, ions, and pH on dissociation of spermatozeugmata, and (3) CaCl2 concentration and pH on sperm membrane integrity. Free sperm were activated in Ca2+-free Hanks' balanced salt solution at 81-516 mOsmol/kg. The highest motility (19 ± 6%) was at 305 mOsmol/kg and swim remained for 84 h. Glucose (300-700 mOsmol/kg), NaCl (50-600 mOsmol/kg), and KCl, MgCl2, and MnCl2 at 5-160 mM activated sperm within spermatozeugmata, but did not dissociate spermatozeugmata. CaCl2 at 5-160 mM dissociated spermatozeugmata within 10 min. Solutions of NaCl-NaOH at pH 11.6 to 12.4 dissociated spermatozeugmata within 1 min. The percentage of viable cells had no significant differences (P = 0.2033) among different concentrations of CaCl2, but it was lower (P < 0.0001) at pH 12.5 than at pH between 7.0 and 12.0. Overall, this study provided a foundation for quality evaluation of sperm and spermatozeugmata from livebearing fishes, and for development of germplasm repositories for imperiled goodeids.
Collapse
|
17
|
Gazo I, Dietrich MA, Prulière G, Shaliutina-Kolešová A, Shaliutina O, Cosson J, Chenevert J. Protein phosphorylation in spermatozoa motility of Acipenser ruthenus and Cyprinus carpio. Reproduction 2017; 154:653-673. [PMID: 28851826 DOI: 10.1530/rep-16-0662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 08/17/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022]
Abstract
Spermatozoa of externally fertilizing freshwater fish possess several different modes of motility activation. Spermatozoa of common carp (Cyprinus carpio L.) are activated by hypoosmolality, whereas spermatozoa of sterlet (Acipenser ruthenus) require Ca2+ and low concentration of K+ for motility activation. Intracellular signaling differs between these two species as well, particularly in terms of utilization of secondary messengers (cAMP and Ca2+), and kinase activities. The current study was performed in order to determine the importance of protein phosphorylation and protein kinases for activation of sperm motility in carp and sterlet. Treatment with kinase inhibitors indicates that protein kinases A and C (PKA and PKC) participate in spermatozoa motility of both species. Immunodetection of phospho-(Ser/Thr) PKA substrates shows that phosphorylated proteins are localized differently in spermatozoa of carp and sterlet. Strong phosphorylation of PKC substrate was observed in flagella of sterlet spermatozoa, whereas in carp sperm, PKC substrates were lightly phosphorylated in the midpiece and flagella. Motility activation induced either phosphorylation or dephosphorylation on serine, threonine and tyrosine residues of numerous proteins in carp and sterlet spermatozoa. Proteomic methods were used to identify proteins whose phosphorylation state changes upon the initiation of sperm motility. Numerous mitochondrial and glycolytic enzymes were identified in spermatozoa of both species, as well as axonemal proteins, heat shock proteins, septins and calcium-binding proteins. Our results contribute to an understanding of the roles of signaling molecules, protein kinases and protein phosphorylation in motility activation and regulation of two valuable fish species, C. carpio and A. ruthenus.
Collapse
Affiliation(s)
- Ievgeniia Gazo
- University of South Bohemia in Cˇeské Budeˇjovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnˇany, Czech Republic
| | - Mariola A Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Gérard Prulière
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, Villefranche sur-mer, France
| | - Anna Shaliutina-Kolešová
- University of South Bohemia in Cˇeské Budeˇjovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnˇany, Czech Republic
| | - Olena Shaliutina
- University of South Bohemia in Cˇeské Budeˇjovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnˇany, Czech Republic
| | - Jacky Cosson
- University of South Bohemia in Cˇeské Budeˇjovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnˇany, Czech Republic
| | - Janet Chenevert
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, Villefranche sur-mer, France
| |
Collapse
|
18
|
Kasahara M, Suetsugu N, Urano Y, Yamamoto C, Ohmori M, Takada Y, Okuda S, Nishiyama T, Sakayama H, Kohchi T, Takahashi F. An adenylyl cyclase with a phosphodiesterase domain in basal plants with a motile sperm system. Sci Rep 2016; 6:39232. [PMID: 27982074 PMCID: PMC5159850 DOI: 10.1038/srep39232] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/18/2016] [Indexed: 01/03/2023] Open
Abstract
Adenylyl cyclase (AC), which produces the signalling molecule cAMP, has numerous important cellular functions in diverse organisms from prokaryotes to eukaryotes. Here we report the identification and characterization of an AC gene from the liverwort Marchantia polymorpha. The encoded protein has both a C-terminal AC catalytic domain similar to those of class III ACs and an N-terminal cyclic nucleotide phosphodiesterase (PDE) domain that degrades cyclic nucleotides, thus we designated the gene MpCAPE (COMBINED AC with PDE). Biochemical analyses of recombinant proteins showed that MpCAPE has both AC and PDE activities. In MpCAPE-promoter-GUS lines, GUS activity was specifically detected in the male sexual organ, the antheridium, suggesting MpCAPE and thus cAMP signalling may be involved in the male reproductive process. CAPE orthologues are distributed only in basal land plants and charophytes that use motile sperm as the male gamete. CAPE is a subclass of class III AC and may be important in male organ and cell development in basal plants.
Collapse
Affiliation(s)
- Masahiro Kasahara
- Graduate School of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Urano
- Graduate School of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Chiaki Yamamoto
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Mikiya Ohmori
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Yuki Takada
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Ishikawa 920-0934, Japan
| | - Hidetoshi Sakayama
- Department of Biology, Graduate School of Science, Kobe University, Hyogo 657-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Fumio Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| |
Collapse
|
19
|
Siddique MAM, Linhart O, Kujawa R, Krejszeff S, Butts IAE. Composition of seminal plasma and ovarian fluid in IdeLeuciscus idusand Northern pikeEsox lucius. Reprod Domest Anim 2016; 51:960-969. [DOI: 10.1111/rda.12773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/02/2016] [Indexed: 01/06/2023]
Affiliation(s)
- MAM Siddique
- Faculty of Fisheries and Protection of Waters; University of South Bohemia in Ceske Budejovice; South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses; Research Institute of Fish Culture and Hydrobiology; Vodňany Czech Republic
| | - O Linhart
- Faculty of Fisheries and Protection of Waters; University of South Bohemia in Ceske Budejovice; South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses; Research Institute of Fish Culture and Hydrobiology; Vodňany Czech Republic
| | - R Kujawa
- Department of Lake and River Fisheries; Warmia and Mazury University; Olsztyn Poland
| | - S Krejszeff
- Department of Lake and River Fisheries; Warmia and Mazury University; Olsztyn Poland
| | - IAE Butts
- DTU Aqua-National Institute of Aquatic Resources; Section for Marine Ecology and Oceanography; Technical University of Denmark; Charlottenlund Denmark
| |
Collapse
|
20
|
Dietrich MA, Dietrich GJ, Mostek A, Ciereszko A. Motility of carp spermatozoa is associated with profound changes in the sperm proteome. J Proteomics 2016; 138:124-35. [PMID: 26926441 DOI: 10.1016/j.jprot.2016.02.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/21/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED In freshwater cyprinids, spermatozoa are quiescent in seminal plasma and sperm motility is initiated by a decrease in osmolality (hypo-osmotic shock) after discharge into the aqueous environment. However, it is unknown at present if and to what extent changes in proteins are involved in carp sperm motility. Therefore, the aim of our study was to identify proteins related to carp sperm motility through a comparison of immobilized and activated carp spermatozoa using a 2D-DIGE approach. Our results, for the first time indicated that carp sperm motility is associated with changes in protein content. Seventy-two differentially expressed proteins were identified. These proteins are mainly involved in ubiquitin-proteasome pathways, glycolysis, the TCA cycle, remodeling and are putatively related to sperm energy metabolism and motility. Moreover proteins associated with oxidative stress responses, signal transduction by Ca(2+)-dependent MAPK cascades, and PKC and protein folding have been identified. The proteins involved in carp sperm motility were localized to the cytoplasm, mitochondria, cytoskeleton, nucleus and sperm membrane. The identification of a high number of proteins involved in carp sperm motility would contribute to current knowledge about the molecular mechanisms of sperm motility in freshwater fish. BIOLOGICAL SIGNIFICANCE To the best of our knowledge, few changes in proteins involved in the initiation of fish sperm motility have been identified. This is a limited number of proteins compared with the 80 recently identified proteins involved in human sperm motility. However, no proteomic studies of sperm motility have yet been performed on freshwater fish. Our present study allowed for the first time a comprehensive characterization of the proteins associated with carp sperm motility and a better understanding of the molecular mechanisms underlying sperm motility activation and maintenance. The application of 2D-DIGE facilitated the identification proteins crucial for sperm structural organization and motility. The identification of a high number of proteins involved in carp sperm motility would contribute appreciably to the presently limited information available on the mechanisms of sperm motility in freshwater fish. Moreover the identified list of proteins will create a platform for future studies designed to assess the functional significance of specific proteins in sperm motility.
Collapse
Affiliation(s)
- Mariola A Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Grzegorz J Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Agnieszka Mostek
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
21
|
Duan W, Xu K, Hu F, Zhang Y, Wen M, Wang J, Tao M, Luo K, Zhao R, Qin Q, Zhang C, Liu J, Liu Y, Liu S. Comparative Proteomic, Physiological, Morphological, and Biochemical Analyses Reveal the Characteristics of the Diploid Spermatozoa of Allotetraploid Hybrids of Red Crucian Carp (Carassius auratus) and Common Carp (Cyprinus carpio). Biol Reprod 2015; 94:35. [PMID: 26674567 DOI: 10.1095/biolreprod.115.132787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 12/08/2015] [Indexed: 01/19/2023] Open
Abstract
The generation of diploid spermatozoa is essential for the continuity of tetraploid lineages. The DNA content of diploid spermatozoa from allotetraploid hybrids of red crucian carp and common carp was nearly twice as great as that of haploid spermatozoa from common carp, and the durations of rapid and slow progressive motility were longer. We performed comparative proteomic analyses to measure variations in protein composition between diploid and haploid spermatozoa. Using two-dimensional electrophoresis followed by liquid chromatography tandem mass spectrometry, 21 protein spots that changed in abundance were analyzed. As the common carp and the allotetraploid hybrids are not fully sequenced organisms, we identified proteins by Mascot searching against the National Center for Biotechnology Information non-redundant (NR) protein database for the zebrafish (Danio rerio), and verified them against predicted homologous proteins derived from transcriptomes of the testis. Twenty protein spots were identified successfully, belonging to four gene ontogeny categories: cytoskeleton, energy metabolism, the ubiquitin-proteasome system, and other functions, indicating that these might be associated with the variation in diploid spermatozoa. This categorization of variations in protein composition in diploid spermatozoa will provide new perspectives on male polyploidy. Moreover, our approach indicates that transcriptome data are useful for proteomic analyses in organisms lacking full protein sequences.
Collapse
Affiliation(s)
- Wei Duan
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Kang Xu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Fangzhou Hu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Yi Zhang
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Ming Wen
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Jing Wang
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Min Tao
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Kaikun Luo
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Rurong Zhao
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Qinbo Qin
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Chun Zhang
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Jinhui Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Yun Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Shaojun Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
22
|
Abstract
Sperm motility is driven by motile cytoskeletal elements in the tail, called axonemes. The structure of axonemes consists of 9 + 2 microtubules, molecular motors (dyneins), and their regulatory structures. Axonemes are well conserved in motile cilia and flagella through eukaryotic evolution. Deficiency in the axonemal structure causes defects in sperm motility, and often leads to male infertility. It has been known since the 1970s that, in some cases, male infertility is linked with other symptoms or diseases such as Kartagener syndrome. Given that these links are mostly caused by deficiencies in the common components of cilia and flagella, they are called "immotile cilia syndrome" or "primary ciliary dyskinesia," or more recently, "ciliopathy," which includes deficiencies in primary and sensory cilia. Here, we review the structure of the sperm flagellum and epithelial cilia in the human body, and discuss how male fertility is linked to ciliopathy.
Collapse
|
23
|
Dietrich MA, Arnold GJ, Fröhlich T, Otte KA, Dietrich GJ, Ciereszko A. Proteomic analysis of extracellular medium of cryopreserved carp (Cyprinus carpio L.) semen. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 15:49-57. [DOI: 10.1016/j.cbd.2015.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
|
24
|
Nynca J, Arnold GJ, Fröhlich T, Ciereszko A. Cryopreservation-induced alterations in protein composition of rainbow trout semen. Proteomics 2015; 15:2643-54. [PMID: 25780999 DOI: 10.1002/pmic.201400525] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/30/2015] [Accepted: 03/13/2015] [Indexed: 11/06/2022]
Abstract
The aim of this study was to detect cryopreservation-induced alterations in the protein composition of rainbow trout semen using two independent methods 1DE SDS-PAGE prefractionation combined with LC-MS/MS and 2D difference gel electrophoresis followed by MALDI-TOF/TOF identification. Here, we show the first comprehensive dataset of changes in rainbow trout semen proteome after cryopreservation, with a total of 73 identified proteins released from sperm to extracellular fluid, including mitochondrial, cytoskeletal, nuclear, and cytosolic proteins. Our study provides new information about proteins released from sperm, their relation to sperm structure and function, and changes of metabolism of sperm cells as a result of cryopreservation. The identified proteins represent potential markers of cryoinjures of sperm structures and markers of the disturbances of particular sperm metabolic pathways. Further studies will allow to decipher the precise function of the proteins altered during rainbow trout cryopreservation and are useful for the development of extensive diagnostic tests of sperm cryoinjures and for the successful improvement of sperm cryopreservation of this economically important species.
Collapse
Affiliation(s)
- Joanna Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima, Olsztyn, Poland
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima, Olsztyn, Poland
| |
Collapse
|
25
|
Dietrich MA, Arnold GJ, Fröhlich T, Ciereszko A. In-depth proteomic analysis of carp (Cyprinus carpio L) spermatozoa. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 12:10-5. [PMID: 25305539 DOI: 10.1016/j.cbd.2014.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
Abstract
Using a combination of protein fractionation by one-dimensional gel electrophoresis and high performance liquid chromatography-electrospray ionization tandem mass spectrometry, we identified 348 proteins in carp spermatozoa, most of which were for the first time identified in fish. Dynein, tubulin, HSP90, HSP70, HSP60, adenosylhomocysteinase, NKEF-B, brain type creatine kinase, mitochondrial ATP synthase, and valosin containing enzyme represent high abundance proteins in carp spermatozoa. These proteins are functionally related to sperm motility and energy production as well as the protection of sperm against oxidative injury and stress. Moreover, carp spermatozoa are equipped with functionally diverse proteins involved in signal transduction, transcription, translation, protein turnover and transport. About 15% of proteins from carp spermatozoa identified here were also detected in seminal plasma which may be a result of leakage from spermatozoa into seminal plasma, adsorption of seminal plasma proteins on spermatozoa surface, and expression in both spermatozoa and cells secreting seminal plasma proteins. The availability of a catalog of carp sperm proteins provides substantial advances for an understanding of sperm function and for future development of molecular diagnostic tests of carp sperm quality, the evaluation of which is currently limited to certain parameters such as sperm count, morphology and motility or viability. The mass spectrometry data are available at ProteomeXchange with the dataset identifier PXD000877 (DOI: http://dx.doi.org/10.6019/PXD000877).
Collapse
Affiliation(s)
- Mariola A Dietrich
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Department of Gamete and Embryo Biology, Olsztyn, Poland.
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Andrzej Ciereszko
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Department of Gamete and Embryo Biology, Olsztyn, Poland
| |
Collapse
|
26
|
Shiba K, Inaba K. Distinct roles of soluble and transmembrane adenylyl cyclases in the regulation of flagellar motility in Ciona sperm. Int J Mol Sci 2014; 15:13192-208. [PMID: 25073090 PMCID: PMC4159788 DOI: 10.3390/ijms150813192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/06/2014] [Accepted: 07/11/2014] [Indexed: 12/31/2022] Open
Abstract
Adenylyl cyclase (AC) is a key enzyme that synthesizes cyclic AMP (cAMP) at the onset of the signaling pathway to activate sperm motility. Here, we showed that both transmembrane AC (tmAC) and soluble AC (sAC) are distinctly involved in the regulation of sperm motility in the ascidian Ciona intestinalis. A tmAC inhibitor blocked both cAMP synthesis and the activation of sperm motility induced by the egg factor sperm activating and attracting factor (SAAF), as well as those induced by theophylline, an inhibitor of phoshodiesterase. It also significantly inhibited cAMP-dependent phosphorylation of a set of proteins at motility activation. On the other hand, a sAC inhibitor does not affect on SAAF-induced transient increase of cAMP, motility activation or protein phosphorylation, but it reduced swimming velocity to half in theophylline-induced sperm. A sAC inhibitor KH-7 induced circular swimming trajectory with smaller diameter and significantly suppressed chemotaxis of sperm to SAAF. These results suggest that tmAC is involved in the basic mechanism for motility activation through cAMP-dependent protein phosphorylation, whereas sAC plays distinct roles in increase of flagellar beat frequency and in the Ca2+-dependent chemotactic movement of sperm.
Collapse
Affiliation(s)
- Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 5-10-1, Shizuoka 415-0025, Japan.
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 5-10-1, Shizuoka 415-0025, Japan.
| |
Collapse
|
27
|
Aguilar-Juárez M, Ruiz-Campos G, Paniagua-Chávez CG. Cold storage of the sperm of the endemic trout Oncorhynchus mykiss nelsoni: a strategy for short-term germplasm conservation of endemic species. REV MEX BIODIVERS 2014. [DOI: 10.7550/rmb.36352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
28
|
Characterization of carp seminal plasma proteome in relation to blood plasma. J Proteomics 2014; 98:218-32. [DOI: 10.1016/j.jprot.2014.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/31/2013] [Accepted: 01/05/2014] [Indexed: 12/11/2022]
|
29
|
Dzyuba V, Cosson J. Motility of fish spermatozoa: from external signaling to flagella response. Reprod Biol 2014; 14:165-75. [PMID: 25152513 DOI: 10.1016/j.repbio.2013.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
For successful fertilization, spermatozoa must access, bind, and penetrate an egg, processes for which activation of spermatozoa motility is a prerequisite. Fish spermatozoa are stored in seminal plasma where they are immotile during transit through the genital tract of most externally fertilizing teleosts and chondrosteans. Under natural conditions, motility is induced immediately following release of spermatozoa from the male genital tract into the aqueous environment. The nature of an external trigger for the initiation of motility is highly dependent on the aquatic environment (fresh or salt water) and the species' reproductive behavior. Triggering signals include osmotic pressure, ionic and gaseous components of external media and, in some cases, egg-derived substances. Extensive study of environmental factors influencing fish spermatozoa motility has led to the proposal of several mechanisms of activation in freshwater and marine fish. However, the signal transduction pathways initiated by these mechanisms remain clear. This review presents the current knowledge with respect to (1) membrane reception of the activation signal and its transduction through the spermatozoa plasma membrane via the external membrane components, ion channels, and aquaporins; (2) cytoplasmic trafficking of the activation signal; (3) final steps of the signaling, including signal transduction to the axonemal machinery, and activation of axonemal dyneins and regulation of their activity; and (4) pathways supplying energy for flagellar motility.
Collapse
Affiliation(s)
- Viktoriya Dzyuba
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czech Republic; V.N. Karazin Kharkiv National University, Kharkiv, Ukraine.
| | - Jacky Cosson
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czech Republic
| |
Collapse
|
30
|
Physiological functions of osmolality and calcium ions on the initiation of sperm motility and swimming performance in redside dace, Clinostomus elongatus. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:147-57. [DOI: 10.1016/j.cbpa.2013.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/28/2013] [Accepted: 05/01/2013] [Indexed: 11/20/2022]
|
31
|
Klinbunga S, Petkorn S, Kittisenachai S, Phaonakrop N, Roytrakul S, Khamnamtong B, Menasveta P. Identification of reproduction-related proteins and characterization of proteasome alpha 3 and proteasome beta 6 cDNAs in testes of the giant tiger shrimp Penaeus monodon. Mol Cell Endocrinol 2012; 355:143-52. [PMID: 22361323 DOI: 10.1016/j.mce.2012.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 01/11/2012] [Accepted: 02/07/2012] [Indexed: 11/18/2022]
Abstract
Cellular proteomic analysis was carried out to identify reproduction-related proteins in testes of wild and domesticated broodstock of Penaeus monodon. In total, 642 protein spots were characterized and 287 spots (44.70%) significantly matched protein sequences in the databases (P<0.05). To examine a role of the proteasome system in testicular development of P. monodon, the expression profiles of proteasome alpha 3 subunit (PmPsma3) and proteasome beta 6 (PmPsmb6) mRNA in different groups of domesticated shrimp and in wild broodstock were examined. The expression levels of these transcripts in testes of 18-month-old domesticated shrimp were significantly lower than those of wild broodstock (P<0.05). Interestingly, the expression levels of testicular PmPsma3 and PmPsmb6 in 18-month-old shrimp were significantly increased at 24 h following serotonin injection (50 μg/g body weight). Results suggested that reduced degrees of maturation in captive P. monodon males may be partially resolved by exogenous 5-HT administration.
Collapse
Affiliation(s)
- Sirawut Klinbunga
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong 1, Klong Luang, Pathumthani 12120, Thailand.
| | | | | | | | | | | | | |
Collapse
|
32
|
Takei GL, Mukai C, Okuno M. Transient Ca2+ mobilization caused by osmotic shock initiates salmonid fish sperm motility. J Exp Biol 2012; 215:630-41. [DOI: 10.1242/jeb.063628] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Salmonid fish sperm motility is known to be suppressed in millimolar concentrations of extracellular K+, and dilution of K+ upon spawning triggers cAMP-dependent signaling for motility initiation. In a previous study, however, we demonstrated that suspending sperm in a 10% glycerol solution and subsequent dilution into a low-osmotic solution induced motility independently of extracellular K+ and cAMP. In the present study, we further investigated the glycerol-induced motility mechanism. We found that treatment with solutions consisting of organic or inorganic ions, as well as glycerol, induced sperm motility in an osmolarity-dependent manner. Elimination of intracellular Ca2+ by BAPTA-AM significantly inhibited glycerol-treated sperm motility, whereas removal of extracellular Ca2+ by EGTA did not. Monitoring intracellular Ca2+, using fluo-4, revealed that intracellular Ca2+ increased when sperm were suspended in hypertonic solutions, and a subsequent dilution into a hypotonic solution led to a decrease in intracellular Ca2+ concomitant with motility initiation. In addition, upon dilution of sperm into a hypertonic glycerol solution prior to demembranation, the motility of demembranated sperm was reactivated in the absence of cAMP. The motility recovery suggests that completion of axonemal maturation occurred during exposure to a hypertonic environment. As a result, it is likely that glycerol treatment of sperm undergoing hypertonic shock causes mobilization of intracellular Ca2+ from the intracellular Ca2+ store and also causes maturation of axonemal proteins for motility initiation. The subsequent dilution into a hypotonic solution induces a decrease in intracellular Ca2+ and flagellar movement. This novel mechanism of sperm motility initiation seems to act in a salvaging manner for the well-known K+-dependent pathway.
Collapse
Affiliation(s)
- Gen L. Takei
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Chinatsu Mukai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Makoto Okuno
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| |
Collapse
|
33
|
Davalieva K, Kiprijanovska S, Noveski P, Plaseski T, Kocevska B, Broussard C, Plaseska-Karanfilska D. Proteomic analysis of seminal plasma in men with different spermatogenic impairment. Andrologia 2012; 44:256-64. [DOI: 10.1111/j.1439-0272.2012.01275.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
- K. Davalieva
- Research Centre for Genetic Engineering and Biotechnology; Macedonian Academy of Sciences and Arts; Skopje; Republic of Macedonia
| | - S. Kiprijanovska
- Research Centre for Genetic Engineering and Biotechnology; Macedonian Academy of Sciences and Arts; Skopje; Republic of Macedonia
| | - P. Noveski
- Research Centre for Genetic Engineering and Biotechnology; Macedonian Academy of Sciences and Arts; Skopje; Republic of Macedonia
| | - T. Plaseski
- Faculty of Medicine; Endocrinology and Metabolic Disorders Clinic; Skopje; Republic of Macedonia
| | - B. Kocevska
- Faculty of Medicine; Endocrinology and Metabolic Disorders Clinic; Skopje; Republic of Macedonia
| | - C. Broussard
- Plate-forme Proteomique Paris 5 (3P5); Institut Cochin; Inserm U1016 UMR8104 and Université Paris Descartes Sorbonne Paris Cité; Paris; France
| | - D. Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology; Macedonian Academy of Sciences and Arts; Skopje; Republic of Macedonia
| |
Collapse
|
34
|
A novel neuronal calcium sensor family protein, calaxin, is a potential Ca2+-dependent regulator for the outer arm dynein of metazoan cilia and flagella. Biol Cell 2012; 101:91-103. [DOI: 10.1042/bc20080032] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Mohri H, Inaba K, Ishijima S, Baba SA. Tubulin-dynein system in flagellar and ciliary movement. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:397-415. [PMID: 23060230 PMCID: PMC3491082 DOI: 10.2183/pjab.88.397] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
Eukaryotic flagella and cilia have attracted the attention of many researchers over the last century, since they are highly arranged organelles and show sophisticated bending movements. Two important cytoskeletal and motor proteins, tubulin and dynein, were first found and described in flagella and cilia. Half a century has passed since the discovery of these two proteins, and much information has been accumulated on their molecular structures and their roles in the mechanism of microtubule sliding, as well as on the architecture, the mechanism of bending movement and the regulation and signal transduction in flagella and cilia. Historical background and the recent advance in this field are described.
Collapse
|
36
|
Nakachi M, Nakajima A, Nomura M, Yonezawa K, Ueno K, Endo T, Inaba K. Proteomic profiling reveals compartment-specific, novel functions of ascidian sperm proteins. Mol Reprod Dev 2011; 78:529-49. [DOI: 10.1002/mrd.21341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/18/2011] [Indexed: 11/11/2022]
|
37
|
Pan J, Naumann-Busch B, Wang L, Specht M, Scholz M, Trompelt K, Hippler M. Protein phosphorylation is a key event of flagellar disassembly revealed by analysis of flagellar phosphoproteins during flagellar shortening in Chlamydomonas. J Proteome Res 2011; 10:3830-9. [PMID: 21663328 DOI: 10.1021/pr200428n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cilia are disassembled prior to cell division, which is proposed to regulate proper cell cycle progression. The signaling pathways that regulate cilia disassembly are not well-understood. Recent biochemical and genetic data demonstrate that protein phosphorylation plays important roles in cilia disassembly. Here, we analyzed the phosphoproteins in the membrane/matrix fraction of flagella undergoing shortening as well as flagella from steady state cells of Chlamydomonas. The phosphopeptides were enriched by a combination of IMAC and titanium dioxide chromatography with a strategy of sequential elution from IMAC (SIMAC) and analyzed by tandem mass spectrometry. A total of 224 phosphoproteins derived from 1296 spectral counts of phosphopeptides were identified. Among the identified phosphoproteins are flagellar motility proteins such as outer dynein arm, intraflagellar transport proteins as well as signaling molecules including protein kinases, phosphatases, G proteins, and ion channels. Eighty-nine of these phosphoproteins were only detected in shortening flagella, whereas 29 were solely in flagella of steady growing cells, indicating dramatic changes of protein phosphorylation during flagellar shortening. Our data indicates that protein phosphorylation is a key event in flagellar disassembly, and paves the way for further study of flagellar assembly and disassembly controlled by protein phosphorylation.
Collapse
Affiliation(s)
- Junmin Pan
- Protein Science Laboratory of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Aquaporin inhibition changes protein phosphorylation pattern following sperm motility activation in fish. Theriogenology 2011; 76:737-44. [PMID: 21620454 DOI: 10.1016/j.theriogenology.2011.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 03/30/2011] [Accepted: 04/03/2011] [Indexed: 11/21/2022]
Abstract
Our previous studies demonstrated that osmolality is the key signal in sperm motility activation in Sparus aurata spermatozoa. In particular, we have proposed that the hyper-osmotic shock triggers water efflux from spermatozoa via aquaporins. This water efflux determines the cell volume reduction and, in turn, the rise in the intracellular concentration of ions. This increase could lead to the activation of adenylyl cyclase and of the cAMP-signaling pathway, causing the phosphorylation of sperm proteins and then the initiation of sperm motility. This study confirms the important role of sea bream AQPs (Aqp1a and Aqp10b) in the beginning of sperm motility. In fact, when these proteins are inhibited by HgCl(2), the phosphorylation of some proteins (174 kDa protein of head; 147, 97 and 33 kDa proteins of flagella), following the hyper-osmotic shock, was inhibited (totally or partially). However, our results also suggest that more than one transduction pathways could be activated when sea bream spermatozoa were ejaculated in seawater, since numerous proteins showed an HgCl(2)(AQPs)-independent phosphorylation state after motility activation. The role played by each different signal transduction pathways need to be clarified.
Collapse
|
39
|
Inaba K. Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol Hum Reprod 2011; 17:524-38. [PMID: 21586547 DOI: 10.1093/molehr/gar034] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sperm motility is necessary for the transport of male DNA to eggs in species with both external and internal fertilization. Flagella comprise several proteins for generating and regulating motility. Central cytoskeletal structures called axonemes have been well conserved through evolution. In mammalian sperm flagella, two accessory structures (outer dense fiber and the fibrous sheath) surround the axoneme. The axonemal bend movement is based on the active sliding of axonemal doublet microtubules by the molecular motor dynein, which is divided into outer and inner arm dyneins according to positioning on the doublet microtubule. Outer and inner arm dyneins play different roles in the production and regulation of flagellar motility. Several regulatory mechanisms are known for both dyneins, which are important in motility activation and chemotaxis at fertilization. Although dynein itself has certain properties that contribute to the formation and propagation of flagellar bending, other axonemal structures-specifically, the radial spoke/central pair apparatus-have essential roles in the regulation of flagellar bending. Recent genetic and proteomic studies have explored several new components of axonemes and shed light on the generation and regulation of sperm motility during fertilization.
Collapse
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan.
| |
Collapse
|
40
|
Yokota N, Harada Y, Sawada H. Identification of testis-specific ubiquitin-conjugating enzyme in the ascidian Ciona intestinalis. Mol Reprod Dev 2010; 77:640-7. [DOI: 10.1002/mrd.21198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Siva AB, Kameshwari DB, Singh V, Pavani K, Sundaram CS, Rangaraj N, Deenadayal M, Shivaji S. Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol Hum Reprod 2010; 16:452-62. [PMID: 20304782 DOI: 10.1093/molehr/gaq009] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
With a view to understand the molecular basis of sperm motility, we have tried to establish the human sperm proteome by two-dimensional PAGE MALDI MS/MS analysis. We report identification of 75 different proteins in the human spermatozoa. Comparative proteome analysis was carried out for asthenozoospermic and normozoospermic patients to understand the molecular basis of sperm motility. Analysis revealed eight proteins (including one unidentified) with altered intensity between the groups. Differential proteins distributed into three functional groups: 'energy and metabolism' (triose-phosphate isomerase, glycerol kinase 2, testis specific isoform and succinyl-CoA:3-ketoacid co-enzyme A transferase 1, mitochondrial precursor); 'movement and organization' (tubulin beta 2C and tektin 1) and 'protein turnover, folding and stress response' (proteasome alpha 3 subunit and heat shock-related 70 kDa protein 2). It was interesting to note that although the proteins falling in the functional group of 'energy and metabolism' are higher in the asthenozoospermic patients, the other two functional groups contain proteins, which are higher in the normozoospermic samples. Validation of results carried out for proteasome alpha 3 subunit by immunoblotting and confocal microscopy, confirmed significant changes in intensity of proteasome alpha 3 subunit in asthenozoospermic samples when compared with normozoospermic controls. Significant positive correlation too was found between proteasome alpha 3 subunit levels and rapid, linear progressive motility of the spermatozoa. In our understanding, this data would contribute appreciably to the presently limited information available about the proteins implicated in human sperm motility.
Collapse
|
42
|
Bobe J, Labbé C. Egg and sperm quality in fish. Gen Comp Endocrinol 2010; 165:535-48. [PMID: 19272390 DOI: 10.1016/j.ygcen.2009.02.011] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 02/16/2009] [Accepted: 02/20/2009] [Indexed: 12/19/2022]
Abstract
Fish egg quality can be defined as the ability of the egg to be fertilized and subsequently develop into a normal embryo. Similarly, sperm quality can be defined as its ability to successfully fertilize an egg and subsequently allow the development of a normal embryo. In the wild or under aquaculture conditions, the quality of fish gametes can be highly variable and is under the influence of a significant number of external factors or broodstock management practices. For these reasons, the topic of gamete quality has received increasing attention. Despite the significant efforts made towards a better understanding of the factors involved in the control of gamete quality, the picture is far from being complete and the control of gamete quality remains an issue in the aquaculture industry. Some of the factors responsible for the observed variability of gamete quality remain largely unknown or poorly understood. In addition very little is known about the cellular and molecular mechanisms involved in the control of egg and sperm quality. In the present review, the molecular and cellular characteristics of fish gametes are presented with a special interest for the mechanisms that could participate in the regulation of gamete quality. Then, after defining egg and sperm quality, and how can it can be accurately estimated or predicted, we provide an overview of the main factors that can impact gamete quality in teleosts.
Collapse
Affiliation(s)
- Julien Bobe
- INRA, UR1037 SCRIBE, IFR140, Ouest-Genopole, F-35000 Rennes, France.
| | | |
Collapse
|
43
|
Mechanisms of protein kinase A anchoring. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:235-330. [PMID: 20801421 DOI: 10.1016/s1937-6448(10)83005-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP), which is produced by adenylyl cyclases following stimulation of G-protein-coupled receptors, exerts its effect mainly through the cAMP-dependent serine/threonine protein kinase A (PKA). Due to the ubiquitous nature of the cAMP/PKA system, PKA signaling pathways underlie strict spatial and temporal control to achieve specificity. A-kinase anchoring proteins (AKAPs) bind to the regulatory subunit dimer of the tetrameric PKA holoenzyme and thereby target PKA to defined cellular compartments in the vicinity of its substrates. AKAPs promote the termination of cAMP signals by recruiting phosphodiesterases and protein phosphatases, and the integration of signaling pathways by binding additional signaling proteins. AKAPs are a heterogeneous family of proteins that only display similarity within their PKA-binding domains, amphipathic helixes docking into a hydrophobic groove formed by the PKA regulatory subunit dimer. This review summarizes the current state of information on compartmentalized cAMP/PKA signaling with a major focus on structural aspects, evolution, diversity, and (patho)physiological functions of AKAPs and intends to outline newly emerging directions of the field, such as the elucidation of AKAP mutations and alterations of AKAP expression in human diseases, and the validation of AKAP-dependent protein-protein interactions as new drug targets. In addition, alternative PKA anchoring mechanisms employed by noncanonical AKAPs and PKA catalytic subunit-interacting proteins are illustrated.
Collapse
|
44
|
Abstract
Metazoan spermatozoa, especially those from marine invertebrates and fish, are excellent sources for isolating axonemal dyneins because of their cellular homogeneity and the large amounts that can be collected. Sperm flagella can be easily isolated by homogenization and subsequent centrifugation. Axonemes are obtained by demembranation of flagella with the nonionic detergent Triton X-100. The outer arm dyneins have been most widely studied because they are specifically extracted by a high-salt solution and can be isolated as a relatively pure fraction of ~20S two-headed dynein by sucrose density gradient centrifugation. Only a few reports have described the isolation of inner arm dyneins from sperm and the protocol has room for improvement. Sperm show clear changes in motility at fertilization, which are exerted through the regulation of axonemal dyneins by protein phosphorylation and Ca(2+) binding. Therefore dyneins from sperm flagella are an excellent biochemically tractable source for studying the regulation of axonemal dyneins. Here we describe protocols used for purification of flagellar dyneins from sperm of tunicates, sea urchins, and fish. The techniques described here could be applied to other species with appropriate modifications.
Collapse
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | | |
Collapse
|
45
|
Satouh Y, Inaba K. Proteomic characterization of sperm radial spokes identifies a novel spoke protein with an ubiquitin domain. FEBS Lett 2009; 583:2201-7. [DOI: 10.1016/j.febslet.2009.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 12/30/2022]
|
46
|
Goto N, Harayama H. Calyculin A-sensitive protein phosphatases are involved in maintenance of progressive movement in mouse spermatozoa in vitro by suppression of autophosphorylation of protein kinase A. J Reprod Dev 2009; 55:327-34. [PMID: 19293561 DOI: 10.1262/jrd.20170] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein serine/threonine phosphorylation in mammalian sperm flagella has been considered to play important roles in regulation of motility. Protein phosphorylation state reflects balance of enzymatic activities between protein phosphatases and protein kinases [predominantly protein kinase A (PKA)]. The aims of this study were to disclose roles of protein phosphatases in the regulation of sperm motility and to provide evidence for suppression of PKA full activation by protein phosphatases in sperm flagella. Mouse epididymal spermatozoa were incubated with a cell-permeable protein phosphatase 1 (PP1)/protein phosphatase 2A (PP2A) inhibitor (calyculin A: 25-125 nM) at 37.5 C. After incubation, they were used for immunodetection of phosphorylated proteins, PKA and PP1 gamma2, assessment for motility and co-immunoprecipitation of PP1gamma2 with PKA. Incubation with calyculin A enhanced the phosphorylation states of several proteins (>250 kDa, 170 kDa, 155 kDa, 140 kDa and 42 kDa for serine/threonine phosphorylation and 70 kDa for tyrosine phosphorylation) and PKA catalytic subunits [at the autophosphorylation residue (Thr-197) for its full enzymatic activation] in the flagella. Coincidently, this incubation induced changes of sperm flagellar movement from the progressive type to the hyperactivation-like type. Indirect immunofluorescence and co-immunoprecipitation showed that PKA was co-localized with PP1 gamma2 in the principal pieces of sperm flagella. These findings suggest that calyculin A-sensitive protein phosphatases (PP1/PP2A) suppress full activation of PKA as well as enhancement of the phosphorylation states of other flagellar proteins in sperm flagella in order to prevent precocious changes of flagellar movement from the progressive type to hyperactivation.
Collapse
Affiliation(s)
- Namiko Goto
- Graduate School of Science and Technology, Kobe University
| | | |
Collapse
|
47
|
Kong M, Diaz ES, Morales P. Participation of the human sperm proteasome in the capacitation process and its regulation by protein kinase A and tyrosine kinase. Biol Reprod 2009; 80:1026-35. [PMID: 19144957 DOI: 10.1095/biolreprod.108.073924] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The proteasome is a multicatalytic cellular complex present in human sperm that plays a significant role during several steps of mammalian fertilization. Here, we present evidence that the proteasome is involved in human sperm capacitation. Aliquots of highly motile sperm were incubated with proteasome inhibitors MG132 or epoxomicin. The percentage of capacitated sperm, the chymotrypsin-like activity of the proteasome, cAMP content, and the pattern of protein phosphorylation were assayed by using the chlortetracycline hydrochloride assay, a fluorogenic substrate, the cAMP enzyme immunoassay kit, and Western blot analysis, respectively. Our results indicate that treatment of sperm with proteasome inhibitors blocks the capacitation process, does not alter cAMP concentration, and changes the pattern of protein phosphorylation. To elucidate how proteasome activity is regulated during capacitation, sperm were incubated with: 1) tyrosine kinase (TK) inhibitors (genistein or herbimycin A); 2) protein kinase (PK) A inhibitors or activators (H89 and Rp-cAMPS, and 8-Br-cAMP, respectively); or 3) PKC inhibitors (tamoxifen or staurosporin) at different capacitation times. The chymotrypsin-like activity and degree of phosphorylation of the proteasome were then assayed. The results indicate that sperm treatment with TK and PKA inhibitors significantly decreases the chymotrypsin-like activity of the proteasome during capacitation. Immunoprecipitation and Western blot results suggest that the proteasome is phosphorylated during capacitation in a TK- and PKA-dependent pathway. In conclusion, we suggest that the sperm proteasome participates in the capacitation process, and that its activity is modulated by PKs.
Collapse
Affiliation(s)
- Milene Kong
- Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | | | | |
Collapse
|
48
|
Zilli L, Schiavone R, Storelli C, Vilella S. Molecular mechanisms determining sperm motility initiation in two sparids (Sparus aurata and Lithognathus mormyrus). Biol Reprod 2008; 79:356-66. [PMID: 18417709 DOI: 10.1095/biolreprod.108.068296] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Molecular mechanisms involved in sperm motility initiation in two sparids (Sparus aurata and Lithognathus mormyrus) have been studied. Our comparative study demonstrates that osmolality is the key signal in sperm motility activation in both species, whereas K(+) and Ca(2+) do not have any role. The straight-line velocity that resulted, however, was significantly different when measured in sperm activated with non-ionic and/or calcium-free solutions with respect to that measured in seawater-activated sperm. In both species, motility initiation depends on cAMP-dependent protein phosphorylation. The phosphorylation/dephosphorylation patterns that resulted in gilthead and striped sea bream were quite different. In gilthead sea bream, the phosphorylated proteins have molecular weights of 174, 147, 138, 70, and 9-15 kDa, whereas the dephosphorylated proteins have molecular weights of 76, 57, and 33 kDa. In striped sea bream, phosphorylation after sperm motility activation occurred on proteins of 174, 147, 103, 96, 61, 57, and 28 kDa, whereas only one protein of 70 kDa resulted from dephosphorylation. Matrix-assisted laser desorption ionization-time of flight analyses allowed identification of the following proteins: In gilthead sea bream, the 9-15 kDa proteins that were phosphorylated after motility activation include an A-kinase anchor protein (AKAP), an acetyl-coenzyme A synthetase, and a protein phosphatase inhibitor, and in striped sea bream, 103- and 61-kDa proteins that were phosphorylated after motility activation were identified as a phosphatase (myotubularin-related protein 1) and a kinase (DYRK3), respectively.
Collapse
Affiliation(s)
- Loredana Zilli
- Laboratory of Comparative Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | | | | | | |
Collapse
|
49
|
Hozumi A, Padma P, Toda T, Ide H, Inaba K. Molecular characterization of axonemal proteins and signaling molecules responsible for chemoattractant-induced sperm activation inCiona intestinalis. ACTA ACUST UNITED AC 2008; 65:249-67. [DOI: 10.1002/cm.20258] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Wilkes DE, Rajagopalan V, Chan CWC, Kniazeva E, Wiedeman AE, Asai DJ. Dynein light chain family in Tetrahymena thermophila. ACTA ACUST UNITED AC 2007; 64:82-96. [PMID: 17009324 DOI: 10.1002/cm.20165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dyneins are large protein complexes that produce directed movement on microtubules. In situ, dyneins comprise combinations of heavy, intermediate, light-intermediate, and light chains. The light chains regulate the locations and activities of dyneins but their functions are not completely understood. We have searched the recently sequenced Tetrahymena thermophila macronuclear genome to describe the entire family of dynein light chains expressed in this organism. We identified fourteen genes encoding putative dynein light chains and seven genes encoding light chain-like proteins. RNA-directed PCR revealed that all 21 genes were expressed. Quantitative real time reverse transcription PCR showed that many of these genes were upregulated after deciliation, indicating that these proteins are present in cilia. Using the nomenclature developed in Chlamydomonas, Tetrahymena expresses two isoforms each of LC2, LC4, LC7, and Tctex1, three isoforms of p28, and six LC8/LC8-like isoforms. Tetrahymena also expresses two LC3-like genes. No Tetrahymena orthologue was found for Chlamydomonas LC5 or LC6. This study provides a complete description of the different genes and isoforms of the dynein light chains that are expressed in Tetrahymena, a model organism in which the targeted manipulation of genes is straightforward.
Collapse
Affiliation(s)
- David E Wilkes
- Department of Biology, Harvey Mudd College, Claremont, California 91711-5990, USA
| | | | | | | | | | | |
Collapse
|