1
|
Martin M, deVisch A, Boudehen YM, Barthe P, Gutierrez C, Turapov O, Aydogan T, Heriaud L, Gracy J, Neyrolles O, Mukamolova GV, Letourneur F, Cohen-Gonsaud M. A Mycobacterium tuberculosis Effector Targets Mitochondrion, Controls Energy Metabolism, and Limits Cytochrome c Exit. Microbiol Spectr 2023; 11:e0106623. [PMID: 37036353 PMCID: PMC10269737 DOI: 10.1128/spectrum.01066-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Abstract
Host metabolism reprogramming is a key feature of Mycobacterium tuberculosis (Mtb) infection that enables the survival of this pathogen within phagocytic cells and modulates the immune response facilitating the spread of the tuberculosis disease. Here, we demonstrate that a previously uncharacterized secreted protein from Mtb, Rv1813c, manipulates the host metabolism by targeting mitochondria. When expressed in eukaryotic cells, the protein is delivered to the mitochondrial intermembrane space and promotes the enhancement of host ATP production by boosting the oxidative phosphorylation metabolic pathway. Furthermore, the release of cytochrome c from mitochondria, an early apoptotic event in response to short-term oxidative stress, is delayed in Rv1813c-expressing cells. This study reveals a novel class of mitochondria targeting effectors from Mtb that might participate in host cell metabolic reprogramming and apoptosis control during Mtb infections. IMPORTANCE In this article, using a combination of techniques (bioinformatics, structural biology, and cell biology), we identified and characterized a new class of effectors present only in intracellular mycobacteria. These proteins specifically target host cell mitochondria when ectopically expressed in cells. We showed that one member of this family (Rv1813c) affects mitochondria metabolism in a way that might twist the immune response. This effector also inhibits the cytochrome c exit from mitochondria, suggesting that it might alter normal host cell apoptotic capacities, one of the first defenses of immune cells against Mtb infection.
Collapse
Affiliation(s)
- Marianne Martin
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Angelique deVisch
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Yves-Marie Boudehen
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse CNRS, UPS, Toulouse, France
| | - Philippe Barthe
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse CNRS, UPS, Toulouse, France
| | - Obolbek Turapov
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Talip Aydogan
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Laurène Heriaud
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Jerome Gracy
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse CNRS, UPS, Toulouse, France
| | - Galina V. Mukamolova
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - François Letourneur
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Martin Cohen-Gonsaud
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| |
Collapse
|
2
|
Forbes G, Schilde C, Lawal H, Kin K, Du Q, Chen ZH, Rivero F, Schaap P. Interactome and evolutionary conservation of Dictyostelid small GTPases and their direct regulators. Small GTPases 2022; 13:239-254. [PMID: 34565293 PMCID: PMC8923023 DOI: 10.1080/21541248.2021.1984829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GTP binding proteins known as small GTPases make up one of the largest groups of regulatory proteins and control almost all functions of living cells. Their activity is under, respectively, positive and negative regulation by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), which together with their upstream regulators and the downstream targets of the small GTPases form formidable signalling networks. While genomics has revealed the large size of the GTPase, GEF and GAP repertoires, only a small fraction of their interactions and functions have yet been experimentally explored. Dictyostelid social amoebas have been particularly useful in unravelling the roles of many proteins in the Rac-Rho and Ras-Rap families of GTPases in directional cell migration and regulation of the actin cytoskeleton. Genomes and cell-type specific and developmental transcriptomes are available for Dictyostelium species that span the 0.5 billion years of evolution of the group from their unicellular ancestors. In this work, we identified all GTPases, GEFs and GAPs from genomes representative of the four major taxon groups and investigated their phylogenetic relationships and evolutionary conservation and changes in their functional domain architecture and in their developmental and cell-type specific expression. We performed a hierarchical cluster analysis of the expression profiles of the ~2000 analysed genes to identify putative interacting sets of GTPases, GEFs and GAPs, which highlight sets known to interact experimentally and many novel combinations. This work represents a valuable resource for research into all fields of cellular regulation.
Collapse
Affiliation(s)
- Gillian Forbes
- School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Hajara Lawal
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Koryu Kin
- School of Life Sciences, University of Dundee, Dundee, UK,CSIC-Universitat Pompeu Fabra, Institut de Biologia Evolutiva (Csic-universitat Pompeu Fabra), Barcelona, Spain
| | - Qingyou Du
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Zhi-hui Chen
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Francisco Rivero
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull, UK
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, UK,CONTACT Pauline Schaap ; School of Life Sciences, University of Dundee, Msi/wtb Complex, Dundee, DD15EH, UK
| |
Collapse
|
3
|
Hüsler D, Steiner B, Welin A, Striednig B, Swart AL, Molle V, Hilbi H, Letourneur F. Dictyostelium lacking the single atlastin homolog Sey1 shows aberrant ER architecture, proteolytic processes and expansion of the Legionella-containing vacuole. Cell Microbiol 2021; 23:e13318. [PMID: 33583106 DOI: 10.1111/cmi.13318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Dictyostelium discoideum Sey1 is the single ortholog of mammalian atlastin 1-3 (ATL1-3), which are large homodimeric GTPases mediating homotypic fusion of endoplasmic reticulum (ER) tubules. In this study, we generated a D. discoideum mutant strain lacking the sey1 gene and found that amoebae deleted for sey1 are enlarged, but grow and develop similarly to the parental strain. The ∆sey1 mutant amoebae showed an altered ER architecture, and the tubular ER network was partially disrupted without any major consequences for other organelles or the architecture of the secretory and endocytic pathways. Macropinocytic and phagocytic functions were preserved; however, the mutant amoebae exhibited cumulative defects in lysosomal enzymes exocytosis, intracellular proteolysis, and cell motility, resulting in impaired growth on bacterial lawns. Moreover, ∆sey1 mutant cells showed a constitutive activation of the unfolded protein response pathway (UPR), but they still readily adapted to moderate levels of ER stress, while unable to cope with prolonged stress. In D. discoideum ∆sey1 the formation of the ER-associated compartment harbouring the bacterial pathogen Legionella pneumophila was also impaired. In the mutant amoebae, the ER was less efficiently recruited to the "Legionella-containing vacuole" (LCV), the expansion of the pathogen vacuole was inhibited at early stages of infection and intracellular bacterial growth was reduced. In summary, our study establishes a role of D. discoideum Sey1 in ER architecture, proteolysis, cell motility and intracellular replication of L. pneumophila.
Collapse
Affiliation(s)
- Dario Hüsler
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Bernhard Steiner
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Amanda Welin
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Bianca Striednig
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - A Leoni Swart
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - François Letourneur
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
4
|
Quantitative Proteomic Analysis of Escherichia coli Heat-Labile Toxin B Subunit (LTB) with Enterovirus 71 (EV71) Subunit VP1. Int J Mol Sci 2016; 17:ijms17091419. [PMID: 27618897 PMCID: PMC5037698 DOI: 10.3390/ijms17091419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
The nontoxic heat-labile toxin (LT) B subunit (LTB) was used as mucosal adjuvant experimentally. However, the mechanism of LTB adjuvant was still unclear. The LTB and enterovirus 71 (EV71) VP1 subunit (EVP1) were constructed in pET32 and expressed in E. coli BL21, respectively. The immunogenicity of purified EVP1 and the adjuvanticity of LTB were evaluated via intranasal immunization EVP1 plus LTB in Balb/c mice. In order to elucidate the proteome change triggered by the adjuvant of LTB, the proteomic profiles of LTB, EVP1, and LTB plus EVP1 were quantitatively analyzed by iTRAQ-LC-MS/MS (isobaric tags for relative and absolute quantitation; liquid chromatography-tandem mass spectrometry) in murine macrophage RAW264.7. The proteomic data were analyzed by bioinformatics and validated by western blot analysis. The predicted protein interactions were confirmed using LTB pull-down and the LTB processing pathway was validated by confocal microscopy. The results showed that LTB significantly boosted EVP1 specific systematic and mucosal antibodies. A total of 3666 differential proteins were identified in the three groups. Pathway enrichment of proteomic data predicted that LTB upregulated the specific and dominant MAPK (mitogen-activated protein kinase) signaling pathway and the protein processing in endoplasmic reticulum (PPER) pathway, whereas LTB or EVP1 did not significantly upregulate these two signaling pathways. Confocal microscopy and LTB pull-down assays confirmed that the LTB adjuvant was endocytosed and processed through endocytosis (ENS)-lysosomal-endoplasmic reticulum (ER) system.
Collapse
|
5
|
Dias M, Brochetta C, Marchetti A, Bodinier R, Brückert F, Cosson P. Role of SpdA in Cell Spreading and Phagocytosis in Dictyostelium. PLoS One 2016; 11:e0160376. [PMID: 27512991 PMCID: PMC4981364 DOI: 10.1371/journal.pone.0160376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022] Open
Abstract
Dictyostelium discoideum is a widely used model to study molecular mechanisms controlling cell adhesion, cell spreading on a surface, and phagocytosis. In this study we isolated and characterize a new mutant created by insertion of a mutagenic vector in the heretofore uncharacterized spdA gene. SpdA-ins mutant cells produce an altered, slightly shortened version of the SpdA protein. They spread more efficiently than WT cells when allowed to adhere to a glass substrate, and phagocytose particles more efficiently. On the contrary, a functional spdA knockout mutant where a large segment of the gene was deleted phagocytosed less efficiently and spread less efficiently on a substrate. These phenotypes were highly dependent on the cellular density, and were most visible at high cell densities, where secreted quorum-sensing factors inhibiting cell motility, spreading and phagocytosis are most active. These results identify the involvement of SpdA in the control of cell spreading and phagocytosis. The underlying molecular mechanisms, as well as the exact link between SpdA and cell spreading, remain to be established.
Collapse
Affiliation(s)
- Marco Dias
- Department for Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Cristiana Brochetta
- Department for Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Anna Marchetti
- Department for Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Romain Bodinier
- Department for Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Franz Brückert
- Laboratoire des Matériaux et du Génie Physique (LMGP), UMR CNRS-Grenoble INP5628 Université Grenoble Alpes, 3 parvis Louis Néel, BP 257, Grenoble cedex 1, France
| | - Pierre Cosson
- Department for Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
6
|
Gueho A, Bosmani C, Gopaldass N, Molle V, Soldati T, Letourneur F. Dictyostelium EHD associates with Dynamin and participates in phagosome maturation. J Cell Sci 2016; 129:2354-67. [DOI: 10.1242/jcs.182857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 05/04/2016] [Indexed: 12/20/2022] Open
Abstract
C-terminal EHDs (Eps15 homology-domain-containing proteins) are newly identified key regulators of endosomal membrane trafficking. Here we show that D. discoideum contains a single EHD protein that localizes to endosomal compartments and newly formed phagosomes. We provide the first evidence that EHD regulates phagosome maturation. Deletion of EHD results in defects in intraphagosomal proteolysis and acidification. These defects are linked to early delivery of lysosomal enzymes and fast retrieval of the vacuolar H+-ATPase in maturing phagosomes. We also demonstrate that EHD physically interacts with DymA. Our results indicate that EHD and DymA can associate independently to endomembranes, and yet they share identical kinetics of phagosome recruitment and release during phagosome maturation. Functional analysis of ehd−, dymA−, and double dymA−/ehd− knock-out strains indicate that DymA and EHD play non-redundant and independent functions in phagosome maturation. Finally, we show that the absence of EHD leads to increase tubulation of endosomes, indicating that EHD participates in the scission of endosomal tubules as reported for DymA.
Collapse
Affiliation(s)
- Aurélie Gueho
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cristina Bosmani
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Navin Gopaldass
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - François Letourneur
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
7
|
Regulators and Effectors of Arf GTPases in Neutrophils. J Immunol Res 2015; 2015:235170. [PMID: 26609537 PMCID: PMC4644846 DOI: 10.1155/2015/235170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/30/2015] [Indexed: 12/22/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are key innate immune cells that represent the first line of defence against infection. They are the first leukocytes to migrate from the blood to injured or infected sites. This process involves molecular mechanisms that coordinate cell polarization, delivery of receptors, and activation of integrins at the leading edge of migrating PMNs. These phagocytes actively engulf microorganisms or form neutrophil extracellular traps (NETs) to trap and kill pathogens with bactericidal compounds. Association of the NADPH oxidase complex at the phagosomal membrane for production of reactive oxygen species (ROS) and delivery of proteolytic enzymes into the phagosome initiate pathogen killing and removal. G protein-dependent signalling pathways tightly control PMN functions. In this review, we will focus on the small monomeric GTPases of the Arf family and their guanine exchange factors (GEFs) and GTPase activating proteins (GAPs) as components of signalling cascades regulating PMN responses. GEFs and GAPs are multidomain proteins that control cellular events in time and space through interaction with other proteins and lipids inside the cells. The number of Arf GAPs identified in PMNs is expanding, and dissecting their functions will provide important insights into the role of these proteins in PMN physiology.
Collapse
|
8
|
Baïlo N, Cosson P, Charette SJ, Paquet VE, Doublet P, Letourneur F. Defective lysosome maturation and Legionella pneumophila replication in Dictyostelium cells mutant for the Arf GAP ACAP-A. J Cell Sci 2014; 127:4702-13. [PMID: 25189617 DOI: 10.1242/jcs.154559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dictyostelium discoideum ACAP-A is an Arf GTPase-activating protein (GAP) involved in cytokinesis, cell migration and actin cytoskeleton dynamics. In mammalian cells, ACAP family members regulate endocytic protein trafficking. Here, we explored the function of ACAP-A in the endocytic pathway of D. discoideum. In the absence of ACAP-A, the efficiency of fusion between post-lysosomes and the plasma membrane was reduced, resulting in the accumulation of post-lysosomes. Moreover, internalized fluid-phase markers showed extended intracellular transit times, and the transfer kinetics of phagocyted particles from lysosomes to post-lysosomes was reduced. Neutralization of lysosomal pH, one essential step in lysosome maturation, was also delayed. Whereas expression of ACAP-A-GFP in acapA(-) cells restored normal particle transport kinetics, a mutant ACAP-A protein with no GAP activity towards the small GTPase ArfA failed to complement this defect. Taken together, these data support a role for ACAP-A in maturation of lysosomes into post-lysosomes through an ArfA-dependent mechanism. In addition, we reveal that ACAP-A is required for efficient intracellular growth of Legionella pneumophila, a pathogen known to subvert the endocytic host cell machinery for replication. This further emphasizes the role of ACAP-A in the endocytic pathway.
Collapse
Affiliation(s)
- Nathalie Baïlo
- CIRI, International Centre for Infectiology Research, Legionella pathogenesis group, Université de Lyon, 69364 Lyon Cedex 07, France Inserm, U1111, 69342 Lyon Cedex 07, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon Cedex 07, France CNRS, UMR5308, 69007 Lyon, France
| | - Pierre Cosson
- Département de Physiologie Cellulaire et Métabolisme, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, G1V 0A6, Canada Centre de Recherche de L'institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Valérie E Paquet
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, G1V 0A6, Canada Centre de Recherche de L'institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Patricia Doublet
- CIRI, International Centre for Infectiology Research, Legionella pathogenesis group, Université de Lyon, 69364 Lyon Cedex 07, France Inserm, U1111, 69342 Lyon Cedex 07, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon Cedex 07, France CNRS, UMR5308, 69007 Lyon, France
| | - François Letourneur
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier II et I, CNRS, UMR 5235, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
9
|
Müller R, Herr C, Sukumaran SK, Omosigho NN, Plomann M, Riyahi TY, Stumpf M, Swaminathan K, Tsangarides M, Yiannakou K, Blau-Wasser R, Gallinger C, Schleicher M, Kolanus W, Noegel AA. The cytohesin paralog Sec7 of Dictyostelium discoideum is required for phagocytosis and cell motility. Cell Commun Signal 2013; 11:54. [PMID: 23915312 PMCID: PMC3737031 DOI: 10.1186/1478-811x-11-54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/29/2013] [Indexed: 12/26/2022] Open
Abstract
Background Dictyostelium harbors several paralogous Sec7 genes that encode members of three subfamilies of the Sec7 superfamily of guanine nucleotide exchange factors. One of them is the cytohesin family represented by three members in D. discoideum, SecG, Sec7 and a further protein distinguished by several transmembrane domains. Cytohesins are characterized by a Sec7-PH tandem domain and have roles in cell adhesion and migration. Results We study here Sec7. In vitro its PH domain bound preferentially to phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2), phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3). When following the distribution of GFP-Sec7 in vivo we observed the protein in the cytosol and at the plasma membrane. Strikingly, when cells formed pseudopods, macropinosomes or phagosomes, GFP-Sec7 was conspicuously absent from areas of the plasma membrane which were involved in these processes. Mutant cells lacking Sec7 exhibited an impaired phagocytosis and showed significantly reduced speed and less persistence during migration. Cellular properties associated with mammalian cytohesins like cell-cell and cell-substratum adhesion were not altered. Proteins with roles in membrane trafficking and signal transduction have been identified as putative interaction partners consistent with the data obtained from mutant analysis. Conclusions Sec7 is a cytosolic component and is associated with the plasma membrane in a pattern distinctly different from the accumulation of PI(3,4,5)P3. Mutant analysis reveals that loss of the protein affects cellular processes that involve membrane flow and the actin cytoskeleton.
Collapse
Affiliation(s)
- Rolf Müller
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Köln, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|