1
|
Świątkowska‐Flis B, Zdolińska‐Malinowska I, Sługocka D, Boruczkowski D. The use of umbilical cord-derived mesenchymal stem cells in patients with muscular dystrophies: Results from compassionate use in real-life settings. Stem Cells Transl Med 2021; 10:1372-1383. [PMID: 34313400 PMCID: PMC8459640 DOI: 10.1002/sctm.21-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/10/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Muscular dystrophies are genetically determined progressive diseases with no cause-related treatment and limited supportive treatment. Although stem cells cannot resolve the underlying genetic conditions, their wide-ranging therapeutic properties may ameliorate the consequences of the involved mutations (oxidative stress, inflammation, mitochondrial dysfunction, necrosis). In this study, we administered advanced therapy medicinal product containing umbilical cord-derived mesenchymal stem cells (UC-MSCs) to 22 patients with muscular dystrophies. Patients received one to five intravenous and/or intrathecal injections per treatment course in up to two courses every 2 months. Four standard doses of 10, 20, 30, or 40 × 106 UC-MSCs per injection were used; the approximate dose per kilogram was 1 × 106 UC-MSCs. Muscle strength was measured with a set of CQ Dynamometer computerized force meters (CQ Elektronik System, Czernica, Poland). Statistical analysis of muscle strength in the whole group showed significant improvement in the right upper limb (+4.0 N); left hip straightening (+4.5 N) and adduction (+0.5 N); right hip straightening (+1.0 N), bending (+7.5 N), and adduction (+2.5 N); right knee straightening (+8.5 N); left shoulder revocation (+13.0 N), straightening (+5.5 N), and bending (+6.5 N); right shoulder adduction (+3.0 N), revocation (+10.5 N), and bending (+5 N); and right elbow straightening (+9.5 N); all these differences were statistically significant. In six patients (27.3%) these changes led to improvement in gait analysis or movement scale result. Only one patient experienced transient headache and lower back pain after the last administration. In conclusion, UC-MSC therapy may be considered as a therapeutic option for these patients.
Collapse
Affiliation(s)
- Beata Świątkowska‐Flis
- Polish Center of Cell Therapy and Immunotherapy in Częstochowa, CM KlaraCzęstochowaPoland
- Faculty of Health SciencesJan Długosz University of Humanities and Life SciencesCzęstochowaPoland
| | | | - Dominika Sługocka
- Polish Center of Cell Therapy and Immunotherapy in Częstochowa, CM KlaraCzęstochowaPoland
| | | |
Collapse
|
2
|
DeSimone AM, Cohen J, Lek M, Lek A. Cellular and animal models for facioscapulohumeral muscular dystrophy. Dis Model Mech 2020; 13:dmm046904. [PMID: 33174531 PMCID: PMC7648604 DOI: 10.1242/dmm.046904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common forms of muscular dystrophy and presents with weakness of the facial, scapular and humeral muscles, which frequently progresses to the lower limbs and truncal areas, causing profound disability. Myopathy results from epigenetic de-repression of the D4Z4 microsatellite repeat array on chromosome 4, which allows misexpression of the developmentally regulated DUX4 gene. DUX4 is toxic when misexpressed in skeletal muscle and disrupts several cellular pathways, including myogenic differentiation and fusion, which likely underpins pathology. DUX4 and the D4Z4 array are strongly conserved only in primates, making FSHD modeling in non-primate animals difficult. Additionally, its cytotoxicity and unusual mosaic expression pattern further complicate the generation of in vitro and in vivo models of FSHD. However, the pressing need to develop systems to test therapeutic approaches has led to the creation of multiple engineered FSHD models. Owing to the complex genetic, epigenetic and molecular factors underlying FSHD, it is difficult to engineer a system that accurately recapitulates every aspect of the human disease. Nevertheless, the past several years have seen the development of many new disease models, each with their own associated strengths that emphasize different aspects of the disease. Here, we review the wide range of FSHD models, including several in vitro cellular models, and an array of transgenic and xenograft in vivo models, with particular attention to newly developed systems and how they are being used to deepen our understanding of FSHD pathology and to test the efficacy of drug candidates.
Collapse
Affiliation(s)
- Alec M DeSimone
- Yale School of Medicine, Department of Genetics, New Haven, CT 06510, USA
| | - Justin Cohen
- Yale School of Medicine, Department of Genetics, New Haven, CT 06510, USA
| | - Monkol Lek
- Yale School of Medicine, Department of Genetics, New Haven, CT 06510, USA
| | - Angela Lek
- Yale School of Medicine, Department of Genetics, New Haven, CT 06510, USA
| |
Collapse
|
3
|
DeSimone AM, Pakula A, Lek A, Emerson CP. Facioscapulohumeral Muscular Dystrophy. Compr Physiol 2017; 7:1229-1279. [PMID: 28915324 DOI: 10.1002/cphy.c160039] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Facioscapulohumeral Muscular Dystrophy is a common form of muscular dystrophy that presents clinically with progressive weakness of the facial, scapular, and humeral muscles, with later involvement of the trunk and lower extremities. While typically inherited as autosomal dominant, facioscapulohumeral muscular dystrophy (FSHD) has a complex genetic and epigenetic etiology that has only recently been well described. The most prevalent form of the disease, FSHD1, is associated with the contraction of the D4Z4 microsatellite repeat array located on a permissive 4qA chromosome. D4Z4 contraction allows epigenetic derepression of the array, and possibly the surrounding 4q35 region, allowing misexpression of the toxic DUX4 transcription factor encoded within the terminal D4Z4 repeat in skeletal muscles. The less common form of the disease, FSHD2, results from haploinsufficiency of the SMCHD1 gene in individuals carrying a permissive 4qA allele, also leading to the derepression of DUX4, further supporting a central role for DUX4. How DUX4 misexpression contributes to FSHD muscle pathology is a major focus of current investigation. Misexpression of other genes at the 4q35 locus, including FRG1 and FAT1, and unlinked genes, such as SMCHD1, has also been implicated as disease modifiers, leading to several competing disease models. In this review, we describe recent advances in understanding the pathophysiology of FSHD, including the application of MRI as a research and diagnostic tool, the genetic and epigenetic disruptions associated with the disease, and the molecular basis of FSHD. We discuss how these advances are leading to the emergence of new approaches to enable development of FSHD therapeutics. © 2017 American Physiological Society. Compr Physiol 7:1229-1279, 2017.
Collapse
Affiliation(s)
- Alec M DeSimone
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna Pakula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA
| | - Angela Lek
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
4
|
Jones TI, Parilla M, Jones PL. Transgenic Drosophila for Investigating DUX4 and FRG1, Two Genes Associated with Facioscapulohumeral Muscular Dystrophy (FSHD). PLoS One 2016; 11:e0150938. [PMID: 26942723 PMCID: PMC4778869 DOI: 10.1371/journal.pone.0150938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/22/2016] [Indexed: 11/19/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is typically an adult onset dominant myopathy. Epigenetic changes in the chromosome 4q35 region linked to both forms of FSHD lead to a relaxation of repression and increased somatic expression of DUX4-fl (DUX4-full length), the pathogenic alternative splicing isoform of the DUX4 gene. DUX4-fl encodes a transcription factor expressed in healthy testis and pluripotent stem cells; however, in FSHD, increased levels of DUX4-fl in myogenic cells lead to aberrant regulation of target genes. DUX4-fl has proven difficult to study in vivo; thus, little is known about its normal and pathogenic roles. The endogenous expression of DUX4-fl in FSHD-derived human muscle and myogenic cells is extremely low, exogenous expression of DUX4-fl in somatic cells rapidly induces cytotoxicity, and, due in part to the lack of conservation beyond primate lineages, viable animal models based on DUX4-fl have been difficult to generate. By contrast, the FRG1 (FSHD region gene 1), which is linked to FSHD, is evolutionarily conserved from invertebrates to humans, and has been studied in several model organisms. FRG1 expression is critical for the development of musculature and vasculature, and overexpression of FRG1 produces a myopathic phenotype, yet the normal and pathological functions of FRG1 are not well understood. Interestingly, DUX4 and FRG1 were recently linked when the latter was identified as a direct transcriptional target of DUX4-FL. To better understand the pathways affected in FSHD by DUX4-fl and FRG1, we generated transgenic lines of Drosophila expressing either gene under control of the UAS/GAL4 binary system. Utilizing these lines, we generated screenable phenotypes recapitulating certain known consequences of DUX4-fl or FRG1 overexpression. These transgenic Drosophila lines provide resources to dissect the pathways affected by DUX4-fl or FRG1 in a genetically tractable organism and may provide insight into both muscle development and pathogenic mechanisms in FSHD.
Collapse
Affiliation(s)
- Takako I. Jones
- The Department of Cell and Developmental Biology, University of Massachusetts Medical School Worcester, Massachusetts, United States of America
- The Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Megan Parilla
- The Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Peter L. Jones
- The Department of Cell and Developmental Biology, University of Massachusetts Medical School Worcester, Massachusetts, United States of America
- The Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
5
|
Feeney SJ, McGrath MJ, Sriratana A, Gehrig SM, Lynch GS, D’Arcy CE, Price JT, McLean CA, Tupler R, Mitchell CA. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1). PLoS One 2015; 10:e0117665. [PMID: 25695429 PMCID: PMC4335040 DOI: 10.1371/journal.pone.0117665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/29/2014] [Indexed: 01/01/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.
Collapse
Affiliation(s)
- Sandra J. Feeney
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Meagan J. McGrath
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Absorn Sriratana
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Stefan M. Gehrig
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Gordon S. Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Colleen E. D’Arcy
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - John T. Price
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
| | - Catriona A. McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria, 3004, Australia
- Department of Medicine, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia
| | - Rossella Tupler
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA, 01655, United States of America
- Dipartimento di Scienze della Vita, Universita di Modena e Reggio Emilia, 41125, Modena, Italy
| | - Christina A. Mitchell
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
- * E-mail:
| |
Collapse
|
6
|
Ferri G, Huichalaf CH, Caccia R, Gabellini D. Direct interplay between two candidate genes in FSHD muscular dystrophy. Hum Mol Genet 2014; 24:1256-66. [PMID: 25326393 PMCID: PMC4321439 DOI: 10.1093/hmg/ddu536] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common neuromuscular disorders. The major form of the disease (FSHD1) is linked to decrease in copy number of a 3.3-kb tandem repeated macrosatellite (D4Z4), located on chromosome 4q35. D4Z4 deletion alters chromatin structure of the locus leading to aberrant expression of nearby 4q35 genes. Given the high variability in disease onset and progression, multiple factors could contribute to the pathogenesis of FSHD. Among the FSHD candidate genes are double homeobox 4 (DUX4), encoded by the most telomeric D4Z4 unit, and FSHD region gene 1 (FRG1). DUX4 is a sequence-specific transcription factor. Here, we located putative DUX4 binding sites in the human FRG1 genomic area and we show specific DUX4 association to these regions. We found also that ectopically expressed DUX4 up-regulates the endogenous human FRG1 gene in healthy muscle cells, while DUX4 knockdown leads to a decrease in FRG1 expression in FSHD muscle cells. Moreover, DUX4 binds directly and specifically to its binding site located in the human FRG1 gene and transactivates constructs containing FRG1 genomic regions. Intriguingly, the mouse Frg1 genomic area lacks DUX4 binding sites and DUX4 is unable to activate the endogenous mouse Frg1 gene providing a possible explanation for the lack of muscle phenotype in DUX4 transgenic mice. Altogether, our results demonstrate that FRG1 is a direct DUX4 transcriptional target uncovering a novel regulatory circuit contributing to FSHD.
Collapse
Affiliation(s)
- Giulia Ferri
- Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute at San Raffaele Scientific Institute, DIBIT2, 5A3, Via Olgettina 58, 20132 Milan, Italy Università Vita-Salute San Raffaele, Milan, Italy
| | - Claudia H Huichalaf
- Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute at San Raffaele Scientific Institute, DIBIT2, 5A3, Via Olgettina 58, 20132 Milan, Italy Università Vita-Salute San Raffaele, Milan, Italy
| | - Roberta Caccia
- Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute at San Raffaele Scientific Institute, DIBIT2, 5A3, Via Olgettina 58, 20132 Milan, Italy
| | - Davide Gabellini
- Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute at San Raffaele Scientific Institute, DIBIT2, 5A3, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
7
|
Grifone R, Xie X, Bourgeois A, Saquet A, Duprez D, Shi DL. The RNA-binding protein Rbm24 is transiently expressed in myoblasts and is required for myogenic differentiation during vertebrate development. Mech Dev 2014; 134:1-15. [PMID: 25217815 DOI: 10.1016/j.mod.2014.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/05/2014] [Accepted: 08/22/2014] [Indexed: 12/16/2022]
Abstract
RNA-binding proteins (RBP) contribute to gene regulation through post-transcriptional events. Despite the important roles demonstrated for several RBP in regulating skeletal myogenesis in vitro, very few RBP coding genes have been characterized during skeletal myogenesis in vertebrate embryo. In the present study we report that Rbm24, which encodes the RNA-binding motif protein 24, is required for skeletal muscle differentiation in vivo. We show that Rbm24 transcripts are expressed at all sites of skeletal muscle formation during embryogenesis of different vertebrates, including axial, limb and head muscles. Interestingly, we find that Rbm24 protein starts to accumulate in MyoD-positive myoblasts and is transiently expressed at the onset of muscle cell differentiation. It accumulates in myotomal and limb myogenic cells, but not in Pax3-positive progenitor cells. Rbm24 expression is under the direct regulation by MyoD, as demonstrated by in vivo chromatin immunoprecipitation assay. Using morpholino knockdown approach, we further show that Rbm24 is required for somitic myogenic progenitor cells to differentiate into muscle cells during chick somitic myogenesis. Altogether, these results highlight Rbm24 as a novel key regulator of the myogenic differentiation program during vertebrate development.
Collapse
Affiliation(s)
- Raphaëlle Grifone
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France; CNRS, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France
| | - Xin Xie
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France; CNRS, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France
| | - Adeline Bourgeois
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France; CNRS, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France
| | - Audrey Saquet
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France; CNRS, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France
| | - Delphine Duprez
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France; CNRS, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France
| | - De-Li Shi
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France; CNRS, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France.
| |
Collapse
|
8
|
Sancisi V, Germinario E, Esposito A, Morini E, Peron S, Moggio M, Tomelleri G, Danieli-Betto D, Tupler R. Altered Tnnt3 characterizes selective weakness of fast fibers in mice overexpressing FSHD region gene 1 (FRG1). Am J Physiol Regul Integr Comp Physiol 2013; 306:R124-37. [PMID: 24305066 DOI: 10.1152/ajpregu.00379.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a common hereditary myopathy, is characterized by atrophy and weakness of selective muscle groups. FSHD is considered an autosomal dominant disease with incomplete penetrance and unpredictable variability of clinical expression within families. Mice overexpressing FRG1 (FSHD region gene 1), a candidate gene for this disease, develop a progressive myopathy with features of the human disorder. Here, we show that in FRG1-overexpressing mice, fast muscles, which are the most affected by the dystrophic process, display anomalous fast skeletal troponin T (fTnT) isoform, resulting from the aberrant splicing of the Tnnt3 mRNA that precedes the appearance of dystrophic signs. We determine that muscles of FRG1 mice develop less strength due to impaired contractile properties of fast-twitch fibers associated with an anomalous MyHC-actin ratio and a reduced sensitivity to Ca(2+). We demonstrate that the decrease of Ca(2+) sensitivity of fast-twitch fibers depends on the anomalous troponin complex and can be rescued by the substitution with the wild-type proteins. Finally, we find that the presence of aberrant splicing isoforms of TNNT3 characterizes dystrophic muscles in FSHD patients. Collectively, our results suggest that anomalous TNNT3 profile correlates with the muscle impairment in both humans and mice. On the basis of these results, we propose that aberrant fTnT represents a biological marker of muscle phenotype severity and disease progression.
Collapse
Affiliation(s)
- Valentina Sancisi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Neguembor MV, Xynos A, Onorati MC, Caccia R, Bortolanza S, Godio C, Pistoni M, Corona DF, Schotta G, Gabellini D. FSHD muscular dystrophy region gene 1 binds Suv4-20h1 histone methyltransferase and impairs myogenesis. J Mol Cell Biol 2013; 5:294-307. [DOI: 10.1093/jmcb/mjt018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|