1
|
Bourdais A, Viard P, Bormann J, Sesboüé C, Guerrier D, Therville N, Guillermet-Guibert J, Carroll J, Halet G. Distinct requirements for PI3K isoforms p110α and p110δ for PIP3 synthesis in mouse oocytes and early embryos. Development 2025; 152:dev204398. [PMID: 39982048 DOI: 10.1242/dev.204398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt pathway is thought to regulate key steps of mammalian oogenesis, such as dormant oocyte awakening during follicular activation, meiotic resumption and oocyte maturation. Supporting evidence is, however, indirect, as oocyte PI3K activation has never been formally demonstrated, and the PI3K isoforms involved have not been revealed. Here, we employed fluorescent PIP3 biosensors to characterize PI3K dynamics in mouse oocytes and we investigated the contribution of the PI3K isoform p110α by conditional genetic ablation. Prophase oocytes showed baseline PI3K/Akt activation that could be further stimulated by adding Kit ligand. Contrary to previous reports, maternal PI3K proved dispensable for oocyte maturation in vitro, yet it was required for PIP3 synthesis in early embryos. We further show that oocyte p110α is not essential for oogenesis and female fertility. Accordingly, our data suggest that Kit ligand activates isoform p110δ for PIP3 synthesis in oocytes. In contrast, constitutive PIP3 synthesis in early embryos is achieved by maternal p110α acting redundantly with p110δ. This study highlights the relevance of PIP3 biosensors in establishing the dynamics, mechanisms and roles of maternal PI3K signaling during mammalian oogenesis.
Collapse
Affiliation(s)
- Anne Bourdais
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Patricia Viard
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Jenny Bormann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 2, 45117 Essen, Germany
| | - Côme Sesboüé
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Daniel Guerrier
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Nicole Therville
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centres de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Julie Guillermet-Guibert
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centres de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - John Carroll
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Guillaume Halet
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
2
|
Zhou J, Mao R, Gao L, Wang M, Long R, Wang X, Li Z, Jin L, Zhu L. Novel variants in PADI6 genes cause female infertility due to early embryo arrest. J Assist Reprod Genet 2024; 41:3327-3336. [PMID: 39644447 PMCID: PMC11707103 DOI: 10.1007/s10815-024-03332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024] Open
Abstract
PURPOSE Early embryo arrest is characterized by premature termination of development in preimplantation embryos. Human subcortical maternal complex (SCMC) is a protein complex that is specifically expressed in mammalian oocytes and early embryos and is essential for embryonic cell division. Peptidyl arginine deiminase 6 (PADI6) is proven to be a member of SCMC. Variants in the PADI6 gene have been shown to induce early embryo arrest. In this study, we performed genetic analysis in patients with female infertility due to early embryo arrest to identify the disease-causing gene variants. METHODS Whole-exome sequencing and Sanger sequencing were used to identify the variants in the patients and their families. Western blotting and immunofluorescence staining were used to check the effects of the variants on expression and function of PADI6. RESULTS We identified a novel homozygous variant (c.358A > C [p.Thr120Pro]) and novel compound-heterozygous variants (c.2044C > T [p.Arg682Trp] and c.707dupT [p.Leu237Alafs*24]) in PADI6 in two infertile individuals with early embryo arrest. We found that these variants resulted in a decrease in the expression level of PADI6, which may lead to abnormal protein function. Immunofluorescence staining also suggested that these variants affected the expression of PADI6. CONCLUSION Our study expands the spectrum of genetic defects in female early embryo arrest and further supports the causality between PADI6 variants and female infertility.
Collapse
Affiliation(s)
- Juepu Zhou
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Ruolin Mao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Limin Gao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Rui Long
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Xiangfei Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Zhou Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China.
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China.
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China.
| |
Collapse
|
3
|
Giaccari C, Antonouli S, Anifandis G, Cecconi S, Di Nisio V. An Update on Physiopathological Roles of Akt in the ReprodAKTive Mammalian Ovary. Life (Basel) 2024; 14:722. [PMID: 38929705 PMCID: PMC11204812 DOI: 10.3390/life14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt pathway is a key signaling cascade responsible for the regulation of cell survival, proliferation, and metabolism in the ovarian microenvironment. The optimal finetuning of this pathway is essential for physiological processes concerning oogenesis, folliculogenesis, oocyte maturation, and embryo development. The dysregulation of PI3K/Akt can impair molecular and structural mechanisms that will lead to follicle atresia, or the inability of embryos to reach later stages of development. Due to its pivotal role in the control of cell proliferation, apoptosis, and survival mechanisms, the dysregulation of this molecular pathway can trigger the onset of pathological conditions. Among these, we will focus on diseases that can harm female fertility, such as polycystic ovary syndrome and premature ovarian failure, or women's general health, such as ovarian cancer. In this review, we report the functions of the PI3K/Akt pathway in both its physiological and pathological roles, and we address the existing application of inhibitors and activators for the balancing of the molecular cascade in ovarian pathological environments.
Collapse
Affiliation(s)
- Carlo Giaccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Sevastiani Antonouli
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - Sandra Cecconi
- Department of Life, Health, and Environmental Sciences, Università dell’Aquila, 67100 L’Aquila, Italy
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, SE-14186 Stockholm, Sweden;
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186 Stockholm, Sweden
| |
Collapse
|
4
|
Innocenti F, Fiorentino G, Cimadomo D, Soscia D, Garagna S, Rienzi L, Ubaldi FM, Zuccotti M. Maternal effect factors that contribute to oocytes developmental competence: an update. J Assist Reprod Genet 2022; 39:861-871. [PMID: 35165782 PMCID: PMC9051001 DOI: 10.1007/s10815-022-02434-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
Oocyte developmental competence is defined as the capacity of the female gamete to be fertilized and sustain development to the blastocyst stage. Epigenetic reprogramming, a correct cell division pattern, and an efficient DNA damage response are all critical events that, before embryonic genome activation, are governed by maternally inherited factors such as maternal-effect gene (MEG) products. Although these molecules are stored inside the oocyte until ovulation and exert their main role during fertilization and preimplantation development, some of them are already functioning during folliculogenesis and oocyte meiosis resumption. This mini review summarizes the crucial roles played by MEGs during oocyte maturation, fertilization, and preimplantation development with a direct/indirect effect on the acquisition or maintenance of oocyte competence. Our aim is to inspire future research on a topic with potential clinical perspectives for the prediction and treatment of female infertility.
Collapse
Affiliation(s)
- Federica Innocenti
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy
| | - Giulia Fiorentino
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Danilo Cimadomo
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy.
| | - Daria Soscia
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Laura Rienzi
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy
| | | | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | | |
Collapse
|
5
|
Guo Y, Chen P, Li T, Jia L, Zhou Y, Huang J, Liang X, Zhou C, Fang C. Single-cell transcriptome and cell-specific network analysis reveal the reparative effect of neurotrophin-4 in preantral follicles grown in vitro. Reprod Biol Endocrinol 2021; 19:133. [PMID: 34481496 PMCID: PMC8417972 DOI: 10.1186/s12958-021-00818-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/24/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND In-vitro-grow (IVG) of preantral follicles is essential for female fertility preservation, while practical approach for improvement is far from being explored. Studies have indicated that neurotrophin-4 (NT-4) is preferentially expressed in human preantral follicles and may be crucial to preantral follicle growth. METHODS We observed the location and expression of Tropomyosin-related kinase B (TRKB) in human and mouse ovaries with immunofluorescence and Western blot, and the relation between oocyte maturation and NT-4 level in follicular fluid (FF). Mice model was applied to investigate the effect of NT-4 on preantral follicle IVG. Single-cell RNA sequencing of oocyte combined with cell-specific network analysis was conducted to uncover the underlying mechanism of effect. RESULTS We reported the dynamic location of TRKB in human and mouse ovaries, and a positive relationship between human oocyte maturation and NT-4 level in FF. Improving effect of NT-4 was observed on mice preantral follicle IVG, including follicle development and oocyte maturation. Transcriptome analysis showed that the reparative effect of NT-4 on oocyte maturation might be mediated by regulation of PI3K-Akt signaling and subsequent organization of F-actin. Suppression of advanced stimulated complement system in granulosa cells might contribute to the improvement. Cell-specific network analysis revealed NT-4 may recover the inflammation damage induced by abnormal lipid metabolism in IVG. CONCLUSIONS Our data suggest that NT-4 is involved in ovarian physiology and may improve the efficiency of preantral follicle IVG for fertility preservation.
Collapse
Affiliation(s)
- Yingchun Guo
- grid.488525.6Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510275 Guangdong China
| | - Peigen Chen
- grid.488525.6Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510275 Guangdong China
| | - Tingting Li
- grid.488525.6Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510275 Guangdong China
| | - Lei Jia
- grid.488525.6Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510275 Guangdong China
| | - Yi Zhou
- grid.488525.6Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510275 Guangdong China
| | - Jiana Huang
- grid.488525.6Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510275 Guangdong China
| | - Xiaoyan Liang
- grid.488525.6Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510275 Guangdong China
| | - Chuanchuan Zhou
- grid.488525.6Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510275 Guangdong China
| | - Cong Fang
- grid.488525.6Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510275 Guangdong China
| |
Collapse
|
6
|
Yu H, Yong W, Gao T, Na M, Zhang Y, Kuguminkiriza IH, Kenechukwu AA, Guo Q, Zhang G, Deng X. Hormesis of low-dose inhibition of pAkt1 (Ser473) followed by a great increase of proline-rich inositol polyphosphate 5-phosphatase (PIPP) level in oocytes. In Vitro Cell Dev Biol Anim 2021; 57:342-349. [PMID: 33537929 DOI: 10.1007/s11626-021-00546-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
Hormesis describes a biphasic dose-response relationship generally characterized by a low-dose excitement and a high-dose inhibition. This phenomenon has been observed in the regulation of cell, organ, and organismic level. However, hormesis has not reported in oocytes. In this study, we observed, for the first time, hormetic responses of PIPP levels in oocytes by inhibitor of Akt1 or PKCδ. The expression of PIPP was detected by qPCR, immunofluorescent (IF), and Western Blot (WB). To observe the changes of PIPP levels, we used the inhibitors against pAkt1 (Ser473) or PKCδ, SH-6 or sotrastaurin with low and/or high-dose, treated GV oocytes and cultured for 4 h, respectively. The results showed that PIPP expression was significantly enhanced when oocytes were treated with SH-6 or sotrastaurin 10 μM, but decreased with SH-6 or sotrastaurin 100 μM. We also examined the changes of PIPP levels when GV oocytes were treated with exogenous PtdIns(3,4,5)P3 or LY294002 for 4 h. Our results showed that PIPP level was enhanced much higher under the treatment of 0.1 μM PtdIns(3,4,5)P3 than that of 1 μM PtdIns(3,4,5)P3, which is consistent with the changes of PIPP when oocytes were treated with inhibitors of pAkt1 (Ser473) or PKCδ. In addition, with PIPP siRNA, we detected that down-regulated PIPP may affect distributions of Akt, Cdc25, and pCdc2 (Tyr15). Taken together, these results show that the relationships between PIPP and Akt may follow the principle of hormesis and play a key role during release of diplotene arrest in mouse oocytes.
Collapse
Affiliation(s)
- Hang Yu
- Department of Physics and Biophysics, School of Fundamental Sciences, China Medical University (CMU), Shenyang, 110122, People's Republic of China
| | - Wei Yong
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, People's Republic of China
| | - Teng Gao
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, People's Republic of China
| | - Man Na
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, People's Republic of China
| | - Ye Zhang
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, People's Republic of China
| | | | | | - Qingguo Guo
- Department of Biochemistry and Molecular Biology, CMU, Shenyang, China
| | - Guoli Zhang
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, 130122, Jilin, People's Republic of China
| | - Xin Deng
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, People's Republic of China.
| |
Collapse
|
7
|
Abstract
Cell division is a highly regulated and carefully orchestrated process. Understanding the mechanisms that promote proper cell division is an important step toward unraveling important questions in cell biology and human health. Early studies seeking to dissect the mechanisms of cell division used classical genetics approaches to identify genes involved in mitosis and deployed biochemical approaches to isolate and identify proteins critical for cell division. These studies underscored that post-translational modifications and cyclin-kinase complexes play roles at the heart of the cell division program. Modern approaches for examining the mechanisms of cell division, including the use of high-throughput methods to study the effects of RNAi, cDNA, and chemical libraries, have evolved to encompass a larger biological and chemical space. Here, we outline some of the classical studies that established a foundation for the field and provide an overview of recent approaches that have advanced the study of cell division.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095 .,The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095.,Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
8
|
Duan X, Sun SC. Actin cytoskeleton dynamics in mammalian oocyte meiosis†. Biol Reprod 2018; 100:15-24. [DOI: 10.1093/biolre/ioy163] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Liu L, Li S, Li H, Yu D, Li C, Li G, Cao Y, Feng C, Deng X. Protein kinase Cδ (PKCδ) involved in the regulation of pAkt1 (Ser473) on the release of mouse oocytes from diplotene arrest. Cell Biochem Funct 2018; 36:221-227. [PMID: 29774951 DOI: 10.1002/cbf.3334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/21/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Lingling Liu
- Department of Physiology; Basic Medical Scientific Research College, CMU; Shenyang PR China
- Central Laboratory of the Fourth Affiliated Hospital; China Medical University (CMU); Shenyang PR China
| | - Sen Li
- Department of Neurology; the Fourth Affiliated Hospital, CMU; Shenyang PR China
| | - Hanwen Li
- Department of Anorectum; the Fourth Affiliated Hospital, CMU; Shenyang PR China
| | - Dahai Yu
- IVF Center; Affiliated Shengjing Hospital, CMU; Shenyang PR China
| | - Chunyu Li
- Department of Anorectum; the Fourth Affiliated Hospital, CMU; Shenyang PR China
| | - Gensong Li
- Department of Physiology; Basic Medical Scientific Research College, CMU; Shenyang PR China
| | - Yu Cao
- Department of Physiology; Basic Medical Scientific Research College, CMU; Shenyang PR China
| | - Chen Feng
- Department of Biochemistry and Molecular Biology; CMU; Shenyang PR China
| | - Xin Deng
- Department of Physiology; Basic Medical Scientific Research College, CMU; Shenyang PR China
- Central Laboratory of the Fourth Affiliated Hospital; China Medical University (CMU); Shenyang PR China
| |
Collapse
|
10
|
Vesicular transport protein Arf6 modulates cytoskeleton dynamics for polar body extrusion in mouse oocyte meiosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:455-462. [DOI: 10.1016/j.bbamcr.2017.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/30/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023]
|
11
|
Effects of PI3K and FSH on steroidogenesis, viability and embryo development of the cumulus–oocyte complex after in vitro culture. ZYGOTE 2017; 26:50-61. [DOI: 10.1017/s0967199417000703] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SummaryThe purpose of this study was to evaluate the effects of FSH and PI3K on the nuclear maturation, viability, steroidogenesis and embryo development of bovine cumulus–oocyte complexes (COCs). Oocyte maturation was achieved with MIV B, MIV B+100 µM LY294002, MIV B+10 ng/mL follicle stimulating hormone (FSH), or MIV B+10 ng/mL FSH+100 µM LY294002 treatments for 22–24 h. After the cultured COCs were denuded, oocytes were separated into those that extruded polar bodies (mature) and those that did not, and real-time polymerase chain reaction (PCR) for BAX, BCL2, LHR, FSHR, CYP11A1, CYP19A1 and HSD17B1 genes was performed. The culture medium was collected to determine the levels of 17β-estradiol (E2) and progesterone (P4). The trypan blue test was used to study COC viability, and embryo development was evaluated. FSH increased nuclear maturation and PI3K blocked the maturation but did not influence oocyte viability. BAX and BCL2 expression levels in the cumulus cells were only affected by FSH, and the BAX levels decreased after treatment with LY294002. FSH increased the levels of E2 and P4, however inhibition of PI3K decreased E2 levels. MIV B enhanced levels of LHR, FSHR, CYP11A1, CYP19A1 and HSD17B1, whereas LY294002 inhibited the expression levels of all genes. MIV B+FSH decreased the expression levels of all genes except CYP11A1. LY294002 did not demonstrate any effects in the presence of FSH. Embryo development was significantly decreased when the MIV B+FSH medium was used. In conclusion, FSH controls the steroidogenesis, viability and gene expression in COCs. PI3K plays essential roles in nuclear maturation, steroidogenesis and embryo development.
Collapse
|
12
|
Lu X, Gao Z, Qin D, Li L. A Maternal Functional Module in the Mammalian Oocyte-To-Embryo Transition. Trends Mol Med 2017; 23:1014-1023. [DOI: 10.1016/j.molmed.2017.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 01/21/2023]
|
13
|
De Craene JO, Bertazzi DL, Bär S, Friant S. Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways. Int J Mol Sci 2017; 18:ijms18030634. [PMID: 28294977 PMCID: PMC5372647 DOI: 10.3390/ijms18030634] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022] Open
Abstract
Phosphoinositides are lipids involved in the vesicular transport of proteins and lipids between the different compartments of eukaryotic cells. They act by recruiting and/or activating effector proteins and thus are involved in regulating various cellular functions, such as vesicular budding, membrane fusion and cytoskeleton dynamics. Although detected in small concentrations in membranes, their role is essential to cell function, since imbalance in their concentrations is a hallmark of many cancers. Their synthesis involves phosphorylating/dephosphorylating positions D3, D4 and/or D5 of their inositol ring by specific lipid kinases and phosphatases. This process is tightly regulated and specific to the different intracellular membranes. Most enzymes involved in phosphoinositide synthesis are conserved between yeast and human, and their loss of function leads to severe diseases (cancer, myopathy, neuropathy and ciliopathy).
Collapse
Affiliation(s)
- Johan-Owen De Craene
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| | - Dimitri L Bertazzi
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| | - Séverine Bär
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| | - Sylvie Friant
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| |
Collapse
|
14
|
Liu C, Li M, Li T, Zhao H, Huang J, Wang Y, Gao Q, Yu Y, Shi Q. ECAT1 is essential for human oocyte maturation and pre-implantation development of the resulting embryos. Sci Rep 2016; 6:38192. [PMID: 27917907 PMCID: PMC5137016 DOI: 10.1038/srep38192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/07/2016] [Indexed: 11/18/2022] Open
Abstract
ECAT1 is a subunit of the subcortical maternal complex that is required for cell cycle progression during pre-implantation embryonic development; however, its exact function remains to be elucidated. Here we investigated the expression of ECAT1 in human ovarian tissue, oocytes and pre-implantation embryos and assessed its function by using RNA interference (RNAi) in oocytes. ECAT1 mRNA was highly expressed in human oocytes and zygotes, as well as in two-cell, four-cell and eight-cell embryos, but declined significantly in morulae and blastocysts. ECAT1 was expressed in the cytoplasm of oocytes and pre-implantation embryos and was localized more specifically in the cortical region than in the inner cytoplasm. RNAi experiments demonstrated that down-regulation of ECAT1 expression not only impaired spindle assembly and reduced maturation and fertilization rates of human oocytes but also decreased the cleavage rate of the resulting zygotes. In conclusion, our study indicates that ECAT1 may play a role in meiotic progression by maintaining the accuracy of spindle assembly in human oocytes, thus promoting oocyte maturation and subsequent development of the embryo.
Collapse
Affiliation(s)
- Changyu Liu
- Molecular and Cell Genetics Laboratory; The CAS Key Laboratory of Innate Immunity and Chronic Disease; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Min Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Tianjie Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Hongcui Zhao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Jin Huang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yun Wang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Qian Gao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Qinghua Shi
- Molecular and Cell Genetics Laboratory; The CAS Key Laboratory of Innate Immunity and Chronic Disease; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
15
|
Bebbere D, Masala L, Albertini DF, Ledda S. The subcortical maternal complex: multiple functions for one biological structure? J Assist Reprod Genet 2016; 33:1431-1438. [PMID: 27525657 DOI: 10.1007/s10815-016-0788-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
The subcortical maternal complex (SCMC) is a multiprotein complex uniquely expressed in mammalian oocytes and early embryos, essential for zygote progression beyond the first embryonic cell divisions. Similiar to other factors encoded by maternal effect genes, the physiological role of SCMC remains unclear, although recent evidence has provided important molecular insights into different possible functions. Its potential involvement in human fertility is attracting increasing attention; however, the complete story is far from being told. The present mini review provides an overview of recent findings related to the SCMC and discusses its potential physiological role/s with the aim of inspiring new directions for future research.
Collapse
Affiliation(s)
- D Bebbere
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - L Masala
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy
| | - D F Albertini
- The Center for Human Reproduction, New York, NY, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - S Ledda
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
16
|
Lu YQ, He XC, Zheng P. Decrease in expression of maternal effect gene Mater is associated with maternal ageing in mice. Mol Hum Reprod 2016; 22:252-60. [PMID: 26769260 DOI: 10.1093/molehr/gaw001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/08/2016] [Indexed: 12/29/2022] Open
Abstract
STUDY HYPOTHESIS What factors in mouse oocytes are involved in the ageing-related decline in oocyte quality? STUDY FINDING The maternal effect gene Mater is involved in ageing-related oocyte quality decline in mice. WHAT IS KNOWN ALREADY Premature loss of centromere cohesion is a hallmark of ageing-related oocyte quality decline; the maternal effect gene Mater (maternal antigen that embryos require, also known as Nlrp5) is required for preimplantation embryo development beyond the 2-cell stage, and mRNA expression of Mater decreases with maternal ageing. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Mater protein expression level in mature oocytes from 7 young (5-8 weeks old) to 7 old mice (41-68 weeks old) was compared by immunoblotting analysis. Wild-type and Mater-null mice were used to examine whether Mater is necessary for maintaining normal centromere cohesion by means of cytogenetic karyotyping, time-lapse confocal microscopy and immunofluorescence staining. MAIN RESULTS AND THE ROLE OF CHANCE Mater protein is decreased in mature oocytes from old versus young mice (P = 0.0022). Depletion of Mater from oocytes leads to a reduction in centromere cohesion, manifested by precocious sister chromatid separation, enlargement of sister centromere distance and misalignment of chromosomes in the metaphase plate during meiosis I and II. LIMITATIONS, REASONS FOR CAUTION This study was conducted in mice. Whether or not the results are applicable to human remains further elucidation. In addition, we were unable to confirm if the strain of mice (C57BL/6XSv129) at the age of 41-68 weeks old has the 'cohesin-loss' phenotype. WIDER IMPLICATIONS OF THE FINDINGS Investigating Mater's functional mechanisms could provide fresh insights into understanding how the ageing-related oocyte quality decline occurs. LARGE SCALE DATA N/A. STUDY FUNDING AND COMPETING INTERESTS This work was supported by the research grant from Chinese NSFC to P.Z. (31071274). We have no conflict of interests to declare.
Collapse
Affiliation(s)
- Yong-qing Lu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xie-chao He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
17
|
Translation in the mammalian oocyte in space and time. Cell Tissue Res 2015; 363:69-84. [PMID: 26340983 DOI: 10.1007/s00441-015-2269-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/03/2015] [Indexed: 02/07/2023]
Abstract
A hallmark of oocyte development in mammals is the dependence on the translation and utilization of stored RNA and proteins rather than the de novo transcription of genes in order to sustain meiotic progression and early embryo development. In the absence of transcription, the completion of meiosis and early embryo development in mammals relies significantly on maternally synthesized RNAs. Post-transcriptional control of gene expression at the translational level has emerged as an important cellular function in normal development. Therefore, the regulation of gene expression in oocytes is controlled almost exclusively at the level of mRNA and protein stabilization and protein synthesis. This current review is focused on the recently emerged findings on RNA distribution related to the temporal and spatial translational control of the meiotic progression of the mammalian oocyte.
Collapse
|
18
|
Ríos G, Buschiazzo J, Mucci N, Kaiser G, Cesari A, Alberio R. Combined epidermal growth factor and hyaluronic acid supplementation of in vitro maturation medium and its impact on bovine oocyte proteome and competence. Theriogenology 2015; 83:874-80. [DOI: 10.1016/j.theriogenology.2014.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/25/2014] [Accepted: 11/20/2014] [Indexed: 12/29/2022]
|
19
|
Duncan FE, Padilla-Banks E, Bernhardt ML, Ord TS, Jefferson WN, Moss SB, Williams CJ. Transducin-like enhancer of split-6 (TLE6) is a substrate of protein kinase A activity during mouse oocyte maturation. Biol Reprod 2014; 90:63. [PMID: 24501176 DOI: 10.1095/biolreprod.113.112565] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fully grown oocytes in the ovary are arrested at prophase of meiosis I because of high levels of intraoocyte cAMP that maintain increased levels of cAMP-dependent protein kinase (PKA) activity. Following the luteinizing hormone surge at the time of ovulation, cAMP levels drop, resulting in a reduction in PKA activity that triggers meiotic resumption. Although much is known about the molecular mechanisms of how PKA activity fluctuations initiate the oocyte's reentry into meiosis, significantly less is known about the requirement for PKA activity in the oocyte after exit from the prophase I arrest. Here we show that although PKA activity decreases in the oocyte upon meiotic resumption, it increases throughout meiotic progression from the time of germinal vesicle breakdown (GVBD) until the metaphase II (MII) arrest. Blocking this meiotic maturation-associated increase in PKA activity using the pharmacological inhibitor H89 resulted in altered kinetics of GVBD, defects in chromatin and spindle dynamics, and decreased ability of oocytes to reach MII. These effects appear to be largely PKA specific because inhibitors targeting other kinases did not have the same outcomes. To determine potential proteins that may require PKA phosphorylation during meiosis, we separated oocyte protein extracts on an SDS-PAGE gel, extracted regions of the gel that had corresponding immune reactivity towards an anti-PKA substrate antibody, and performed mass spectrometry and microsequencing. Using this approach, we identified transducin-like enhancer of split-6 (TLE6)-a maternal effect gene that is part of the subcortical maternal complex-as a putative PKA substrate. TLE6 localized to the oocyte cortex throughout meiosis in a manner that is spatially and temporally consistent with the localization of critical PKA subunits. Moreover, we demonstrated that TLE6 becomes phosphorylated in a narrow window following meiotic resumption, and H89 treatment can completely block this phosphorylation when added prior to GVBD but not after. Taken together, these results highlight the importance of oocyte-intrinsic PKA in regulating meiotic progression after the prophase I arrest and offer new insights into downstream targets of its activity.
Collapse
Affiliation(s)
- Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
20
|
Wang ZB, Jiang ZZ, Zhang QH, Hu MW, Huang L, Ou XH, Guo L, Ouyang YC, Hou Y, Brakebusch C, Schatten H, Sun QY. Specific deletion of Cdc42 does not affect meiotic spindle organization/migration and homologous chromosome segregation but disrupts polarity establishment and cytokinesis in mouse oocytes. Mol Biol Cell 2013; 24:3832-41. [PMID: 24131996 PMCID: PMC3861080 DOI: 10.1091/mbc.e13-03-0123] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oocyte-specific deletion of Cdc42 has little effect on meiotic spindle organization and migration to the cortex but inhibits polar body emission, although homologous chromosome segregation occurs. The failure of cytokinesis is due to loss of polarized Arp2/3 accumulation and actin cap formation, and thus the defective contract ring. Mammalian oocyte maturation is distinguished by highly asymmetric meiotic divisions during which a haploid female gamete is produced and almost all the cytoplasm is maintained in the egg for embryo development. Actin-dependent meiosis I spindle positioning to the cortex induces the formation of a polarized actin cap and oocyte polarity, and it determines asymmetric divisions resulting in two polar bodies. Here we investigate the functions of Cdc42 in oocyte meiotic maturation by oocyte-specific deletion of Cdc42 through Cre-loxP conditional knockout technology. We find that Cdc42 deletion causes female infertility in mice. Cdc42 deletion has little effect on meiotic spindle organization and migration to the cortex but inhibits polar body emission, although homologous chromosome segregation occurs. The failure of cytokinesis is due to the loss of polarized Arp2/3 accumulation and actin cap formation; thus the defective contract ring. In addition, we correlate active Cdc42 dynamics with its function during polar body emission and find a relationship between Cdc42 and polarity, as well as polar body emission, in mouse oocytes.
Collapse
Affiliation(s)
- Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China Molecular Pathology Section, Department of Biomedical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yi K, Rubinstein B, Li R. Symmetry breaking and polarity establishment during mouse oocyte maturation. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130002. [PMID: 24062576 DOI: 10.1098/rstb.2013.0002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mammalian oocyte meiosis encompasses two rounds of asymmetric divisions to generate a totipotent haploid egg and, as by-products, two small polar bodies. Two intracellular events, asymmetric spindle positioning and cortical polarization, are critical to such asymmetric divisions. Actin but not microtubule cytoskeleton has been known to be directly involved in both events. Recent work has revealed a positive feedback loop between chromosome-mediated cortical activation and the Arp2/3-orchestrated cytoplasmic streaming that moves chromosomes. This feedback loop not only maintains meiotic II spindle position during metaphase II arrest, but also brings about symmetry breaking during meiosis I. Prior to an Arp2/3-dependent phase of fast movement, meiotic I spindle experiences a slow and non-directional first phase of migration driven by a pushing force from Fmn2-mediated actin polymerization. In addition to illustrating these molecular mechanisms, mathematical simulations are presented to elucidate mechanical properties of actin-dependent force generation in this system.
Collapse
Affiliation(s)
- Kexi Yi
- Stowers Institute for Medical Research, , 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
22
|
Suzuki S, Nozawa Y, Tsukamoto S, Kaneko T, Imai H, Minami N. ING3 is essential for asymmetric cell division during mouse oocyte maturation. PLoS One 2013; 8:e74749. [PMID: 24066152 PMCID: PMC3774679 DOI: 10.1371/journal.pone.0074749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/05/2013] [Indexed: 12/27/2022] Open
Abstract
ING3 (inhibitor of growth family, member 3) is a subunit of the nucleosome acetyltransferase of histone 4 (NuA4) complex, which activates gene expression. ING3, which contains a plant homeodomain (PHD) motif that can bind to trimethylated lysine 4 on histone H3 (H3K4me3), is ubiquitously expressed in mammalian tissues and governs transcriptional regulation, cell cycle control, and apoptosis via p53-mediated transcription or the Fas/caspase-8 pathway. Thus, ING3 plays a number of important roles in various somatic cells. However, the role(s) of ING3 in germ cells remains unknown. Here, we show that loss of ING3 function led to the failure of asymmetric cell division and cortical reorganization in the mouse oocyte. Immunostaining showed that in fully grown germinal vesicle (GV) oocytes, ING3 localized predominantly in the GV. After germinal vesicle breakdown (GVBD), ING3 homogeneously localized in the cytoplasm. In oocytes where Ing3 was targeted by siRNA microinjection, we observed symmetric cell division during mouse oocyte maturation. In those oocytes, oocyte polarization was not established due to the failure to form an actin cap or a cortical granule-free domain (CGFD), the lack of which inhibited spindle migration. These features were among the main causes of abnormal symmetric cell division. Interestingly, an analysis of the mRNA expression levels of genes related to asymmetric cell division revealed that only mTOR was downregulated, and, furthermore, that genes downstream of mTOR (e.g., Cdc42, Rac1, and RhoA) were also downregulated in siIng3-injected oocytes. Therefore, ING3 may regulate asymmetric cell division through the mTOR pathway during mouse oocyte maturation.
Collapse
Affiliation(s)
- Shinnosuke Suzuki
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yusuke Nozawa
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institute of Radiological Sciences, Chiba, Japan
| | - Takehito Kaneko
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
23
|
The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol 2013; 14:141-52. [PMID: 23429793 DOI: 10.1038/nrm3531] [Citation(s) in RCA: 373] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian oocytes go through a long and complex developmental process while acquiring the competencies that are required for fertilization and embryogenesis. Recent advances in molecular genetics and quantitative live imaging reveal new insights into the molecular basis of the communication between the oocyte and ovarian somatic cells as well as the dynamic cytoskeleton-based events that drive each step along the pathway to maturity. Whereas self-organization of microtubules and motor proteins direct meiotic spindle assembly for achieving genome reduction, actin filaments are instrumental for spindle positioning and the establishment of oocyte polarity needed for extrusion of polar bodies. Meiotic chromatin provides key instructive signals while being 'chauffeured' by both cytoskeletal systems.
Collapse
|