1
|
Garrido VE, Outlaw WG, Powell AM, Ables ET. SR Protein Kinase is expressed in Drosophila ovarian germline stem cells but is not essential for their self-renewal. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001550. [PMID: 40171240 PMCID: PMC11959418 DOI: 10.17912/micropub.biology.001550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/07/2025] [Accepted: 03/15/2025] [Indexed: 04/03/2025]
Abstract
Germline stem cells (GSCs) are necessary for oocyte production in Drosophila . GSC maintenance is regulated by intrinsic factors that promote their self-renewal. One such factor, the beta-importin, Transportin-Serine/Arginine rich , mediates nuclear import of serine/arginine-rich (SR) proteins, which are phosphorylated by SR protein kinases. Here, we investigate whether the kinase encoded by SR protein kinase ( SRPK ) is essential for GSC self-renewal. We find that SRPK is expressed in GSCs and their mitotically-dividing daughters, but is not necessary for GSC establishment or maintenance. We conclude that SRPK is dispensable for GSC self-renewal, and postulate that other protein kinases can compensate for its absence.
Collapse
Affiliation(s)
- Victoria E. Garrido
- Biology, East Carolina University, Greenville, North Carolina, United States
| | - William G. Outlaw
- Biology, East Carolina University, Greenville, North Carolina, United States
| | - Amanda M. Powell
- Biology, East Carolina University, Greenville, North Carolina, United States
| | - Elizabeth T. Ables
- Biology, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
2
|
Jejina A, Ayala Y, Beuchle D, Höhener T, Dörig RE, Vazquez-Pianzola P, Hernández G, Suter B. Role of BicDR in bristle shaft construction and support of BicD functions. J Cell Sci 2024; 137:jcs261408. [PMID: 38264934 PMCID: PMC10917063 DOI: 10.1242/jcs.261408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Cell polarization requires asymmetric localization of numerous mRNAs, proteins and organelles. The movement of cargo towards the minus end of microtubules mostly depends on cytoplasmic dynein motors. In the dynein-dynactin-Bicaudal-D transport machinery, Bicaudal-D (BicD) links the cargo to the motor. Here, we focus on the role of Drosophila BicD-related (BicDR, CG32137) in the development of the long bristles. Together with BicD, it contributes to the organization and stability of the actin cytoskeleton in the not-yet-chitinized bristle shaft. BicD and BicDR also support the stable expression and distribution of Rab6 and Spn-F in the bristle shaft, including the distal tip localization of Spn-F, pointing to the role of microtubule-dependent vesicle trafficking for bristle construction. BicDR supports the function of BicD, and we discuss the hypothesis whereby BicDR might transport cargo more locally, with BicD transporting cargo over long distances, such as to the distal tip. We also identified embryonic proteins that interact with BicDR and appear to be BicDR cargo. For one of them, EF1γ (also known as eEF1γ), we show that the encoding gene EF1γ interacts with BicD and BicDR in the construction of the bristles.
Collapse
Affiliation(s)
- Aleksandra Jejina
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Yeniffer Ayala
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerologıá (INCan), 14080 Tlalpan, Mexico City, Mexico
| | - Dirk Beuchle
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Thomas Höhener
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Ruth E. Dörig
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | | - Greco Hernández
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerologıá (INCan), 14080 Tlalpan, Mexico City, Mexico
| | - Beat Suter
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
3
|
Jejina A, Ayala Y, Hernández G, Suter B. Role of BicDR in bristle shaft construction, tracheal development, and support of BicD functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545245. [PMID: 37398393 PMCID: PMC10312712 DOI: 10.1101/2023.06.16.545245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cell polarization requires asymmetric localization of numerous mRNAs, proteins, and organelles. The movement of cargo towards the minus end of microtubules mostly depends on cytoplasmic dynein motors, which function as multiprotein complexes. In the dynein/dynactin/Bicaudal-D (DDB) transport machinery, Bicaudal-D (BicD) links the cargo to the motor. Here we focus on the role of BicD-related (BicDR) and its contribution to microtubule-dependent transport processes. Drosophila BicDR is required for the normal development of bristles and dorsal trunk tracheae. Together with BicD, it contributes to the organization and stability of the actin cytoskeleton in the not-yet-chitinized bristle shaft and the localization of Spn-F and Rab6 at the distal tip. We show that BicDR supports the function of BicD in bristle development and our results suggest that BicDR transports cargo more locally whereas BicD is more responsible for delivering functional cargo over the long distance to the distal tip. We identified the proteins that interact with BicDR and appear to be BicDR cargo in embryonic tissues. For one of them, EF1γ, we showed that EF1γ genetically interacts with BicD and BicDR in the construction of the bristles.
Collapse
Affiliation(s)
- Aleksandra Jejina
- Institute of Cell Biology, University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Yeniffer Ayala
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerologıá (INCan), Mexico City, Mexico
| | - Greco Hernández
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerologıá (INCan), Mexico City, Mexico
| | - Beat Suter
- Institute of Cell Biology, University of Bern, Switzerland
| |
Collapse
|
4
|
Kumari D, Ray K. Phosphoregulation of Kinesins Involved in Long-Range Intracellular Transport. Front Cell Dev Biol 2022; 10:873164. [PMID: 35721476 PMCID: PMC9203973 DOI: 10.3389/fcell.2022.873164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/29/2022] [Indexed: 12/28/2022] Open
Abstract
Kinesins, the microtubule-dependent mechanochemical enzymes, power a variety of intracellular movements. Regulation of Kinesin activity and Kinesin-Cargo interactions determine the direction, timing and flux of various intracellular transports. This review examines how phosphorylation of Kinesin subunits and adaptors influence the traffic driven by Kinesin-1, -2, and -3 family motors. Each family of Kinesins are phosphorylated by a partially overlapping set of serine/threonine kinases, and each event produces a unique outcome. For example, phosphorylation of the motor domain inhibits motility, and that of the stalk and tail domains induces cargo loading and unloading effects according to the residue and context. Also, the association of accessory subunits with cargo and adaptor proteins with the motor, respectively, is disrupted by phosphorylation. In some instances, phosphorylation by the same kinase on different Kinesins elicited opposite outcomes. We discuss how this diverse range of effects could manage the logistics of Kinesin-dependent, long-range intracellular transport.
Collapse
|
5
|
Pridie C, Ueda K, Simmonds AJ. Rosy Beginnings: Studying Peroxisomes in Drosophila. Front Cell Dev Biol 2020; 8:835. [PMID: 32984330 PMCID: PMC7477296 DOI: 10.3389/fcell.2020.00835] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Research using the fruit fly Drosophila melanogaster has traditionally focused on understanding how mutations affecting gene regulation or function affect processes linked to animal development. Accordingly, flies have become an essential foundation of modern medical research through repeated contributions to our fundamental understanding of how their homologs of human genes function. Peroxisomes are organelles that metabolize lipids and reactive oxygen species like peroxides. However, despite clear linkage of mutations in human genes affecting peroxisomes to developmental defects, for many years fly models were conspicuously absent from the study of peroxisomes. Now, the few early studies linking the Rosy eye color phenotype to peroxisomes in flies have been joined by a growing body of research establishing novel roles for peroxisomes during the development or function of specific tissues or cell types. Similarly, unique properties of cultured fly Schneider 2 cells have advanced our understanding of how peroxisomes move on the cytoskeleton. Here, we profile how those past and more recent Drosophila studies started to link specific effects of peroxisome dysfunction to organ development and highlight the utility of flies as a model for human peroxisomal diseases. We also identify key differences in the function and proliferation of fly peroxisomes compared to yeast or mammals. Finally, we discuss the future of the fly model system for peroxisome research including new techniques that should support identification of additional tissue specific regulation of and roles for peroxisomes.
Collapse
Affiliation(s)
- C Pridie
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kazuki Ueda
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Negrutskii B. Non-translational Connections of eEF1B in the Cytoplasm and Nucleus of Cancer Cells. Front Mol Biosci 2020; 7:56. [PMID: 32328499 PMCID: PMC7160314 DOI: 10.3389/fmolb.2020.00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/20/2020] [Indexed: 12/28/2022] Open
Abstract
The human translation machinery includes three types of supramolecular complexes involved in elongation of the polypeptide chain: the ribosome, complex of elongation factors eEF1B and multienzyme aminoacyl-tRNA synthetase complex. Of the above, eEF1B is the least investigated assembly. Recently, a number of studies provided some insights into the structure of different eEF1B subunits and changes in their expression in cancer and other diseases. There is increasing agreement that possible disease-related functions of eEF1B are not necessarily related to its role in translation. This mini-review focuses on structural and functional features of the eEF1B complex while paying special attention to possible non-canonical functions of its subunits in cancer cells.
Collapse
Affiliation(s)
- Boris Negrutskii
- Department of Structural and Functional Proteomics, Institute of Molecular Biology and Genetics, National Academy of Sciences, Kyiv, Ukraine
| |
Collapse
|
7
|
Logan CM, Menko AS. Microtubules: Evolving roles and critical cellular interactions. Exp Biol Med (Maywood) 2019; 244:1240-1254. [PMID: 31387376 DOI: 10.1177/1535370219867296] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubules are cytoskeletal elements known as drivers of directed cell migration, vesicle and organelle trafficking, and mitosis. In this review, we discuss new research in the lens that has shed light into further roles for stable microtubules in the process of development and morphogenesis. In the lens, as well as other systems, distinct roles for characteristically dynamic microtubules and stabilized populations are coming to light. Understanding the mechanisms of microtubule stabilization and the associated microtubule post-translational modifications is an evolving field of study. Appropriate cellular homeostasis relies on not only one cytoskeletal element, but also rather an interaction between cytoskeletal proteins as well as other cellular regulators. Microtubules are key integrators with actin and intermediate filaments, as well as cell–cell junctional proteins and other cellular regulators including myosin and RhoGTPases to maintain this balance.Impact statementThe role of microtubules in cellular functioning is constantly expanding. In this review, we examine new and exciting fields of discovery for microtubule’s involvement in morphogenesis, highlight our evolving understanding of differential roles for stabilized versus dynamic subpopulations, and further understanding of microtubules as a cellular integrator.
Collapse
Affiliation(s)
- Caitlin M Logan
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A Sue Menko
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Vallotton P, van Oijen AM, Whitchurch CB, Gelfand V, Yeo L, Tsiavaliaris G, Heinrich S, Dultz E, Weis K, Grünwald D. Diatrack particle tracking software: Review of applications and performance evaluation. Traffic 2017; 18:840-852. [PMID: 28945316 PMCID: PMC5677553 DOI: 10.1111/tra.12530] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/24/2022]
Abstract
Object tracking is an instrumental tool supporting studies of cellular trafficking. There are three challenges in object tracking: the identification of targets; the precise determination of their position and boundaries; and the assembly of correct trajectories. This last challenge is particularly relevant when dealing with densely populated images with low signal-to-noise ratios-conditions that are often encountered in applications such as organelle tracking, virus particle tracking or single-molecule imaging. We have developed a set of methods that can handle a wide variety of signal complexities. They are compiled into a free software package called Diatrack. Here we review its main features and utility in a range of applications, providing a survey of the dynamic imaging field together with recommendations for effective use. The performance of our framework is shown to compare favorably to a wide selection of custom-developed algorithms, whether in terms of localization precision, processing speed or correctness of tracks.
Collapse
Affiliation(s)
| | | | | | - Vladimir Gelfand
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | | | | | | | - Elisa Dultz
- ETH Zürich, Institute of Biochemistry, Zürich, Switzerland
| | - Karsten Weis
- ETH Zürich, Institute of Biochemistry, Zürich, Switzerland
| | - David Grünwald
- University of Massachusetts Medical School, RNA Therapeutics Institute and Department of Biochemistry and Molecular Pharmacology, Worcester MA, USA
| |
Collapse
|
9
|
Barlan K, Gelfand VI. Microtubule-Based Transport and the Distribution, Tethering, and Organization of Organelles. Cold Spring Harb Perspect Biol 2017; 9:9/5/a025817. [PMID: 28461574 DOI: 10.1101/cshperspect.a025817] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SUMMARYMicrotubules provide long tracks along which a broad range of organelles and vesicles are transported by kinesin and dynein motors. Motor protein complexes also tether cargoes to cytoskeletal filaments, helping facilitate their interaction and communication. The generation of biochemically distinct microtubule subpopulations allows subsets of motors to recognize a given microtubule identity, allowing further organization within the cytoplasm. Both transport and tethering are spatiotemporally regulated through multiple modes, including acute modification of both motor-cargo and motor-track associations by various physiological signals. Strict regulation of intracellular transport is particularly important in specialized cell types such as neurons. Here, we review general mechanisms by which cargo transport is controlled and also highlight examples of transport regulated by multiple mechanisms.
Collapse
Affiliation(s)
- Kari Barlan
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
10
|
Abstract
Synthesis of polypeptides from mRNA (translation) is a fundamental cellular process that is coordinated and catalyzed by a set of canonical ‘translation factors’. Surprisingly, the translation factors of Drosophila melanogaster have not yet been systematically identified, leading to inconsistencies in their nomenclature and shortcomings in functional (Gene Ontology, GO) annotations. Here, we describe the complete set of translation factors in D. melanogaster, applying nomenclature already in widespread use in other species, and revising their functional annotation. The collection comprises 43 initiation factors, 12 elongation factors, 3 release factors and 6 recycling factors, totaling 64 of which 55 are cytoplasmic and 9 are mitochondrial. We also provide an overview of notable findings and particular insights derived from Drosophila about these factors. This catalog, together with the incorporation of the improved nomenclature and GO annotation into FlyBase, will greatly facilitate access to information about the functional roles of these important proteins.
Collapse
Affiliation(s)
- Steven J Marygold
- a FlyBase, Department of Physiology , Development and Neuroscience, University of Cambridge , Cambridge , UK
| | - Helen Attrill
- a FlyBase, Department of Physiology , Development and Neuroscience, University of Cambridge , Cambridge , UK
| | - Paul Lasko
- b Department of Biology , McGill University , Bellini Life Sciences Complex, Montreal, Quebec , Canada
| |
Collapse
|
11
|
D’Souza SA, Rajendran L, Bagg R, Barbier L, van Pel DM, Moshiri H, Roy PJ. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans. PLoS Genet 2016; 12:e1006010. [PMID: 27123983 PMCID: PMC4849719 DOI: 10.1371/journal.pgen.1006010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/05/2016] [Indexed: 11/25/2022] Open
Abstract
The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle’s plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue. In most animals, the physical meeting of the pre- and post-synaptic membranes of the neuromuscular junction occurs via axonal extension towards the muscle. In nematodes, however, motor axons do not extend towards the muscle and instead form a dorsal and ventral cord with relatively few branches. To make the physical connection, the body wall muscles extend membrane projections called muscle arms to the motor axons within the dorsal and ventral cords. Through previous genetic and biochemical analyses with the nematode C. elegans, we identified a neuronally-expressed muscle arm chemoattractant (MADD-4) and its muscle-expressed co-receptor complex (UNC-40/EVA-1). Here, we report our discovery of madd-3, which encodes a LAMMER kinase that is expressed in muscles to regulate muscle arm extension. Genetic analyses revealed that MADD-3 may inhibit a p38 MAP kinase pathway whose normal function is to decrease the abundance of the EVA-1 receptor. In the presence of MADD-3, the activity of the p38 pathway is relatively low, and EVA-1 levels are consequently relatively high. Without MADD-3, the p38 pathway is freed to decrease the abundance of EVA-1. The relationships that we have uncovered between MADD-3, the p38 Map Kinase pathway, and the EVA-1 receptor provide one explanation for the muscle arm defects observed in madd-3 mutants.
Collapse
Affiliation(s)
- Serena A. D’Souza
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- The Collaborative Programme in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
| | - Luckshi Rajendran
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Bagg
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Louis Barbier
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Derek M. van Pel
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Houtan Moshiri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Peter J. Roy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- The Collaborative Programme in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
12
|
Zhao Y, Cocco C, Domenichini S, Samson ML, Rabinow L. The IMD innate immunity pathway of Drosophila influences somatic sex determination via regulation of the Doa locus. Dev Biol 2015; 407:224-31. [DOI: 10.1016/j.ydbio.2015.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/24/2015] [Accepted: 09/24/2015] [Indexed: 11/30/2022]
|
13
|
Veremieva M, Kapustian L, Khoruzhenko A, Zakharychev V, Negrutskii B, El'skaya A. Independent overexpression of the subunits of translation elongation factor complex eEF1H in human lung cancer. BMC Cancer 2014; 14:913. [PMID: 25472873 PMCID: PMC4265501 DOI: 10.1186/1471-2407-14-913] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The constituents of stable multiprotein complexes are known to dissociate from the complex to play independent regulatory roles. The components of translation elongation complex eEF1H (eEF1A, eEF1Bα, eEF1Bβ, eEF1Bγ) were found overexpressed in different cancers. To gain the knowledge about novel cancer-related translational mechanisms we intended to reveal whether eEF1H exists as a single unit or independent subunits in different human cancers. METHODS The changes in the expression level of every subunit of eEF1H in the human non-small-cell lung cancer tissues were examined. The localization of eEF1H subunits was assessed by immunohistochemistry methods, subcellular fractionation and confocal microscopy. The possibility of the interaction between the subunits was estimated by co-immunoprecipitation. RESULTS The level of eEF1Bβ expression was increased more than two-fold in 36%, eEF1Bγ in 28%, eEF1A in 20% and eEF1Bα in 8% of tumor specimens. The cancer-induced alterations in the subunits level were found to be uncoordinated, therefore the increase in the level of at least one subunit of eEF1H was observed in 52% of samples. Nuclear localization of eEF1Bβ in the cancer rather than distal normal looking tissues was found. In cancer tissue, eEF1A and eEF1Bα were not found in nuclei while all four subunits of eEF1H demonstrated both cytoplasmic and nuclear appearance in the lung carcinoma cell line A549. Unexpectedly, in the A549 nuclear fraction eEF1A lost the ability to interact with the eEF1B complex. CONCLUSIONS The results suggest independent functioning of some fraction of the eEF1H subunits in human tumors. The absence of eEF1A and eEF1B interplay in nuclei of A549 cells is a first evidence for non-translational role of nuclear-localized subunits of eEF1B. We conclude the appearance of the individual eEF1B subunits in tumors is a more general phenomenon than appreciated before and thus is a novel signal of cancer-related changes in translation apparatus.
Collapse
Affiliation(s)
| | | | | | | | - Boris Negrutskii
- State Key Laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics NASU, 150 Acad,Zabolotnogo Str,, Kiev 03680, Ukraine.
| | | |
Collapse
|