1
|
Liu J, Li Y, Lian X, Zhang C, Feng J, Tao H, Wang Z. Potential target within the tumor microenvironment - MT1-MMP. Front Immunol 2025; 16:1517519. [PMID: 40196128 PMCID: PMC11973285 DOI: 10.3389/fimmu.2025.1517519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Matrix metalloproteinases are integral to the modification of the tumor microenvironment and facilitate tumor progression by degrading the extracellular matrix, releasing cytokines, and influencing the recruitment of immune cells. Among the matrix metalloproteinases, membrane-type matrix metalloproteinase 1 (MT1-MMP/MMP14) is the first identified membrane-type MMP and acts as an essential proteolytic enzyme that enables tumor infiltration and metastatic progression. Given the pivotal role of MT1-MMP in tumor progression and the correlation between its overexpression in tumors and unfavorable prognoses across multiple cancer types, a comprehensive understanding of the potential functional mechanisms of MT1-MMP is essential. This knowledge will aid in the advancement of diverse anti-tumor therapies aimed at targeting MT1-MMP. Although contemporary research has highlighted the considerable potential of MT1-MMP in targeted cancer therapy, studies pertaining to its application in cell therapy remain relatively limited. In this review, we delineate the structural characteristics and regulatory mechanisms of MT1-MMP expression, as well as its biological significance in tumorigenesis. Finally, we discussed the current status and prospects of anti-tumor therapies targeting MT1-MMP.
Collapse
Affiliation(s)
- Jinlong Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yijing Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueqi Lian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenglin Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianing Feng
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongfei Tao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhimin Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Li L, Yang Z, Li J. Exosomes and SARS-CoV-2 infection. Front Immunol 2024; 15:1467109. [PMID: 39660145 PMCID: PMC11628517 DOI: 10.3389/fimmu.2024.1467109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Exosomes, which are small extracellular vesicles, are of particular interest in studies on SARS-CoV-2 infection because of their crucial role in intercellular communication. These vesicles are released by several cell types and are rich in "cargo" such as proteins, lipids, and nucleic acids, which are vital for regulating immune response and viral pathogenesis. Exosomes have been reported to be involved in viral transmission, immune escape mechanisms, and illness development in SARS-CoV-2 infection. This review examines the current research on the contribution of exosomes to the interplay between the virus and host cells, highlighting their potential as diagnostic biomarkers and therapeutic targets in combating COVID-19.
Collapse
Affiliation(s)
- Liuying Li
- Department of Traditional Chinese Medicine, Zigong First People’s Hospital, Zigong, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zixuan Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Moreno-Corona NC, de León-Bautista MP, León-Juárez M, Hernández-Flores A, Barragán-Gálvez JC, López-Ortega O. Rab GTPases, Active Members in Antigen-Presenting Cells, and T Lymphocytes. Traffic 2024; 25:e12950. [PMID: 38923715 DOI: 10.1111/tra.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Processes such as cell migration, phagocytosis, endocytosis, and exocytosis refer to the intense exchange of information between the internal and external environment in the cells, known as vesicular trafficking. In eukaryotic cells, these essential cellular crosstalks are controlled by Rab GTPases proteins through diverse adaptor proteins like SNAREs complex, coat proteins, phospholipids, kinases, phosphatases, molecular motors, actin, or tubulin cytoskeleton, among others, all necessary for appropriate mobilization of vesicles and distribution of molecules. Considering these molecular events, Rab GTPases are critical components in specific biological processes of immune cells, and many reports refer primarily to macrophages; therefore, in this review, we address specific functions in immune cells, concretely in the mechanism by which the GTPase contributes in dendritic cells (DCs) and, T/B lymphocytes.
Collapse
Affiliation(s)
| | - Mercedes Piedad de León-Bautista
- Escuela de Medicina, Universidad Vasco de Quiroga, Morelia, Mexico
- Human Health, Laboratorio de Enfermedades Infecciosas y Genómica (INEX LAB), Morelia, Mexico
| | - Moises León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | | | - Juan Carlos Barragán-Gálvez
- División de Ciencias Naturales y Exactas, Departamento de Farmacia, Universidad de Guanajuato, Guanajuato, Mexico
| | - Orestes López-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institute Necker Enfants Malades, Paris, France
| |
Collapse
|
4
|
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteinases that belong to the group of endopeptidases or matrixins. They are able to cleave a plethora of substrates, including components of the extracellular matrix and cell-surface-associated proteins, as well as intracellular targets. Accordingly, MMPs play key roles in a variety of physiological and pathological processes, such as tissue homeostasis and cancer cell invasion. MMP activity is exquisitely regulated at several levels, including pro-domain removal, association with inhibitors, intracellular trafficking and transport via extracellular vesicles. Moreover, the regulation of MMP activity is currently being rediscovered for the development of respective therapies for the treatment of cancer, as well as infectious, inflammatory and neurological diseases. In this Cell Science at a Glance article and the accompanying poster, we present an overview of the current knowledge regarding the regulation of MMP activity, the intra- and extra-cellular trafficking pathways of these enzymes and their diverse groups of target proteins, as well as their impact on health and disease.
Collapse
Affiliation(s)
- Sven Hey
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
5
|
Hey S, Wiesner C, Barcelona B, Linder S. KIF16B drives MT1-MMP recycling in macrophages and promotes co-invasion of cancer cells. Life Sci Alliance 2023; 6:e202302158. [PMID: 37696580 PMCID: PMC10494930 DOI: 10.26508/lsa.202302158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
The matrix metalloproteinase MT1-MMP is a central effector of cellular proteolysis. Accordingly, regulation of the surface-localized pool of MT1-MMP is crucial for cell migration and invasion. Here, we identify the superprocessive kinesin KIF16B as a major driver of fast recycling of MT1-MMP to the surface of primary human macrophages. KIF16B associates with MT1-MMP on Rab14-positive vesicles, and its depletion results in strongly reduced MT1-MMP surface levels, as shown by microscopical, biochemical, and cell-sorting approaches. As a consequence, KIF16B-depleted macrophages exhibit strongly reduced matrix degradation and invasion. We further identify the cargo-binding C-terminus of KIF16B as a critical element of MT1-MMP transport, as its overexpression uncouples MT1-MMP vesicles from the endogenous motor, thus leading to a reduction of surface-associated MT1-MMP and to reduced matrix degradation and invasion. Importantly, depletion of KIF16B in primary macrophages also reduces the co-invasion of cancer cells from tumor spheroids, pointing to the KIF16B-driven recycling pathway in macrophages as an important regulatory element of the tumor microenvironment.
Collapse
Affiliation(s)
- Sven Hey
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Christiane Wiesner
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Bryan Barcelona
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Stefan Linder
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Whitehead CA, Fang H, Su H, Morokoff AP, Kaye AH, Hanssen E, Nowell CJ, Drummond KJ, Greening DW, Vella LJ, Mantamadiotis T, Stylli SS. Small extracellular vesicles promote invadopodia activity in glioblastoma cells in a therapy-dependent manner. Cell Oncol (Dordr) 2023; 46:909-931. [PMID: 37014551 PMCID: PMC10356899 DOI: 10.1007/s13402-023-00786-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/05/2023] Open
Abstract
PURPOSE The therapeutic efficacy of radiotherapy/temozolomide treatment for glioblastoma (GBM) is limited by the augmented invasiveness mediated by invadopodia activity of surviving GBM cells. As yet, however the underlying mechanisms remain poorly understood. Due to their ability to transport oncogenic material between cells, small extracellular vesicles (sEVs) have emerged as key mediators of tumour progression. We hypothesize that the sustained growth and invasion of cancer cells depends on bidirectional sEV-mediated cell-cell communication. METHODS Invadopodia assays and zymography gels were used to examine the invadopodia activity capacity of GBM cells. Differential ultracentrifugation was utilized to isolate sEVs from conditioned medium and proteomic analyses were conducted on both GBM cell lines and their sEVs to determine the cargo present within the sEVs. In addition, the impact of radiotherapy and temozolomide treatment of GBM cells was studied. RESULTS We found that GBM cells form active invadopodia and secrete sEVs containing the matrix metalloproteinase MMP-2. Subsequent proteomic studies revealed the presence of an invadopodia-related protein sEV cargo and that sEVs from highly invadopodia active GBM cells (LN229) increase invadopodia activity in sEV recipient GBM cells. We also found that GBM cells displayed increases in invadopodia activity and sEV secretion post radiation/temozolomide treatment. Together, these data reveal a relationship between invadopodia and sEV composition/secretion/uptake in promoting the invasiveness of GBM cells. CONCLUSIONS Our data indicate that sEVs secreted by GBM cells can facilitate tumour invasion by promoting invadopodia activity in recipient cells, which may be enhanced by treatment with radio-chemotherapy. The transfer of pro-invasive cargos may yield important insights into the functional capacity of sEVs in invadopodia.
Collapse
Affiliation(s)
- Clarissa A Whitehead
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Haoyun Fang
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Huaqi Su
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrew P Morokoff
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Level 5, Clinical Sciences Building, Parkville, VIC, 3050, Australia
| | - Andrew H Kaye
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Eric Hanssen
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Advanced Microscopy Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
| | - Katharine J Drummond
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Level 5, Clinical Sciences Building, Parkville, VIC, 3050, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Laura J Vella
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Level 5, Clinical Sciences Building, Parkville, VIC, 3050, Australia.
| |
Collapse
|
7
|
Frank D, Moussi CJ, Ulferts S, Lorenzen L, Schwan C, Grosse R. Vesicle-Associated Actin Assembly by Formins Promotes TGFβ-Induced ANGPTL4 Trafficking, Secretion and Cell Invasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204896. [PMID: 36691769 PMCID: PMC10037683 DOI: 10.1002/advs.202204896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Vesicle trafficking has emerged as an important process driving tumor progression through various mechanisms. Transforming growth factor beta (TGFβ)-mediated secretion of Angiopoietin-like 4 (ANGPTL4) is important for cancer development. Here, Formin-like 2 (FMNL2) is identified to be necessary for ANGPTL4 trafficking and secretion in response to TGFβ. Protein kinase C (PKC)-dependent phosphorylation of FMNL2 downstream of TGFβ stimulation is required for cancer cell invasion as well as ANGPTL4 vesicle trafficking and secretion. Moreover, using super resolution microscopy, ANGPTL4 trafficking is actin-dependent with FMNL2 directly polymerizing actin at ANGPTL4-containing vesicles, which are associated with Rab8a and myosin Vb. This work uncovers a formin-controlled mechanism that transiently polymerizes actin directly at intracellular vesicles to facilitate their mobility. This mechanism may be important for the regulation of cancer cell metastasis and tumor progression.
Collapse
Affiliation(s)
- Dennis Frank
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
| | - Christel Jessica Moussi
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
- Deutsche Forschungsgemeinschaft Research Training GroupMembrane Plasticity in Tissue Development and RemodelingUniversity of Marburg35037MarburgGermany
| | - Svenja Ulferts
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
| | - Lina Lorenzen
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
- Centre for Integrative Biological Signalling Studies – CIBSS79104FreiburgGermany
| |
Collapse
|
8
|
Schürmann H, Abbasi F, Russo A, Hofemeier AD, Brandt M, Roth J, Vogl T, Betz T. Analysis of monocyte cell tractions in 2.5D reveals mesoscale mechanics of podosomes during substrate-indenting cell protrusion. J Cell Sci 2022; 135:275542. [PMID: 35621127 PMCID: PMC9189428 DOI: 10.1242/jcs.259042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 04/27/2022] [Indexed: 12/23/2022] Open
Abstract
Podosomes are mechanosensitive protrusive actin structures that are prominent in myeloid cells, and they have been linked to vascular extravasation. Recent studies have suggested that podosomes are hierarchically organized and have coordinated dynamics on the cell scale, which implies that the local force generation by single podosomes can be different from their global combined action. Complementary to previous studies focusing on individual podosomes, here we investigated the cell-wide force generation of podosome-bearing ER-Hoxb8 monocytes. We found that the occurrence of focal tractions accompanied by a cell-wide substrate indentation cannot be explained by summing the forces of single podosomes. Instead, our findings suggest that superimposed contraction on the cell scale gives rise to a buckling mechanism that can explain the measured cell-scale indentation. Specifically, the actomyosin network contraction causes peripheral in-plane substrate tractions, while the accumulated internal stress results in out-of-plane deformation in the central cell region via a buckling instability, producing the cell-scale indentation. Hence, we propose that contraction of the actomyosin network, which connects the podosomes, leads to a substrate indentation that acts in addition to the protrusion forces of individual podosomes. This article has an associated First Person interview with the first author of the paper. Summary: Using a buckling model, we extend the current description of local podosome protrusion and include a mechanical explanation for protrusion on the cell scale.
Collapse
Affiliation(s)
- Hendrik Schürmann
- Institute of Cell Biology, ZMBE, University of Münster, Von-Esmarch-Straße 56, D-48149 Münster, Germany
| | - Fatemeh Abbasi
- Institute of Cell Biology, ZMBE, University of Münster, Von-Esmarch-Straße 56, D-48149 Münster, Germany.,Third Physical Institute, University of Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Antonella Russo
- Institute of Immunology, University of Münster, Röntgenstraße 21, D-48149 Münster, Germany
| | - Arne D Hofemeier
- Institute of Cell Biology, ZMBE, University of Münster, Von-Esmarch-Straße 56, D-48149 Münster, Germany.,Third Physical Institute, University of Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Matthias Brandt
- Institute of Cell Biology, ZMBE, University of Münster, Von-Esmarch-Straße 56, D-48149 Münster, Germany.,Third Physical Institute, University of Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Röntgenstraße 21, D-48149 Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Röntgenstraße 21, D-48149 Münster, Germany
| | - Timo Betz
- Institute of Cell Biology, ZMBE, University of Münster, Von-Esmarch-Straße 56, D-48149 Münster, Germany.,Third Physical Institute, University of Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| |
Collapse
|
9
|
Hülsemann M, Sanchez C, Verkhusha PV, Des Marais V, Mao SPH, Donnelly SK, Segall JE, Hodgson L. TC10 regulates breast cancer invasion and metastasis by controlling membrane type-1 matrix metalloproteinase at invadopodia. Commun Biol 2021; 4:1091. [PMID: 34531530 PMCID: PMC8445963 DOI: 10.1038/s42003-021-02583-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 08/23/2021] [Indexed: 01/12/2023] Open
Abstract
During breast cancer metastasis, cancer cell invasion is driven by actin-rich protrusions called invadopodia, which mediate the extracellular matrix degradation required for the success of the invasive cascade. In this study, we demonstrate that TC10, a member of a Cdc42 subfamily of p21 small GTPases, regulates the membrane type 1 matrix metalloproteinase (MT1-MMP)-driven extracellular matrix degradation at invadopodia. We show that TC10 is required for the plasma membrane surface exposure of MT1-MMP at these structures. By utilizing our Förster resonance energy transfer (FRET) biosensor, we demonstrate the p190RhoGAP-dependent regulation of spatiotemporal TC10 activity at invadopodia. We identified a pathway that regulates invadopodia-associated TC10 activity and function through the activation of p190RhoGAP and the downstream interacting effector Exo70. Our findings reveal the role of a previously unknown regulator of vesicular fusion at invadopodia, TC10 GTPase, in breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Maren Hülsemann
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Colline Sanchez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Polina V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vera Des Marais
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Serena P H Mao
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Sara K Donnelly
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jeffrey E Segall
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
10
|
West ZE, Aitcheson SM, Semmler ABT, Murray RZ. The trans-SNARE complex VAMP4/Stx6/Stx7/Vti1b is a key regulator of Golgi to late endosome MT1-MMP transport in macrophages. Traffic 2021; 22:368-376. [PMID: 34476885 DOI: 10.1111/tra.12813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022]
Abstract
The activity of the matrix metalloproteinase (MMP) MT1-MMP is strictly regulated by expression and cellular location. In macrophages LPS activation leads to the up-regulation of MT1-MMP and this need to be at the cell surface for them to degrade the dense extracellular matrix (ECM) components to create a path to migrate into injured and infected tissues. Fixed and live imaging shows newly made MT1-MMP is packaged into vesicles that traffic to and fuse with LBPA+ LAMP1+ late endosomes en route to the surface. The R-SNARE VAMP4, found on Golgi-derived vesicles that traffic to late endosomes, forms a trans-SNARE complex with the Q-SNARE complex Stx6/Stx7/Vti1b. The Stx6/Stx7/Vti1b complex has been shown to be up-regulated in lipopolysaccharide (LPS)-activated cells to increase trafficking of key cytokines through the classical pathway and now we show here it is up-regulation also plays a role in the late endosomal pathway of MT1-MMP trafficking. Depletion of any of the SNAREs in this complex reduces surface MT1-MMP and gelatin degradation. Conversely, overexpression of the Stx6/Stx7/Vti1b components increases surface MT1-MMP levels. This suggests that Stx6/Stx7/Vti1b is a key Q-SNARE complex in macrophages during an immune response and in partnership with VAMP4 it regulates transport of newly made MT1-MMP.
Collapse
Affiliation(s)
- Zoe Elizabeth West
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Savannah Margaret Aitcheson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Rachael Zoe Murray
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Rivier P, Mubalama M, Destaing O. Small GTPases all over invadosomes. Small GTPases 2021; 12:429-439. [PMID: 33487105 PMCID: PMC8583085 DOI: 10.1080/21541248.2021.1877081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 12/19/2022] Open
Abstract
Cell invasion is associated with numerous patho-physiologic states including cell development and metastatic dissemination. This process couples the activation of cell motility with the capacity to degrade the extracellular matrix, thereby permitting cells to pass through basal membranes. Invasion is sustained by the actions of invadosomes, an ensemble of subcellular structures with high functional homology. Invadosomes are 3D acto-adhesive structures that can also mediate local extracellular matrix degradation through the controlled delivery of proteases. Intracellular RHO GTPases play a central role in the regulation of invadosomes where their complex interplay regulates multiple invadosome functions. This review aims to provide an overview of the synergistic activities of the small GTPases in invadosome biology. This broad-based review also reinforces the importance of the spatiotemporal regulation of small GTPases and the impact of this process on invadosome dynamics.
Collapse
Affiliation(s)
- Paul Rivier
- Team DYSAD, Dept2, Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Grenoble, France
| | - Michel Mubalama
- Team DYSAD, Dept2, Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Grenoble, France
| | - Olivier Destaing
- Team DYSAD, Dept2, Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Grenoble, France
| |
Collapse
|
12
|
Linklater ES, Duncan ED, Han KJ, Kaupinis A, Valius M, Lyons TR, Prekeris R. Rab40-Cullin5 complex regulates EPLIN and actin cytoskeleton dynamics during cell migration. J Cell Biol 2021; 220:212111. [PMID: 33999101 PMCID: PMC8129794 DOI: 10.1083/jcb.202008060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/09/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Rab40b is a SOCS box–containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here, we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b–Cullin5 binding decreases cell motility and invasive potential and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers. We also show that these stress fibers anchor at less dynamic, more stable focal adhesions. Mechanistically, changes in the cytoskeleton and focal adhesion dynamics are mediated in part by EPLIN, which we demonstrate to be a binding partner of Rab40b and a target for Rab40b–Cullin5-dependent localized ubiquitylation and degradation. Thus, we propose a model where Rab40b–Cullin5-dependent ubiquitylation regulates EPLIN localization to promote cell migration and invasion by altering focal adhesion and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Erik S Linklater
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Emily D Duncan
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ke-Jun Han
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Algirdas Kaupinis
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius, Lithuania
| | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius, Lithuania
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Cancer Center, Young Women's Breast Cancer Translational Program, Aurora, CO
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
13
|
Grafinger OR, Gorshtein G, Stirling T, Geddes-McAlister J, Coppolino MG. Inhibition of β1 integrin induces its association with MT1-MMP and decreases MT1-MMP internalization and cellular invasiveness. Cell Signal 2021; 83:109984. [PMID: 33744418 DOI: 10.1016/j.cellsig.2021.109984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022]
Abstract
Integrin signaling plays a fundamental role in the establishment of focal adhesions and the subsequent formation of invadopodia in malignant cancer cells. Invadopodia facilitate localized adhesion and degradation of the extracellular matrix (ECM), which promote tumour cell invasion and metastasis. Degradation of ECM components is often driven by membrane type-1 matrix metalloproteinase (MT1-MMP), and we have recently shown that regulation of enzyme internalization is dependent on signaling downstream of β1 integrin. Phosphorylation of the cytoplasmic tail of MT1-MMP is required for its internalization and delivery to Rab5-marked early endosomes, where it is then able to be recycled to new sites of invadopodia formation and promote invasion. Here we found that inhibition of β1 integrin, using the antibody AIIB2, inhibited the internalization and recycling of MT1-MMP that is necessary to support long-term cellular invasion. MT1-MMP and β1 integrin were sequestered at the cell surface when β1-integrin was inhibited, and their association under these conditions was detected using immunoprecipitation and mass spectrometry analyses. Sequestration of β1 integrin and MT1-MMP at the cell surface resulted in the formation of large invadopodia and local ECM degradation; however, the impaired internalization and recycling of MT1-MMP and β1 integrin ultimately led to a loss of invasive behaviour.
Collapse
Affiliation(s)
- Olivia R Grafinger
- Department of Molecular and Cellular Biology, University of Guelph, ON N1G 2W1, Canada
| | - Genya Gorshtein
- Department of Molecular and Cellular Biology, University of Guelph, ON N1G 2W1, Canada
| | - Tyler Stirling
- Department of Molecular and Cellular Biology, University of Guelph, ON N1G 2W1, Canada
| | | | - Marc G Coppolino
- Department of Molecular and Cellular Biology, University of Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
14
|
Lucken-Ardjomande Häsler S, Vallis Y, Pasche M, McMahon HT. GRAF2, WDR44, and MICAL1 mediate Rab8/10/11-dependent export of E-cadherin, MMP14, and CFTR ΔF508. J Cell Biol 2021; 219:151714. [PMID: 32344433 PMCID: PMC7199855 DOI: 10.1083/jcb.201811014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
In addition to the classical pathway of secretion, some transmembrane proteins reach the plasma membrane through alternative routes. Several proteins transit through endosomes and are exported in a Rab8-, Rab10-, and/or Rab11-dependent manner. GRAFs are membrane-binding proteins associated with tubules and vesicles. We found extensive colocalization of GRAF1b/2 with Rab8a/b and partial with Rab10. We identified MICAL1 and WDR44 as direct GRAF-binding partners. MICAL1 links GRAF1b/2 to Rab8a/b and Rab10, and WDR44 binds Rab11. Endogenous WDR44 labels a subset of tubular endosomes, which are closely aligned with the ER via binding to VAPA/B. With its BAR domain, GRAF2 can tubulate membranes, and in its absence WDR44 tubules are not observed. We show that GRAF2 and WDR44 are essential for the export of neosynthesized E-cadherin, MMP14, and CFTR ΔF508, three proteins whose exocytosis is sensitive to ER stress. Overexpression of dominant negative mutants of GRAF1/2, WDR44, and MICAL1 also interferes with it, facilitating future studies of Rab8/10/11-dependent exocytic pathways of central importance in biology.
Collapse
Affiliation(s)
| | - Yvonne Vallis
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Mathias Pasche
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Harvey T McMahon
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
15
|
Tong SJ, Wall AA, Hung Y, Luo L, Stow JL. Guanine nucleotide exchange factors activate Rab8a for Toll-like receptor signalling. Small GTPases 2021; 12:27-43. [PMID: 30843452 PMCID: PMC7781844 DOI: 10.1080/21541248.2019.1587278] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 02/03/2023] Open
Abstract
Macrophages are important immune sentinels that detect and clear pathogens and initiate inflammatory responses through the activation of surface receptors, including Toll-like receptors (TLRs). Activated TLRs employ complex cellular trafficking and signalling pathways to initiate transcription for inflammatory cytokine programs. We have previously shown that Rab8a is activated by multiple TLRs and regulates downstream Akt/mTOR signalling by recruiting the effector PI3Kγ, but the guanine nucleotide exchange factors (GEF) canonically required for Rab8a activation in TLR pathways is not known. Using GST affinity pull-downs and mass spectrometry analysis, we identified a Rab8 specific GEF, GRAB, as a Rab8a binding partner in LPS-activated macrophages. Co-immunoprecipitation and fluorescence microscopy showed that both GRAB and a structurally similar GEF, Rabin8, undergo LPS-inducible binding to Rab8a and are localised on cell surface ruffles and macropinosomes where they coincide with sites of Rab8a mediated signalling. Rab nucleotide activation assays with CRISPR-Cas9 mediated knock-out (KO) cell lines of GRAB, Rabin8 and double KOs showed that both GEFs contribute to TLR4 induced Rab8a GTP loading, but not membrane recruitment. In addition, measurement of signalling profiles and live cell imaging with the double KOs revealed that either GEF is individually sufficient to mediate PI3Kγ-dependent Akt/mTOR signalling at macropinosomes during TLR4-driven inflammation, suggesting a redundant relationship between these proteins. Thus, both GRAB and Rabin8 are revealed as key positive regulators of Rab8a nucleotide exchange for TLR signalling and inflammatory programs. These GEFs may be useful as potential targets for manipulating inflammation. Abbreviations: TLR: Toll-like Receptor; OCRL: oculocerebrorenal syndrome of Lowe protein; PI3Kγ: phosphoinositol-3-kinase gamma; LPS: lipopolysaccharide; GEF: guanine nucleotide exchange factor; GST: glutathione S-transferases; BMMs: bone marrow derived macrophages; PH: pleckstrin homology; GAP: GTPase activating protein; ABCA1: ATP binding cassette subfamily A member 1; GDI: GDP dissociation inhibitor; LRP1: low density lipoprotein receptor-related protein 1.
Collapse
Affiliation(s)
- Samuel J. Tong
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research (CIDR), The University of Queensland, Brisbane, QLD, Australia
| | - Adam A. Wall
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research (CIDR), The University of Queensland, Brisbane, QLD, Australia
| | - Yu Hung
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research (CIDR), The University of Queensland, Brisbane, QLD, Australia
| | - Lin Luo
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research (CIDR), The University of Queensland, Brisbane, QLD, Australia
| | - Jennifer L. Stow
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research (CIDR), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Boyle ST, Mittal P, Kaur G, Hoffmann P, Samuel MS, Klingler-Hoffmann M. Uncovering Tumor-Stroma Inter-relationships Using MALDI Mass Spectrometry Imaging. J Proteome Res 2020; 19:4093-4103. [PMID: 32870688 DOI: 10.1021/acs.jproteome.0c00511] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumorigenesis involves a complex interplay between genetically modified cancer cells and their adjacent normal tissue, the stroma. We used an established breast cancer mouse model to investigate this inter-relationship. Conditional activation of Rho-associated protein kinase (ROCK) in a model of mammary tumorigenesis enhances tumor growth and progression by educating the stroma and enhancing the production and remodeling of the extracellular matrix. We used peptide matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to quantify the proteomic changes occurring within tumors and their stroma in their regular spatial context. Peptides were ranked according to their ability to discriminate between the two groups, using a receiver operating characteristic tool. Peptides were identified by liquid chromatography tandem mass spectrometry, and protein expression was validated by quantitative immunofluorescence using an independent set of tumor samples. We have identified and validated four key proteins upregulated in ROCK-activated mammary tumors relative to those expressing kinase-dead ROCK, namely, collagen I, α-SMA, Rab14, and tubulin-β4. Rab14 and tubulin-β4 are expressed within tumor cells, whereas collagen I is localized within the stroma. α-SMA is predominantly localized within the stroma but is also expressed at higher levels in the epithelia of ROCK-activated tumors. High expression of COL1A, the gene encoding the pro-α 1 chain of collagen, correlates with cancer progression in two human breast cancer genomic data sets, and high expression of COL1A and ACTA2 (the gene encoding α-SMA) are associated with a low survival probability (COLIA, p = 0.00013; ACTA2, p = 0.0076) in estrogen receptor-negative breast cancer patients. To investigate whether ROCK-activated tumor cells cause stromal cancer-associated fibroblasts (CAFs) to upregulate expression of collagen I and α-SMA, we treated CAFs with medium conditioned by primary mammary tumor cells in which ROCK had been activated. This led to abundant production of both proteins in CAFs, clearly highlighting the inter-relationship between tumor cells and CAFs and identifying CAFs as the potential source of high levels of collagen 1 and α-SMA and associated enhancement of tissue stiffness. Our research emphasizes the capacity of MALDI-MSI to quantitatively assess tumor-stroma inter-relationships and to identify potential prognostic factors for cancer progression in human patients, using sophisticated mouse cancer models.
Collapse
Affiliation(s)
- Sarah T Boyle
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide SA 5000, Australia
| | - Parul Mittal
- Future Industries Institute, University of South Australia, Mawson Lakes SA 5095, Australia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800 Pulau Pinang, Malaysia
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes SA 5095, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide SA 5000, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide SA 5000, Australia
| | | |
Collapse
|
17
|
O’Sullivan MJ, Lindsay AJ. The Endosomal Recycling Pathway-At the Crossroads of the Cell. Int J Mol Sci 2020; 21:ijms21176074. [PMID: 32842549 PMCID: PMC7503921 DOI: 10.3390/ijms21176074] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
The endosomal recycling pathway lies at the heart of the membrane trafficking machinery in the cell. It plays a central role in determining the composition of the plasma membrane and is thus critical for normal cellular homeostasis. However, defective endosomal recycling has been linked to a wide range of diseases, including cancer and some of the most common neurological disorders. It is also frequently subverted by many diverse human pathogens in order to successfully infect cells. Despite its importance, endosomal recycling remains relatively understudied in comparison to the endocytic and secretory transport pathways. A greater understanding of the molecular mechanisms that support transport through the endosomal recycling pathway will provide deeper insights into the pathophysiology of disease and will likely identify new approaches for their detection and treatment. This review will provide an overview of the normal physiological role of the endosomal recycling pathway, describe the consequences when it malfunctions, and discuss potential strategies for modulating its activity.
Collapse
|
18
|
Pacheco-Fernandez N, Pakdel M, Blank B, Sanchez-Gonzalez I, Weber K, Tran ML, Hecht TKH, Gautsch R, Beck G, Perez F, Hausser A, Linder S, von Blume J. Nucleobindin-1 regulates ECM degradation by promoting intra-Golgi trafficking of MMPs. J Cell Biol 2020; 219:e201907058. [PMID: 32479594 PMCID: PMC7401813 DOI: 10.1083/jcb.201907058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/29/2019] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteinases (MMPs) degrade several ECM components and are crucial modulators of cell invasion and tissue organization. Although much has been reported about their function in remodeling ECM in health and disease, their trafficking across the Golgi apparatus remains poorly understood. Here we report that the cis-Golgi protein nucleobindin-1 (NUCB1) is critical for MMP2 and MT1-MMP trafficking along the Golgi apparatus. This process is Ca2+-dependent and is required for invasive MDA-MB-231 cell migration as well as for gelatin degradation in primary human macrophages. Our findings emphasize the importance of NUCB1 as an essential component of MMP transport and its overall impact on ECM remodeling.
Collapse
Affiliation(s)
| | | | - Birgit Blank
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | | | - Kathrin Weber
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg, Hamburg, Germany
| | - Mai Ly Tran
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Tobias Karl-Heinz Hecht
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Renate Gautsch
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gisela Beck
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Franck Perez
- Institute Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Stefan Linder
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg, Hamburg, Germany
| | - Julia von Blume
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
19
|
Sharma P, Parveen S, Shah LV, Mukherjee M, Kalaidzidis Y, Kozielski AJ, Rosato R, Chang JC, Datta S. SNX27-retromer assembly recycles MT1-MMP to invadopodia and promotes breast cancer metastasis. J Cell Biol 2020; 219:132732. [PMID: 31820782 PMCID: PMC7039210 DOI: 10.1083/jcb.201812098] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/26/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Recycling of MT-MMPs to actin-rich membrane-protrusive structures promotes breast cancer invasion. This study shows that SNX27–retromer, an endosomal sorting and recycling machinery, interacts with MT1-MMP and regulates its transport to the cell surface, thus promoting matrix invasive activity of the breast cancer cells. A variety of metastatic cancer cells use actin-rich membrane protrusions, known as invadopodia, for efficient ECM degradation, which involves trafficking of proteases from intracellular compartments to these structures. Here, we demonstrate that in the metastatic breast cancer cell line MDA-MB-231, retromer regulates the matrix invasion activity by recycling matrix metalloprotease, MT1-MMP. We further found that MT2-MMP, another abundantly expressed metalloprotease, is also invadopodia associated. MT1- and MT2-MMP showed a high degree of colocalization but were located on the distinct endosomal domains. Retromer and its associated sorting nexin, SNX27, phenocopied each other in matrix degradation via selectively recycling MT1-MMP but not MT2-MMP. ITC-based studies revealed that both SNX27 and retromer could directly interact with MT1-MMP. Analysis from a publicly available database showed SNX27 to be overexpressed or frequently altered in the patients having invasive breast cancer. In xenograft-based studies, SNX27-depleted cell lines showed prolonged survival of SCID mice, suggesting a possible implication for overexpression of the sorting nexin in tumor samples.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Sameena Parveen
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Lekha V Shah
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Madhumita Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | | | | | | | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| |
Collapse
|
20
|
Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. Int J Mol Sci 2020; 21:ijms21113946. [PMID: 32486345 PMCID: PMC7313469 DOI: 10.3390/ijms21113946] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases responsible for tissue remodeling and degradation of extracellular matrix (ECM) proteins. MMPs may modulate various cellular and signaling pathways in atherosclerosis responsible for progression and rupture of atherosclerotic plaques. The effect of MMPs polymorphisms and the expression of MMPs in both the atherosclerotic plaque and plasma was shown. They are independent predictors of atherosclerotic plaque instability in stable coronary heart disease (CHD) patients. Increased levels of MMPs in patients with advanced cardiovascular disease (CAD) and acute coronary syndrome (ACS) was associated with future risk of cardiovascular events. These data confirm that MMPs may be biomarkers in plaque instability as they target in potential drug therapies for atherosclerosis. They provide important prognostic information, independent of traditional risk factors, and may turn out to be useful in improving risk stratification.
Collapse
|
21
|
Li L, Wan K, Xiong L, Liang S, Tou F, Guo S. CircRNA hsa_circ_0087862 Acts as an Oncogene in Non-Small Cell Lung Cancer by Targeting miR-1253/RAB3D Axis. Onco Targets Ther 2020; 13:2873-2886. [PMID: 32308420 PMCID: PMC7138622 DOI: 10.2147/ott.s243533] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Circular RNAs (circRNAs) have been found to regulate several human tumors. The present study was to explore the mechanism of hsa_circ_0087862 in regulating non-small cell lung cancer (NSCLC). Methods Totally 102 NSCLC cases were enrolled. NCI-H1359 and A549 cells were transfected. Cells viability, apoptosis, migration and invasion were determined by CCK-8 assay, flow cytometry, scratch test and transwell experiment, respectively. Luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay were performed. Xenograft tumor experiments were performed using nude mice. hsa_circ_0087862, miR-1253 and RAB3D expression in tissues/cells were detected by qRT-PCR. RAB3D and Ki67 protein expressions in cells/tissues were researched by Western blot and immunohistochemistry. Apoptosis of xenograft tumor tissue cells was detected using Tunel assay. Results hsa_circ_0087862 was significantly up-regulated in NSCLC patients, which was associated with poor prognosis (P < 0.05). hsa_circ_0087862 down-regulation prominently weakened NSCLC cells viability, migration, invasion and enhanced apoptosis (P < 0.01). hsa_circ_0087862 overexpression exhibited the opposite results in NSCLC cells. miR-1253 was sponged by hsa_circ_0087862. miR-1253 expression in NSCLC tissues was negatively correlated with hsa_circ_0087862 (P < 0.001). RAB3D expression in NSCLC was directly inhibited by miR-1253. miR-1253 down-regulation or RAB3D overexpression dramatically reversed NSCLC cells phenotype induced by hsa_circ_0087862 down-regulation. hsa_circ_0087862 down-regulation markedly inhibited tumor growth in vivo (P < 0.01). In xenograft tumor tissues, hsa_circ_0087862 down-regulation obviously decreased expression of RAB3D, Ki67 and increased apoptosis. Conclusion hsa_circ_0087862 acted as an oncogene in NSCLC by targeting miR-1253/RAB3D.
Collapse
Affiliation(s)
- Lin Li
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang 330029, People's Republic of China
| | - Ke Wan
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang 330029, People's Republic of China
| | - Linkai Xiong
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang 330029, People's Republic of China
| | - Shuang Liang
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang 330029, People's Republic of China
| | - Fangfang Tou
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang 330029, People's Republic of China
| | - Shanxian Guo
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang 330029, People's Republic of China
| |
Collapse
|
22
|
van den Dries K, Linder S, Maridonneau-Parini I, Poincloux R. Probing the mechanical landscape – new insights into podosome architecture and mechanics. J Cell Sci 2019; 132:132/24/jcs236828. [DOI: 10.1242/jcs.236828] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ABSTRACT
Podosomes are dynamic adhesion structures formed constitutively by macrophages, dendritic cells and osteoclasts and transiently in a wide variety of cells, such as endothelial cells and megakaryocytes. They mediate numerous functions, including cell–matrix adhesion, extracellular matrix degradation, mechanosensing and cell migration. Podosomes present as micron-sized F-actin cores surrounded by an adhesive ring of integrins and integrin–actin linkers, such as talin and vinculin. In this Review, we highlight recent research that has considerably advanced our understanding of the complex architecture–function relationship of podosomes by demonstrating that the podosome ring actually consists of discontinuous nano-clusters and that the actin network in between podosomes comprises two subsets of unbranched actin filaments, lateral and dorsal podosome-connecting filaments. These lateral and dorsal podosome-connecting filaments connect the core and ring of individual podosomes and adjacent podosomes, respectively. We also highlight recent insights into the podosome cap as a novel regulatory module of actomyosin-based contractility. We propose that these newly identified features are instrumental for the ability of podosomes to generate protrusion forces and to mechanically probe their environment. Furthermore, these new results point to an increasing complexity of podosome architecture and have led to our current view of podosomes as autonomous force generators that drive cell migration.
Collapse
Affiliation(s)
- Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UMR5089, 205 route de Narbonne, BP64182 31077 Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UMR5089, 205 route de Narbonne, BP64182 31077 Toulouse, France
| |
Collapse
|
23
|
Abstract
Exosomes and ectosomes, two distinct types of extracellular vesicles generated by all types of cell, play key roles in intercellular communication. The formation of these vesicles depends on local microdomains assembled in endocytic membranes for exosomes and in the plasma membrane for ectosomes. These microdomains govern the accumulation of proteins and various types of RNA associated with their cytosolic surface, followed by membrane budding inward for exosome precursors and outward for ectosomes. A fraction of endocytic cisternae filled with vesicles - multivesicular bodies - are later destined to undergo regulated exocytosis, leading to the extracellular release of exosomes. In contrast, the regulated release of ectosomes follows promptly after their generation. These two types of vesicle differ in size - 50-150 nm for exosomes and 100-500 nm for ectosomes - and in the mechanisms of assembly, composition, and regulation of release, albeit only partially. For both exosomes and ectosomes, the surface and luminal cargoes are heterogeneous when comparing vesicles released by different cell types or by single cells in different functional states. Upon release, the two types of vesicle navigate through extracellular fluid for varying times and distances. Subsequently, they interact with recognized target cells and undergo fusion with endocytic or plasma membranes, followed by integration of vesicle membranes into their fusion membranes and discharge of luminal cargoes into the cytosol, resulting in changes to cellular physiology. After fusion, exosome/ectosome components can be reassembled in new vesicles that are then recycled to other cells, activating effector networks. Extracellular vesicles also play critical roles in brain and heart diseases and in cancer, and are useful as biomarkers and in the development of innovative therapeutic approaches.
Collapse
|
24
|
Jiashi W, Chuang Q, Zhenjun Z, Guangbin W, Bin L, Ming H. MicroRNA-506-3p inhibits osteosarcoma cell proliferation and metastasis by suppressing RAB3D expression. Aging (Albany NY) 2019; 10:1294-1305. [PMID: 29905536 PMCID: PMC6046236 DOI: 10.18632/aging.101468] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022]
Abstract
Osteosarcoma is an aggressive bone tumor primarily affecting children and adolescents. Its cause is not yet fully understood, and there is an urgent need for more effective treatment. In the present study we identified several miRNAs whose expression is altered in osteosarcoma compared to adjacent normal tissue. Moreover, expression levels of one of those miRNAs, miR-506-3p, correlated negatively with expression of RAB3D (a Ras-related protein). Suppression of miR-506-3p in osteosarcoma led to increased expression of RAB3D, which in turn led to increased CDK4 (cyclin-dependent kinase 4) and MMP9 (matrix metalloprotein 9) activities. Our results suggest that miR-506-3p acts as a tumor suppressor in osteosarcoma and that its downregulation leads to tumor cell proliferation and metastasis due to upregulation of RAB3D- and CDK4-mediated signaling. miR-506-3p thus appears be a potentially useful target for adjuvant therapy in osteosarcoma patients.
Collapse
Affiliation(s)
- Wang Jiashi
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Qiu Chuang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Zhang Zhenjun
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Wang Guangbin
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Li Bin
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - He Ming
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
25
|
Li F, Chen J, Leier A, Marquez-Lago T, Liu Q, Wang Y, Revote J, Smith AI, Akutsu T, Webb GI, Kurgan L, Song J. DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites. Bioinformatics 2019; 36:1057-1065. [PMID: 31566664 PMCID: PMC8215920 DOI: 10.1093/bioinformatics/btz721] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/13/2019] [Accepted: 09/25/2019] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION Proteases are enzymes that cleave target substrate proteins by catalyzing the hydrolysis of peptide bonds between specific amino acids. While the functional proteolysis regulated by proteases plays a central role in the 'life and death' cellular processes, many of the corresponding substrates and their cleavage sites were not found yet. Availability of accurate predictors of the substrates and cleavage sites would facilitate understanding of proteases' functions and physiological roles. Deep learning is a promising approach for the development of accurate predictors of substrate cleavage events. RESULTS We propose DeepCleave, the first deep learning-based predictor of protease-specific substrates and cleavage sites. DeepCleave uses protein substrate sequence data as input and employs convolutional neural networks with transfer learning to train accurate predictive models. High predictive performance of our models stems from the use of high-quality cleavage site features extracted from the substrate sequences through the deep learning process, and the application of transfer learning, multiple kernels and attention layer in the design of the deep network. Empirical tests against several related state-of-the-art methods demonstrate that DeepCleave outperforms these methods in predicting caspase and matrix metalloprotease substrate-cleavage sites. AVAILABILITY AND IMPLEMENTATION The DeepCleave webserver and source code are freely available at http://deepcleave.erc.monash.edu/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - André Leier
- Department of Genetics, USA,Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tatiana Marquez-Lago
- Department of Genetics, USA,Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Quanzhong Liu
- College of Information Engineering, Northwest A&F University, Yangling 712100, China
| | - Yanze Wang
- College of Information Engineering, Northwest A&F University, Yangling 712100, China
| | - Jerico Revote
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - A Ian Smith
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Geoffrey I Webb
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | | | | |
Collapse
|
26
|
Röhl J, West ZE, Rudolph M, Zaharia A, Van Lonkhuyzen D, Hickey DK, Semmler ABT, Murray RZ. Invasion by activated macrophages requires delivery of nascent membrane-type-1 matrix metalloproteinase through late endosomes/lysosomes to the cell surface. Traffic 2019; 20:661-673. [PMID: 31297933 DOI: 10.1111/tra.12675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Macrophage migration into injured or infected tissue is a key aspect in the pathophysiology of many diseases where inflammation is a driving factor. Membrane-type-1 matrix metalloproteinase (MT1-MMP) cleaves extracellular matrix components to facilitate invasion. Here we show that, unlike the constitutive MT1-MMP surface recycling seen in cancer cells, unactivated macrophages express low levels of MT1-MMP. Upon lipopolysaccharide (LPS) activation, MT1-MMP synthesis dramatically increases 10-fold at the surface by 15 hours. MT1-MMP is trafficked from the Golgi complex to the surface via late endosomes/lysosomes in a pathway regulated by the late endosome/lysosome R-SNAREs VAMP7 and VAMP8. These form two separate complexes with the surface Q-SNARE complex Stx4/SNAP23 to regulate MT1-MMP delivery to the plasma membrane. Loss of either one of these SNAREs leads to a reduction in surface MT1-MMP, gelatinase activity and reduced invasion. Thus, inhibiting MT1-MMP transport through this pathway could reduce macrophage migration and the resulting inflammation.
Collapse
Affiliation(s)
- Joan Röhl
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Zoe E West
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Maren Rudolph
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Andreea Zaharia
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Derek Van Lonkhuyzen
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Danica K Hickey
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Annalese B T Semmler
- Institute of Health and Biomedical Innovation, School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Rachael Z Murray
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
MT1-MMP-dependent cell migration: proteolytic and non-proteolytic mechanisms. Biochem Soc Trans 2019; 47:811-826. [PMID: 31064864 PMCID: PMC6599156 DOI: 10.1042/bst20180363] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 01/01/2023]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a type I transmembrane proteinase that belongs to the matrix metalloproteinase (MMP) family. It is a potent modifier of cellular microenvironment and promotes cell migration and invasion of a wide variety of cell types both in physiological and pathological conditions. It promotes cell migration by degrading extracellular matrix on the cell surface and creates a migration path, by modifying cell adhesion property by shedding cell adhesion molecules to increase cell motility, and by altering cellular metabolism. Thus, MT1-MMP is a multifunctional cell motility enhancer. In this review, we will discuss the current understanding of the proteolytic and non-proteolytic mechanism of MT1-MMP-dependent cell migration.
Collapse
|
28
|
Wilson BJ, Allen JL, Caswell PT. Vesicle trafficking pathways that direct cell migration in 3D matrices and in vivo. Traffic 2018; 19:899-909. [PMID: 30054969 PMCID: PMC6282850 DOI: 10.1111/tra.12605] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Cell migration is a vital process in development and disease, and while the mechanisms that control motility are relatively well understood on two-dimensional surfaces, the control of cell migration in three dimensions (3D) and in vivo has only recently begun to be understood. Vesicle trafficking pathways have emerged as a key regulatory element in migration and invasion, with the endocytosis and recycling of cell surface cargos, including growth factor and chemokine receptors, adhesion receptors and membrane-associated proteases, being of major importance. We highlight recent advances in our understanding of how endocytic trafficking controls the availability and local activity of these cargoes to influence the movement of cells in 3D matrix and in developing organisms. In particular, we discuss how endocytic trafficking of different receptor classes spatially restricts signals and activity, usually to the leading edge of invasive cells.
Collapse
Affiliation(s)
- Beverley J. Wilson
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Jennifer L. Allen
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Patrick T. Caswell
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| |
Collapse
|
29
|
Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells 2018; 7:cells7100167. [PMID: 30322133 PMCID: PMC6210724 DOI: 10.3390/cells7100167] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and transcriptional factors), lipids, carbohydrates and nucleic acids including DNA, coding and non-coding RNAs. The secreted EVs are taken up by neighboring cells where they release their content in recipient cells, or can sail through body fluids to reach distant organs. Since EVs transport bioactive cargo between cells, they have emerged as novel mediators of extra- and intercellular activities in local microenvironment and inter-organ communications distantly. Herein, we review the activities of EV-associated matrix-remodeling enzymes such as matrix metalloproteinases, heparanases, hyaluronidases, aggrecanases, and their regulators such as extracellular matrix metalloproteinase inducers and tissue inhibitors of metalloproteinases as novel means of matrix remodeling in physiological and pathological conditions. We discuss how such EVs act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases. Additionally, the roles of EV-mediated matrix remodeling in tissue repair and their potential applications as organ therapies have been reviewed. Collectively, this knowledge could benefit the development of new approaches for tissue engineering.
Collapse
|
30
|
A cell surface display fluorescent biosensor for measuring MMP14 activity in real-time. Sci Rep 2018; 8:5916. [PMID: 29651043 PMCID: PMC5897415 DOI: 10.1038/s41598-018-24080-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/23/2018] [Indexed: 01/16/2023] Open
Abstract
Despite numerous recent advances in imaging technologies, one continuing challenge for cell biologists and microscopists is the visualization and measurement of endogenous proteins as they function within living cells. Achieving this goal will provide a tool that investigators can use to associate cellular outcomes with the behavior and activity of many well-studied target proteins. Here, we describe the development of a plasmid-based fluorescent biosensor engineered to measure the location and activity of matrix metalloprotease-14 (MMP14). The biosensor design uses fluorogen-activating protein technology coupled with a MMP14-selective protease sequence to generate a binary, “switch-on” fluorescence reporter capable of measuring MMP14 location, activity, and temporal dynamics. The MMP14-fluorogen activating protein biosensor approach is applicable to both short and long-term imaging modalities and contains an adaptable module that can be used to study many membrane-bound proteases. This MMP14 biosensor promises to serve as a tool for the advancement of a broad range of investigations targeting MMP14 activity during cell migration in health and disease.
Collapse
|
31
|
Tebar F, Enrich C, Rentero C, Grewal T. GTPases Rac1 and Ras Signaling from Endosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:65-105. [PMID: 30097772 DOI: 10.1007/978-3-319-96704-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endocytic compartment is not only the functional continuity of the plasma membrane but consists of a diverse collection of intracellular heterogeneous complex structures that transport, amplify, sustain, and/or sort signaling molecules. Over the years, it has become evident that early, late, and recycling endosomes represent an interconnected vesicular-tubular network able to form signaling platforms that dynamically and efficiently translate extracellular signals into biological outcome. Cell activation, differentiation, migration, death, and survival are some of the endpoints of endosomal signaling. Hence, to understand the role of the endosomal system in signal transduction in space and time, it is therefore necessary to dissect and identify the plethora of decoders that are operational in the different steps along the endocytic pathway. In this chapter, we focus on the regulation of spatiotemporal signaling in cells, considering endosomes as central platforms, in which several small GTPases proteins of the Ras superfamily, in particular Ras and Rac1, actively participate to control cellular processes like proliferation and cell mobility.
Collapse
Affiliation(s)
- Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
32
|
Biochemical and Biological Attributes of Matrix Metalloproteinases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:1-73. [PMID: 28413025 DOI: 10.1016/bs.pmbts.2017.02.005] [Citation(s) in RCA: 819] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that are involved in the degradation of various proteins in the extracellular matrix (ECM). Typically, MMPs have a propeptide sequence, a catalytic metalloproteinase domain with catalytic zinc, a hinge region or linker peptide, and a hemopexin domain. MMPs are commonly classified on the basis of their substrates and the organization of their structural domains into collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-MMPs, and other MMPs. MMPs are secreted by many cells including fibroblasts, vascular smooth muscle (VSM), and leukocytes. MMPs are regulated at the level of mRNA expression and by activation of their latent zymogen form. MMPs are often secreted as inactive pro-MMP form which is cleaved to the active form by various proteinases including other MMPs. MMPs cause degradation of ECM proteins such as collagen and elastin, but could influence endothelial cell function as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. MMPs play a role in tissue remodeling during various physiological processes such as angiogenesis, embryogenesis, morphogenesis, and wound repair, as well as in pathological conditions such as myocardial infarction, fibrotic disorders, osteoarthritis, and cancer. Increases in specific MMPs could play a role in arterial remodeling, aneurysm formation, venous dilation, and lower extremity venous disorders. MMPs also play a major role in leukocyte infiltration and tissue inflammation. MMPs have been detected in cancer, and elevated MMP levels have been associated with tumor progression and invasiveness. MMPs can be regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio often determines the extent of ECM protein degradation and tissue remodeling. MMPs have been proposed as biomarkers for numerous pathological conditions and are being examined as potential therapeutic targets in various cardiovascular and musculoskeletal disorders as well as cancer.
Collapse
|
33
|
Aquino-Cortez A, Pinheiro BQ, Lima DBC, Silva HVR, Mota-Filho AC, Martins JAM, Rodriguez-Villamil P, Moura AA, Silva LDM. Proteomic characterization of canine seminal plasma. Theriogenology 2017; 95:178-186. [PMID: 28460673 DOI: 10.1016/j.theriogenology.2017.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/31/2022]
Abstract
The present study was conducted to identify the major proteome of the sperm-rich fraction and prostatic fraction of canine seminal plasma. Three semen samples from four healthy dogs were obtained by digital manipulation. The pre-sperm fraction, sperm-rich fraction and prostatic fraction were separated from each ejaculate. Immediately after sperm analysis, a protease inhibitor was added to the sperm-rich fraction and prostatic fraction, and the fractions were separately centrifuged and frozen at -80 °C. The samples were thawed, re-centrifuged, and the total protein concentration was determined. Samples were subjected to 1D SDS-PAGE and Coomassie-blue stained gels, were analyzed by Quantity One 1D Analysis Software. Bands detected in the gels were excised and proteins subjected to digestion with trypsin. Proteins were identified by nano-HPLC-MS and tools of bioinformatics. Tandem mass spectrometry allowed the detection of 268 proteins in the gels of sperm-rich fraction and prostatic fraction of canine ejaculate. A total of 251 proteins were common to the sperm-rich and prostatic fractions, while 17 proteins were present in the sperm-rich fraction and absent in the prostatic fraction. The intensity of the bands detected in range 1 and 2 represented 46.5% of all of the band intensities detected in the 1D gels for proteins of the sperm-rich fraction and 53.0% of all bands in the prostatic fraction. Arginine esterase and lactotransferrin precursor were the protein with the highest intensity observed in the both fractions. Among the proteins present only in the sperm-rich fraction, the proteins UPF0764 protein C16orf89 homolog and epididymal-specific lipocalin-9 were the most abundant. In conclusion, canine sperm-rich fraction and prostatic fraction express a very diverse set of proteins, with unique biochemical properties and functions. Moreover, although most proteins are common to both sperm-rich fraction and prostatic fraction, there are some exclusive proteins in sperm-rich fraction.
Collapse
Affiliation(s)
- Annice Aquino-Cortez
- Laboratory of Carnivores Reproduction, State University of Ceara, Fortaleza, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Genot E. ARF1 at the crossroads of podosome construction and function. J Cell Biol 2016; 216:13-15. [PMID: 28007918 PMCID: PMC5223615 DOI: 10.1083/jcb.201611097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Elisabeth Genot highlights a paper by Rafiq et al. that reveals a role for the small GTPase ARF1 in the regulation of podosome formation and function. Podosomes are actin-based proteolytic microdomains of the plasma membrane found in cells that travel across tissues. In this issue, Rafiq et al. (2017. J. Cell Biol.https://doi.org/10.1083/jcb.201605104) reveal that the small guanosine triphosphatase ARF1, a well-known orchestrator of membrane traffic at the Golgi, regulates podosome formation, maintenance, and function.
Collapse
Affiliation(s)
- Elisabeth Genot
- Centre Cardiothoracique de Bordeaux, U1045, Université de Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
35
|
Alli-Balogun GO, Gewinner CA, Jacobs R, Kriston-Vizi J, Waugh MG, Minogue S. Phosphatidylinositol 4-kinase IIβ negatively regulates invadopodia formation and suppresses an invasive cellular phenotype. Mol Biol Cell 2016; 27:4033-4042. [PMID: 27798239 PMCID: PMC5156544 DOI: 10.1091/mbc.e16-08-0564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/05/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022] Open
Abstract
The type II phosphatidylinositol 4-kinase (PI4KII) enzymes synthesize the lipid phosphatidylinositol 4-phosphate (PI(4)P), which has been detected at the Golgi complex and endosomal compartments and recruits clathrin adaptors. Despite common mechanistic similarities between the isoforms, the extent of their redundancy is unclear. We found that depletion of PI4KIIα and PI4KIIβ using small interfering RNA led to actin remodeling. Depletion of PI4KIIβ also induced the formation of invadopodia containing membrane type I matrix metalloproteinase (MT1-MMP). Depletion of PI4KII isoforms also differentially affected trans-Golgi network (TGN) pools of PI(4)P and post-TGN traffic. PI4KIIβ depletion caused increased MT1-MMP trafficking to invasive structures at the plasma membrane and was accompanied by reduced colocalization of MT1-MMP with membranes containing the endosomal markers Rab5 and Rab7 but increased localization with the exocytic Rab8. Depletion of PI4KIIβ was sufficient to confer an aggressive invasive phenotype on minimally invasive HeLa and MCF-7 cell lines. Mining oncogenomic databases revealed that loss of the PI4K2B allele and underexpression of PI4KIIβ mRNA are associated with human cancers. This finding supports the cell data and suggests that PI4KIIβ may be a clinically significant suppressor of invasion. We propose that PI4KIIβ synthesizes a pool of PI(4)P that maintains MT1-MMP traffic in the degradative pathway and suppresses the formation of invadopodia.
Collapse
Affiliation(s)
- Ganiyu Olabanji Alli-Balogun
- Lipid and Membrane Biology Group, UCL Division of Medicine, Royal Free Campus, University College London, London NW3 2PF, United Kingdom
| | | | - Ruth Jacobs
- Lipid and Membrane Biology Group, UCL Division of Medicine, Royal Free Campus, University College London, London NW3 2PF, United Kingdom
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Mark G Waugh
- Lipid and Membrane Biology Group, UCL Division of Medicine, Royal Free Campus, University College London, London NW3 2PF, United Kingdom
| | - Shane Minogue
- Lipid and Membrane Biology Group, UCL Division of Medicine, Royal Free Campus, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
36
|
El Azzouzi K, Wiesner C, Linder S. Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence. J Cell Biol 2016; 213:109-25. [PMID: 27069022 PMCID: PMC4828691 DOI: 10.1083/jcb.201510043] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/02/2016] [Indexed: 12/11/2022] Open
Abstract
The authors find that matrix metalloproteinase MT1-MMP is enriched at the plasma membrane of macrophage podosomes, where it persists beyond podosome lifetime and, through binding to the subcortical actin cytoskeleton, forms subcellular signposts that facilitate podosome reformation. Podosomes are dynamic cell adhesions that are also sites of extracellular matrix degradation, through recruitment of matrix-lytic enzymes, particularly of matrix metalloproteinases. Using total internal reflection fluorescence microscopy, we show that the membrane-bound metalloproteinase MT1-MMP is enriched not only at podosomes but also at distinct “islets” embedded in the plasma membrane of primary human macrophages. MT1-MMP islets become apparent upon podosome dissolution and persist beyond podosome lifetime. Importantly, the majority of MT1-MMP islets are reused as sites of podosome reemergence. siRNA-mediated knockdown and recomplementation analyses show that islet formation is based on the cytoplasmic tail of MT1-MMP and its ability to bind the subcortical actin cytoskeleton. Collectively, our data reveal a previously unrecognized phase in the podosome life cycle and identify a structural function of MT1-MMP that is independent of its proteolytic activity. MT1-MMP islets thus act as cellular memory devices that enable efficient and localized reformation of podosomes, ensuring coordinated matrix degradation and invasion.
Collapse
Affiliation(s)
- Karim El Azzouzi
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany
| | - Christiane Wiesner
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
37
|
Mittal R, Patel AP, Debs LH, Nguyen D, Patel K, Grati M, Mittal J, Yan D, Chapagain P, Liu XZ. Intricate Functions of Matrix Metalloproteinases in Physiological and Pathological Conditions. J Cell Physiol 2016; 231:2599-621. [PMID: 27187048 DOI: 10.1002/jcp.25430] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Amit P. Patel
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Luca H. Debs
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Desiree Nguyen
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Kunal Patel
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - M'hamed Grati
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Denise Yan
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Prem Chapagain
- Department of Physics; Florida International University; Miami Florida
- Biomolecular Science Institute; Florida International University; Miami Florida
| | - Xue Zhong Liu
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
- Department of Biochemistry; University of Miami Miller School of Medicine; Miami Florida
| |
Collapse
|
38
|
Wu Q, Nadesalingam J, Moodley S, Bai X, Liu M. XB130 translocation to microfilamentous structures mediates NNK-induced migration of human bronchial epithelial cells. Oncotarget 2016; 6:18050-65. [PMID: 25980441 PMCID: PMC4627235 DOI: 10.18632/oncotarget.3777] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/09/2015] [Indexed: 01/02/2023] Open
Abstract
Cigarette smoking contributes to the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nicotine-derived nitrosamine ketone (NNK) is the most potent carcinogen among cigarette smoking components, and is known to enhance migration of cancer cells. However, the effect of NNK on normal human bronchial epithelial cells is not well studied. XB130 is a member of actin filament associated protein family and is involved in cell morphology changes, cytoskeletal rearrangement and outgrowth formation, as well as cell migration. We hypothesized that XB130 mediates NNK-induced migration of normal human bronchial epithelial cells. Our results showed that, after NNK stimulation, XB130 was translocated to the cell periphery and enriched in cell motility-associated structures, such as lamellipodia, in normal human bronchial epithelial BEAS2B cells. Moreover, overexpression of XB130 significantly enhanced NNK-induced migration, which requires both the N- and C-termini of XB130. Overexpression of XB130 enhanced NNK-induced protein tyrosine phosphorylation and promoted matrix metalloproteinase-14 translocation to cell motility-associated cellular structures after NNK stimulation. XB130-mediated NNK-induced cell migration may contribute to airway epithelial repair; however, it may also be involved in cigarette smoking-related chronic obstructive pulmonary disease and lung cancer.
Collapse
Affiliation(s)
- Qifei Wu
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, Canada.,Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jeya Nadesalingam
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, Canada
| | - Serisha Moodley
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Nanni SB, Pratt J, Beauchemin D, Haidara K, Annabi B. Impact of Concanavalin-A-Mediated Cytoskeleton Disruption on Low-Density Lipoprotein Receptor-Related Protein-1 Internalization and Cell Surface Expression in Glioblastomas. BIOMARKERS IN CANCER 2016; 8:77-87. [PMID: 27226736 PMCID: PMC4874747 DOI: 10.4137/bic.s38894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/17/2016] [Accepted: 04/26/2016] [Indexed: 01/13/2023]
Abstract
The low-density lipoprotein receptor-related protein 1 (LRP-1) is a multiligand endocytic receptor, which plays a pivotal role in controlling cytoskeleton dynamics during cancer cell migration. Its rapid endocytosis further allows efficient clearance of extracellular ligands. Concanavalin-A (ConA) is a lectin used to trigger in vitro physiological cellular processes, including cytokines secretion, nitric oxide production, and T-lymphocytes activation. Given that ConA exerts part of its effects through cytoskeleton remodeling, we questioned whether it affected LRP-1 expression, intracellular trafficking, and cell surface function in grade IV U87 glioblastoma cells. Using flow cytometry and confocal microscopy, we found that loss of the cell surface 600-kDa mature form of LRP-1 occurs upon ConA treatment. Consequently, internalization of the physiological α2-macroglobulin and the synthetic angiopep-2 ligands of LRP-1 was also decreased. Silencing of known mediators of ConA, such as the membrane type-1 matrix metalloproteinase, and the Toll-like receptors (TLR)-2 and TLR-6 was unable to rescue ConA-mediated LRP-1 expression decrease, implying that the loss of LRP-1 was independent of cell surface relayed signaling. The ConA-mediated reduction in LRP-1 expression was emulated by the actin cytoskeleton-disrupting agent cytochalasin-D, but not by the microtubule inhibitor nocodazole, and required both lysosomal- and ubiquitin-proteasome system-mediated degradation. Our study implies that actin cytoskeleton integrity is required for proper LRP-1 cell surface functions and that impaired trafficking leads to specialized compartmentation and degradation. Our data also strengthen the biomarker role of cell surface LRP-1 functions in the vectorized transport of therapeutic angiopep bioconjugates into brain cancer cells.
Collapse
Affiliation(s)
- Samuel Burke Nanni
- Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, QC, Canada
| | - Jonathan Pratt
- Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, QC, Canada
| | - David Beauchemin
- Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, QC, Canada
| | - Khadidja Haidara
- Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, QC, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, QC, Canada
| |
Collapse
|
40
|
Abstract
The membrane-tethered membrane type 1–matrix metalloproteinase (MT1-MMP) mediates proteolysis-based invasive tumor growth. In this issue, Marchesin et al. (2015. J. Cell Biol.http://dx.doi.org/10.1083/jcb.201506002) describe a tug-of-war mechanism regulating dynein and kinesin motors to drive endosome tubulation and MT1-MMP delivery to the surface of cancer cells, identifying a crucial regulatory axis for tumor metastasis.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
41
|
Amir M, Wahiduzzaman, Dar MA, Haque MA, Islam A, Ahmad F, Hassan MI. Purification and characterization of Ras related protein, Rab5a from Tinospora cordifolia. Int J Biol Macromol 2016; 82:471-9. [DOI: 10.1016/j.ijbiomac.2015.10.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 11/27/2022]
|
42
|
Bravo-Cordero JJ, Cordani M, Soriano SF, Díez B, Muñoz-Agudo C, Casanova-Acebes M, Boullosa C, Guadamillas MC, Ezkurdia I, González-Pisano D, del Pozo MA, Montoya MC. A novel high content analysis tool reveals Rab8-driven actin and FA reorganization through Rho GTPases and calpain/MT1. J Cell Sci 2016; 129:1734-49. [DOI: 10.1242/jcs.174920] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 02/29/2016] [Indexed: 01/31/2023] Open
Abstract
Rab8 is a small Ras-related GTPase that regulates polarized membrane transport to the plasma membrane. A high content analysis (HCA) tool developed to dissect Rab8-mediated actin and focal adhesion (FA) reorganization revealed that Rab8 activation significantly induced Rac1/Tiam1 to mediate cortical actin (CA) formation and RhoA-dependent stress fibre (SF) disassembly. Rab8 activation increased Rac1 activity, while its depletion activated RhoA, which led to reorganization of the actin cytoskeleton. Rab8 was also associated with FA, promoting their disassembly in a microtubule dependent manner. This Rab8 effect involved Calpain, MT1-MMP and Rho GTPases. Moreover, we demonstrate the role of Rab8 in the cell migration process. Indeed, Rab8 is required for EGF-induced cell polarization and chemotaxis as well as for the directional persistency of intrinsic cell motility. These data reveal that Rab8 drives cell motility by mechanisms both dependent and independent of Rho GTPases, thereby regulating the establishment of cell polarity, turnover of FA, and actin cytoskeleton rearrangements, thus determining the directionality of cell migration.
Collapse
Affiliation(s)
- José J. Bravo-Cordero
- Current Address: Division of Hematology and Oncology, Department of Medicine, Mount Sinai School of Medicine, Tisch Cancer Institute, New York, NY, Box 1079, USA
| | - Marco Cordani
- Integrin Signaling Laboratory, Cell Biology & Physiology Program; Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid, E28029, Spain
| | - Silvia F. Soriano
- Integrin Signaling Laboratory, Cell Biology & Physiology Program; Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid, E28029, Spain
| | - Begoña Díez
- Cellomics Unit. Cell Biology & Physiology Program; Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares CNIC. C/ Melchor Fernandez Almagro, 3. Madrid, E28029, Spain
| | - Carmen Muñoz-Agudo
- Cellomics Unit. Cell Biology & Physiology Program; Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares CNIC. C/ Melchor Fernandez Almagro, 3. Madrid, E28029, Spain
| | - María Casanova-Acebes
- Cellomics Unit. Cell Biology & Physiology Program; Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares CNIC. C/ Melchor Fernandez Almagro, 3. Madrid, E28029, Spain
| | - César Boullosa
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, Madrid E28029, Spain
| | - Marta C. Guadamillas
- Integrin Signaling Laboratory, Cell Biology & Physiology Program; Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid, E28029, Spain
| | - Iakes Ezkurdia
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, Madrid E28029, Spain
| | - David González-Pisano
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, Madrid E28029, Spain
| | - Miguel A. del Pozo
- Integrin Signaling Laboratory, Cell Biology & Physiology Program; Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid, E28029, Spain
| | - María C. Montoya
- Cellomics Unit. Cell Biology & Physiology Program; Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares CNIC. C/ Melchor Fernandez Almagro, 3. Madrid, E28029, Spain
| |
Collapse
|
43
|
Naj X, Linder S. ER-Coordinated Activities of Rab22a and Rab5a Drive Phagosomal Compaction and Intracellular Processing of Borrelia burgdorferi by Macrophages. Cell Rep 2015; 12:1816-30. [DOI: 10.1016/j.celrep.2015.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/24/2015] [Accepted: 08/08/2015] [Indexed: 01/26/2023] Open
|
44
|
Veillat V, Spuul P, Daubon T, Egaña I, Kramer IJ, Génot E. Podosomes: Multipurpose organelles? Int J Biochem Cell Biol 2015; 65:52-60. [DOI: 10.1016/j.biocel.2015.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/20/2015] [Indexed: 01/11/2023]
|
45
|
Abstract
Cell invasion of the extracellular matrix is prerequisite to cross tissue migration of tumor cells in cancer metastasis, and vascular smooth muscle cells in atherosclerosis. The tumor suppressor p53, better known for its roles in the regulation of cell cycle and apoptosis, has ignited much interest in its function as a suppressor of cell migration and invasion. How p53 and its gain-of-function mutants regulate cell invasion remains a puzzle and a challenge for future studies. In recent years, podosomes and invadopodia have also gained center stage status as veritable apparatus specialized in cell invasion. It is not clear, however, whether p53 regulates cell invasion through podosomes and invadopodia. In this review, evidence supporting a negative role of p53 in podosomes formation in vascular smooth muscle cells will be surveyed, and signaling nodes that may mediate this regulation in other cell types will be explored.
Collapse
Affiliation(s)
- Alan S Mak
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston, ON Canada
| |
Collapse
|
46
|
Wiesner C, Le-Cabec V, El Azzouzi K, Maridonneau-Parini I, Linder S. Podosomes in space: macrophage migration and matrix degradation in 2D and 3D settings. Cell Adh Migr 2015; 8:179-91. [PMID: 24713854 DOI: 10.4161/cam.28116] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Migration of macrophages is a key process for a variety of physiological functions, such as pathogen clearance or tissue homeostasis. However, it can also be part of pathological scenarios, as in the case of tumor-associated macrophages. This review presents an overview of the different migration modes macrophages can adopt, depending on the physical and chemical properties of specific environments, and the constraints they impose upon cells. We discuss the importance of these environmental and also of cellular parameters, as well as their relative impact on macrophage migration and on the formation of matrix-lytic podosomes in 2D and 3D. Moreover, we present an overview of routinely used and also newly developed assays for the study of macrophage migration in both 2D and 3D contexts, their respective advantages and limitations, and also their potential to reliably mimic in vivo situations.
Collapse
Affiliation(s)
- Christiane Wiesner
- Institute for Medical Microbiology; Virology and Hygiene; University Medical Center Eppendorf; Hamburg, Germany
| | - Véronique Le-Cabec
- CNRS UMR 5089; IPBS (Institut de Pharmacologie et de Biologie Structurale), BP64182, 205 route de Narbonne, 31077 Toulouse Cedex 04, France; Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Karim El Azzouzi
- Institute for Medical Microbiology; Virology and Hygiene; University Medical Center Eppendorf; Hamburg, Germany
| | - Isabelle Maridonneau-Parini
- CNRS UMR 5089; IPBS (Institut de Pharmacologie et de Biologie Structurale), BP64182, 205 route de Narbonne, 31077 Toulouse Cedex 04, France; Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France; These authors contributed equally to this work
| | - Stefan Linder
- Institute for Medical Microbiology; Virology and Hygiene; University Medical Center Eppendorf; Hamburg, Germany; These authors contributed equally to this work
| |
Collapse
|
47
|
Revach OY, Geiger B. The interplay between the proteolytic, invasive, and adhesive domains of invadopodia and their roles in cancer invasion. Cell Adh Migr 2015; 8:215-25. [PMID: 24714132 DOI: 10.4161/cam.27842] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Invadopodia are actin-based protrusions of the plasma membrane that penetrate into the extracellular matrix (ECM), and enzymatically degrade it. Invadopodia and podosomes, often referred to, collectively, as "invadosomes," are actin-based membrane protrusions that facilitate matrix remodeling and cell invasion across tissues, processes that occur under specific physiological conditions such as bone remodeling, as well as under pathological states such as bone, immune disorders, and cancer metastasis. In this review, we specifically focus on the functional architecture of invadopodia in cancer cells; we discuss here three functional domains of invadopodia responsible for the metalloproteinase-based degradation of the ECM, the cytoskeleton-based mechanical penetration into the matrix, and the integrin adhesome-based adhesion to the ECM. We will describe the structural and molecular organization of each domain and the cross-talk between them during the invasion process.
Collapse
Affiliation(s)
- Or-Yam Revach
- Department of Molecular Cell Biology; Weizmann Institute of Science; Rehovot, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology; Weizmann Institute of Science; Rehovot, Israel
| |
Collapse
|
48
|
Linder S, Scita G. RABGTPases in MT1-MMP trafficking and cell invasion: Physiology versus pathology. Small GTPases 2015; 6:145-52. [PMID: 26107110 DOI: 10.4161/21541248.2014.985484] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The matrix metalloproteinase MT1-MMP is a central regulator of cell invasion in both physiological and pathological settings, such as tissue surveillance by immune cells and cancer cell metastasis. MT1-MMP cleaves a plethora of intra- and extracellular proteins, including extracellular matrix proteins, matrix receptors, and also other MMPs, and thus enables modification of both the cell surface proteome and the pericellular environment. Despite its importance for cell invasion, the pathways regulating MT1-MMP exposure on the cell surface are largely unknown. Recently, our groups discovered that a specific subset of RABGTPases, most notably RAB5a, is critical for MT1-MMP trafficking in primary human macrophages and carcinoma cells. Here, we discuss and contrast our findings for both cell types, pointing out common features and differences in the RABGTPase-dependent trafficking of MT1-MMP in health and disease.
Collapse
Affiliation(s)
- Stefan Linder
- a Institute for Medical Microbiology; Virology and Hygiene ; University Medical Center Eppendorf ; Hamburg , Germany
| | | |
Collapse
|
49
|
Clancy JW, Sedgwick A, Rosse C, Muralidharan-Chari V, Raposo G, Method M, Chavrier P, D'Souza-Schorey C. Regulated delivery of molecular cargo to invasive tumour-derived microvesicles. Nat Commun 2015; 6:6919. [PMID: 25897521 PMCID: PMC4497525 DOI: 10.1038/ncomms7919] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/13/2015] [Indexed: 12/23/2022] Open
Abstract
Cells release multiple, distinct forms of extracellular vesicles including structures known as microvesicles, which are known to alter the extracellular environment. Despite growing understanding of microvesicle biogenesis, function and contents, mechanisms regulating cargo delivery and enrichment remain largely unknown. Here we demonstrate that in amoeboid-like invasive tumour cell lines, the v-SNARE, VAMP3, regulates delivery of microvesicle cargo such as the membrane-type 1 matrix metalloprotease (MT1-MMP) to shedding microvesicles. MT1-MMP delivery to nascent microvesicles depends on the association of VAMP3 with the tetraspanin CD9 and facilitates the maintenance of amoeboid cell invasion. VAMP3-shRNA expression depletes shed vesicles of MT1-MMP and decreases cell invasiveness when embedded in cross-linked collagen matrices. Finally, we describe functionally similar microvesicles isolated from bodily fluids of ovarian cancer patients. Together these studies demonstrate the importance of microvesicle cargo sorting in matrix degradation and disease progression.
Collapse
Affiliation(s)
- James W. Clancy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN. 46556, USA
| | - Alanna Sedgwick
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN. 46556, USA
| | - Carine Rosse
- Institut Curie, Centre de Recherche, Paris, F-75248 France
| | | | - Graca Raposo
- Institut Curie, Centre de Recherche, Paris, F-75248 France
| | - Michael Method
- Northern Indiana Cancer Consortium, Michiana Hematology Oncology, Mishawaka, IN. 46545, USA
| | | | | |
Collapse
|
50
|
Itoh Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol 2015; 44-46:207-23. [PMID: 25794647 DOI: 10.1016/j.matbio.2015.03.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/22/2022]
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) form a subgroup of the matrix metalloproteinase (MMP) family, and there are 6 MT-MMPs in humans. MT-MMPs are further sub-classified into type I transmembrane-type (MT1, -MT2-, MT3- and MT5-MMPs) and glycosylphosphatidylinositol (GPI)-anchored type (MT4- and MT6-MMPs). In either case MT-MMPs are tethered to the plasma membrane, and this cell surface expression provides those enzymes with unique functionalities affecting various cellular behaviours. Among the 6 MT-MMPs, MT1-MMP is the most investigated enzyme and many of its roles and regulations have been revealed to date, but the potential roles and regulatory mechanisms of other MT-MMPs are gradually getting clearer as well. Further investigations of MT-MMPs are likely to reveal novel pathophysiological mechanisms and potential therapeutic strategies for different diseases in the future.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK.
| |
Collapse
|