1
|
Messer CL, Burghardt E, McDonald JA. A deficiency screen of the X chromosome for Rap1 GTPase dominant interacting genes in Drosophila border cell migration. G3 (BETHESDA, MD.) 2025; 15:jkaf040. [PMID: 39993182 PMCID: PMC12060239 DOI: 10.1093/g3journal/jkaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Collective cell migration is critical to embryonic development, wound healing, and the immune response, but also drives tumor dissemination. Understanding how cell collectives coordinate migration in vivo has been a challenge, with potential therapeutic benefits that range from addressing developmental defects to designing targeted cancer treatments. The small GTPase Rap1 has emerged as a regulator of both embryogenesis and cancer cell migration. How active Rap1 coordinates downstream signaling functions required for coordinated collective migration is poorly understood. Drosophila border cells undergo a stereotyped and genetically tractable in vivo migration within the developing egg chamber of the ovary. This group of 6-8 cells migrates through a densely packed tissue microenvironment and serves as an excellent model for collective cell migration during development and disease. Rap1, like all small GTPases, has distinct activity state switches that link extracellular signals to organized cell behaviors. Proper regulation of Rap1 activity is essential for successful border cell migration yet the signaling partners and other downstream effectors are poorly characterized. Using the known requirement for Rap1 in border cell migration, we conducted a dominant suppressor screen for genes whose heterozygous loss modifies the migration defects observed upon constitutively active Rap1V12 expression. Here, we identified 7 genomic regions on the X chromosome that interact with Rap1V12. We mapped three genomic regions to single Rap1-interacting genes, frizzled 4, Ubiquitin-specific protease 16/45, and strawberry notch. Thus, this unbiased screening approach identified multiple new candidate regulators of Rap1 activity with roles in collective border cell migration.
Collapse
Affiliation(s)
- C Luke Messer
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Department of Natural Sciences, The University of Virginia's College at Wise, Wise, VA 24293, USA
| | - Emily Burghardt
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
2
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
3
|
Boutet A, Zeledon C, Emery G. ArfGAP1 regulates the endosomal sorting of guidance receptors to promote directed collective cell migration in vivo. iScience 2023; 26:107467. [PMID: 37599820 PMCID: PMC10432204 DOI: 10.1016/j.isci.2023.107467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Chemotaxis drives diverse migrations important for development and involved in diseases, including cancer progression. Using border cells in the Drosophila egg chamber as a model for collective cell migration, we characterized the role of ArfGAP1 in regulating chemotaxis during this process. We found that ArfGAP1 is required for the maintenance of receptor tyrosine kinases, the guidance receptors, at the plasma membrane. In the absence of ArfGAP1, the level of active receptors is reduced at the plasma membrane and increased in late endosomes. Consequently, clusters with impaired ArfGAP1 activity lose directionality. Furthermore, we found that the number and size of late endosomes and lysosomes are increased in the absence of ArfGAP1. Finally, genetic interactions suggest that ArfGAP1 acts on the kinase and GTPase Lrrk to regulate receptor sorting. Overall, our data indicate that ArfGAP1 is required to maintain guidance receptors at the plasma membrane and promote chemotaxis.
Collapse
Affiliation(s)
- Alison Boutet
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada
| | - Carlos Zeledon
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada
| | - Gregory Emery
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
4
|
Roberto GM, Boutet A, Keil S, Emery G. Dual regulation of Misshapen by Tao and Rap2l promotes collective cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550060. [PMID: 37503122 PMCID: PMC10370187 DOI: 10.1101/2023.07.21.550060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Collective cell migration occurs in various biological processes such as development, wound healing and metastasis. During Drosophila oogenesis, border cells (BC) form a cluster that migrates collectively inside the egg chamber. The Ste20-like kinase Misshapen (Msn) is a key regulator of BC migration coordinating the restriction of protrusion formation and contractile forces within the cluster. Here, we demonstrate that the kinase Tao acts as an upstream activator of Msn in BCs. Depletion of Tao significantly impedes BC migration and produces a phenotype similar to Msn loss-of-function. Furthermore, we show that the localization of Msn relies on its CNH domain, which interacts with the small GTPase Rap2l. Our findings indicate that Rap2l promotes the trafficking of Msn to the endolysosomal pathway. When Rap2l is depleted, the levels of Msn increase in the cytoplasm and at cell-cell junctions between BCs. Overall, our data suggest that Rap2l ensures that the levels of Msn are higher at the periphery of the cluster through the targeting of Msn to the degradative pathway. Together, we identified two distinct regulatory mechanisms that ensure the appropriate distribution and activation of Msn in BCs.
Collapse
|
5
|
Zhou S, Li P, Liu J, Liao J, Li H, Chen L, Li Z, Guo Q, Belguise K, Yi B, Wang X. Two Rac1 pools integrate the direction and coordination of collective cell migration. Nat Commun 2022; 13:6014. [PMID: 36224221 PMCID: PMC9556596 DOI: 10.1038/s41467-022-33727-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
Integration of collective cell direction and coordination is believed to ensure collective guidance for efficient movement. Previous studies demonstrated that chemokine receptors PVR and EGFR govern a gradient of Rac1 activity essential for collective guidance of Drosophila border cells, whose mechanistic insight is unknown. By monitoring and manipulating subcellular Rac1 activity, here we reveal two switchable Rac1 pools at border cell protrusions and supracellular cables, two important structures responsible for direction and coordination. Rac1 and Rho1 form a positive feedback loop that guides mechanical coupling at cables to achieve migration coordination. Rac1 cooperates with Cdc42 to control protrusion growth for migration direction, as well as to regulate the protrusion-cable exchange, linking direction and coordination. PVR and EGFR guide correct Rac1 activity distribution at protrusions and cables. Therefore, our studies emphasize the existence of a balance between two Rac1 pools, rather than a Rac1 activity gradient, as an integrator for the direction and coordination of collective cell migration. Previous studies suggested a chemokine receptor governed gradient of Rac1 activity is essential for collective guidance of Drosophila border cells. Here, Zhou et al. report that two distinct Rac1 pools at protrusions and cables, not Rac1 activity gradient, integrate the direction and coordination for collective guidance.
Collapse
Affiliation(s)
- Sijia Zhou
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Peng Li
- Department of Anaesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaying Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.,Department of Anaesthesiology, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Juan Liao
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Li
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Lin Chen
- Department of Anaesthesiology, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhihua Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Qiongyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Karine Belguise
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Bin Yi
- Department of Anaesthesiology, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
6
|
Tsou YS, Wang CY, Chang MY, Hsu TI, Wu MT, Wu YH, Tsai WL, Chuang JY, Kao TJ. Vav2 is required for Netrin-1 receptor-class-specific spinal motor axon guidance. Dev Dyn 2021; 251:444-458. [PMID: 34374463 DOI: 10.1002/dvdy.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Proper guidance of neuronal axons to their targets is required to assemble neural circuits during the development of the nervous system. However, the mechanism by which the guidance of axonal growth cones is regulated by specific intermediaries activated by receptor signaling pathways to mediate cytoskeleton dynamics is unclear. Vav protein members have been proposed to mediate this process, prompting us to investigate their role in the limb selection of the axon trajectory of spinal lateral motor column (LMC) neurons. RESULTS We found Vav2 and Vav3 expression in LMC neurons when motor axons grew into the limb. Vav2, but not Vav3, loss-of-function perturbed LMC pathfinding, while Vav2 gain-of-function exhibited the opposite effects, demonstrating that Vav2 plays an important role in motor axon growth. Vav2 knockdown also attenuated the redirectional phenotype of LMC axons induced by Dcc, but not EphA4, in vivo and lateral LMC neurite growth preference to Netrin-1 in vitro. This study showed that Vav2 knockdown and ectopic nonphosphorylable Vav2 mutant expression abolished the Src-induced stronger growth preference of lateral LMC neurites to Netrin-1, suggesting that Vav2 is downstream of Src in this context. CONCLUSIONS Vav2 is essential for Netrin-1-regulated LMC motor axon pathfinding through Src interaction.
Collapse
Affiliation(s)
- Yi-Syue Tsou
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan.,Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Yuan Chang
- Division of Neurosurgery, Department of Surgery, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Tsung-I Hsu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Ting Wu
- Department of Neurosurgery, Cheng Hsin General Hospital, Taipei, Taiwan.,Ph.D. Program of Electrical and Communications Engineering, Feng Chia University, Taichung, Taiwan
| | - Yi-Hsin Wu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wan-Ling Tsai
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Jian-Ying Chuang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Jen Kao
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Bouti P, Webbers SDS, Fagerholm SC, Alon R, Moser M, Matlung HL, Kuijpers TW. β2 Integrin Signaling Cascade in Neutrophils: More Than a Single Function. Front Immunol 2021; 11:619925. [PMID: 33679708 PMCID: PMC7930317 DOI: 10.3389/fimmu.2020.619925] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most prevalent leukocytes in the human body. They have a pivotal role in the innate immune response against invading bacterial and fungal pathogens, while recent emerging evidence also demonstrates their role in cancer progression and anti-tumor responses. The efficient execution of many neutrophil effector responses requires the presence of β2 integrins, in particular CD11a/CD18 or CD11b/CD18 heterodimers. Although extensively studied at the molecular level, the exact signaling cascades downstream of β2 integrins still remain to be fully elucidated. In this review, we focus mainly on inside-out and outside-in signaling of these two β2 integrin members expressed on neutrophils and describe differences between various neutrophil stimuli with respect to integrin activation, integrin ligand binding, and the pertinent differences between mouse and human studies. Last, we discuss how integrin signaling studies could be used to explore the therapeutic potential of targeting β2 integrins and the intracellular signaling cascade in neutrophils in several, among other, inflammatory conditions in which neutrophil activity should be dampened to mitigate disease.
Collapse
Affiliation(s)
- Panagiota Bouti
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Steven D S Webbers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam University Medical Center (AUMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Susanna C Fagerholm
- Research Program of Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam University Medical Center (AUMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Santa-Cruz Mateos C, Valencia-Expósito A, Palacios IM, Martín-Bermudo MD. Integrins regulate epithelial cell shape by controlling the architecture and mechanical properties of basal actomyosin networks. PLoS Genet 2020; 16:e1008717. [PMID: 32479493 PMCID: PMC7263567 DOI: 10.1371/journal.pgen.1008717] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/16/2020] [Indexed: 01/01/2023] Open
Abstract
Forces generated by the actomyosin cytoskeleton are key contributors to many morphogenetic processes. The actomyosin cytoskeleton organises in different types of networks depending on intracellular signals and on cell-cell and cell-extracellular matrix (ECM) interactions. However, actomyosin networks are not static and transitions between them have been proposed to drive morphogenesis. Still, little is known about the mechanisms that regulate the dynamics of actomyosin networks during morphogenesis. This work uses the Drosophila follicular epithelium, real-time imaging, laser ablation and quantitative analysis to study the role of integrins on the regulation of basal actomyosin networks organisation and dynamics and the potential contribution of this role to cell shape. We find that elimination of integrins from follicle cells impairs F-actin recruitment to basal medial actomyosin stress fibers. The available F-actin redistributes to the so-called whip-like structures, present at tricellular junctions, and into a new type of actin-rich protrusions that emanate from the basal cortex and project towards the medial region. These F-actin protrusions are dynamic and changes in total protrusion area correlate with periodic cycles of basal myosin accumulation and constriction pulses of the cell membrane. Finally, we find that follicle cells lacking integrin function show increased membrane tension and reduced basal surface. Furthermore, the actin-rich protrusions are responsible for these phenotypes as their elimination in integrin mutant follicle cells rescues both tension and basal surface defects. We thus propose that the role of integrins as regulators of stress fibers plays a key role on controlling epithelial cell shape, as integrin disruption promotes reorganisation into other types of actomyosin networks, in a manner that interferes with proper expansion of epithelial basal surfaces. Morphogenesis involves global changes in tissue architecture driven by cell shape changes. Mechanical forces generated by actomyosin networks and force transmission through adhesive complexes power these changes. The actomyosin cytoskeleton organises in different types of networks, which localise to precise regions and perform distinct roles. However, they are rarely independent and, often, reorganisation of a given structure can promote the formation of another, conversions proposed to underlie many morphogenetic processes. Nonetheless, the mechanisms controlling actomyosin network dynamics during morphogenesis remain poorly characterised. Here, using the Drosophila follicular epithelium, we show that cell-ECM interactions mediated by integrins are required for the correct distribution of actin in the different actin networks. Elimination of integrins results in redistribution of actin from stress fibers into a new type of protrusions that dynamically emanate from the cortex and extend into the stress fibers. Changes in area protrusions correlate with bursts of myosin accumulated in stress fibers and constriction pulses of the cell membrane. We also found that integrin mutant cells show increased membrane tension and reduced basal cell surface. As these defects are rescued by eliminating the F-actin protrusions, we believe these structures prevent proper basal surface growth. Thus, we propose that integrin function as regulators of stress fibers assembly and maintenance controls epithelial cell shape, as its disruption promotes reorganisation into other actomyosin networks, conversions that interfere with proper epithelial basal surface expansion.
Collapse
Affiliation(s)
- Carmen Santa-Cruz Mateos
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera,Sevilla, Spain
| | - Andrea Valencia-Expósito
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera,Sevilla, Spain
| | - Isabel M. Palacios
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - María D. Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera,Sevilla, Spain
- * E-mail:
| |
Collapse
|
9
|
Plutoni C, Keil S, Zeledon C, Delsin LEA, Decelle B, Roux PP, Carréno S, Emery G. Misshapen coordinates protrusion restriction and actomyosin contractility during collective cell migration. Nat Commun 2019; 10:3940. [PMID: 31477736 PMCID: PMC6718686 DOI: 10.1038/s41467-019-11963-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/19/2019] [Indexed: 11/09/2022] Open
Abstract
Collective cell migration is involved in development, wound healing and metastasis. In the Drosophila ovary, border cells (BC) form a small cluster that migrates collectively through the egg chamber. To achieve directed motility, the BC cluster coordinates the formation of protrusions in its leader cell and contractility at the rear. Restricting protrusions to leader cells requires the actin and plasma membrane linker Moesin. Herein, we show that the Ste20-like kinase Misshapen phosphorylates Moesin in vitro and in BC. Depletion of Misshapen disrupts protrusion restriction, thereby allowing other cells within the cluster to protrude. In addition, we show that Misshapen is critical to generate contractile forces both at the rear of the cluster and at the base of protrusions. Together, our results indicate that Misshapen is a key regulator of BC migration as it coordinates two independent pathways that restrict protrusion formation to the leader cells and induces contractile forces.
Collapse
Affiliation(s)
- Cédric Plutoni
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Sarah Keil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Carlos Zeledon
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Lara Elis Alberici Delsin
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Barbara Decelle
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Carréno
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Gregory Emery
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada. .,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
10
|
Macabenta F, Stathopoulos A. Sticking to a plan: adhesion and signaling control spatial organization of cells within migrating collectives. Curr Opin Genet Dev 2019; 57:39-46. [PMID: 31404788 DOI: 10.1016/j.gde.2019.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/03/2019] [Accepted: 07/07/2019] [Indexed: 01/23/2023]
Abstract
Collective cell migration is required in a vast array of biological phenomena, including organogenesis and embryonic development. The mechanisms that underlie collective cell migration not only involve the morphogenetic changes associated with single cell migration, but also require the maintenance of cell-cell junctions during movement. Additionally, cell shape changes and polarity must be coordinated in a multicellular manner in order to preserve directional movement in the migrating cohort, and often relates to multiple functions of common signaling pathways. In this review, we summarize the current understanding of the mechanisms underlying higher order tissue organization during migration, with particular focus on the interplay between cell adhesion and signaling that we propose can be tuned to support different types of collective movements.
Collapse
Affiliation(s)
- Frank Macabenta
- California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, United States.
| | - Angelike Stathopoulos
- California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, United States.
| |
Collapse
|
11
|
Rodríguez-Fdez S, Bustelo XR. The Vav GEF Family: An Evolutionary and Functional Perspective. Cells 2019; 8:E465. [PMID: 31100928 PMCID: PMC6562523 DOI: 10.3390/cells8050465] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Vav proteins play roles as guanosine nucleotide exchange factors for Rho GTPases and signaling adaptors downstream of protein tyrosine kinases. The recent sequencing of the genomes of many species has revealed that this protein family originated in choanozoans, a group of unicellular organisms from which animal metazoans are believed to have originated from. Since then, the Vav family underwent expansions and reductions in its members during the evolutionary transitions that originated the agnates, chondrichthyes, some teleost fish, and some neoaves. Exotic members of the family harboring atypical structural domains can be also found in some invertebrate species. In this review, we will provide a phylogenetic perspective of the evolution of the Vav family. We will also pay attention to the structure, signaling properties, regulatory layers, and functions of Vav proteins in both invertebrate and vertebrate species.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
| |
Collapse
|
12
|
Shellard A, Mayor R. Supracellular migration - beyond collective cell migration. J Cell Sci 2019; 132:132/8/jcs226142. [PMID: 30988138 DOI: 10.1242/jcs.226142] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Collective cell migration is a highly complex process in which groups of cells move together. A fundamental question is how cell ensembles can migrate efficiently. In some cases, the group is no more than a collection of individual cells. In others, the group behaves as a supracellular unit, whereby the cell group could be considered as a giant 'supracell', the concept of which was conceived over a century ago. The development of recent tools has provided considerable evidence that cell collectives are highly cooperative, and their migration can better be understood at the tissue level, rather than at the cell level. In this Review, we will define supracellular migration as a type of collective cell migration that operates at a scale higher than the individual cells. We will discuss key concepts of supracellular migration, review recent evidence of collectives exhibiting supracellular features and argue that many seemingly complex collective movements could be better explained by considering the participating cells as supracellular entities.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
13
|
Sánchez-Sánchez BJ, Urbano JM, Comber K, Dragu A, Wood W, Stramer B, Martín-Bermudo MD. Drosophila Embryonic Hemocytes Produce Laminins to Strengthen Migratory Response. Cell Rep 2018; 21:1461-1470. [PMID: 29117553 PMCID: PMC5695906 DOI: 10.1016/j.celrep.2017.10.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/05/2017] [Accepted: 10/11/2017] [Indexed: 12/28/2022] Open
Abstract
The most prominent developmental function attributed to the extracellular matrix (ECM) is cell migration. While cells in culture can produce ECM to migrate, the role of ECM in regulating developmental cell migration is classically viewed as an exogenous matrix presented to the moving cells. In contrast to this view, we show here that Drosophila embryonic hemocytes deposit their own laminins in streak-like structures to migrate efficiently throughout the embryo. With the help of transplantation experiments, live microscopy, and image quantification, we demonstrate that autocrine-produced laminin regulates hemocyte migration by controlling lamellipodia dynamics, stability, and persistence. Proper laminin deposition is regulated by the RabGTPase Rab8, which is highly expressed and required in hemocytes for lamellipodia dynamics and migration. Our results thus support a model in which, during embryogenesis, the Rab8-regulated autocrine deposition of laminin reinforces directional and effective migration by stabilizing cellular protrusions and strengthening otherwise transient adhesion states. Drosophila embryonic hemocytes use autocrine-produced laminins for their migration Autocrine laminins regulate lamellipodia dynamics, stability, and persistence Rab8 regulates laminin deposition and lamellipodia dynamics in migrating hemocytes Laminins deposit in tracks around hemocytes and in a fibrillar mesh over the VNC
Collapse
Affiliation(s)
- Besaiz J Sánchez-Sánchez
- CABD (CSIC-Universidad Pablo de Olavide-JA), Sevilla 41013, Spain; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE5 9AP, UK
| | - José M Urbano
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Kate Comber
- Department of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Anca Dragu
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE5 9AP, UK
| | - Will Wood
- Department of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Brian Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE5 9AP, UK
| | | |
Collapse
|
14
|
Wang H, Qiu Z, Xu Z, Chen SJ, Luo J, Wang X, Chen J. aPKC is a key polarity determinant in coordinating the function of three distinct cell polarities during collective migration. Development 2018; 145:dev.158444. [PMID: 29636381 DOI: 10.1242/dev.158444] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/03/2018] [Indexed: 12/30/2022]
Abstract
Apical-basal polarity is a hallmark of epithelia and needs to be remodeled when epithelial cells undergo morphogenetic cell movements. Here, we analyze border cells in the Drosophila ovary to address how apical-basal polarity is remodeled and turned into front-back and inside-outside as well as apical-basal polarities, during collective migration. We find that the Crumbs (Crb) complex is required for the generation of the three distinct but interconnected cell polarities of border cells. Specifically, the Crb complex, together with the Par complex and the endocytic recycling machinery, ensures the strict distribution of two distinct populations of aPKC at the inside apical junction and near the outside lateral membrane. Interestingly, aPKC distributed near the outside lateral membrane interacts with Sif and promotes Rac-induced protrusions, whereas alteration of the aPKC distribution pattern changes the pattern of protrusion formation, leading to disruption of all three polarities. Therefore, we demonstrate that aPKC, spatially controlled by the Crb complex, is a key polarity molecule coordinating the generation of three distinct but interconnected cell polarities during collective migration.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing, China 210061
| | - Zhiqian Qiu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing, China 210061
| | - Zehao Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing, China 210061
| | - Samuel John Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing, China 210061
| | - Jun Luo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing, China 210061
| | - Xiaobo Wang
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Jiong Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing, China 210061
| |
Collapse
|
15
|
Stuelten CH, Parent CA, Montell DJ. Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat Rev Cancer 2018; 18:296-312. [PMID: 29546880 PMCID: PMC6790333 DOI: 10.1038/nrc.2018.15] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis remains the greatest challenge in the clinical management of cancer. Cell motility is a fundamental and ancient cellular behaviour that contributes to metastasis and is conserved in simple organisms. In this Review, we evaluate insights relevant to human cancer that are derived from the study of cell motility in non-mammalian model organisms. Dictyostelium discoideum, Caenorhabditis elegans, Drosophila melanogaster and Danio rerio permit direct observation of cells moving in complex native environments and lend themselves to large-scale genetic and pharmacological screening. We highlight insights derived from each of these organisms, including the detailed signalling network that governs chemotaxis towards chemokines; a novel mechanism of basement membrane invasion; the positive role of E-cadherin in collective direction-sensing; the identification and optimization of kinase inhibitors for metastatic thyroid cancer on the basis of work in flies; and the value of zebrafish for live imaging, especially of vascular remodelling and interactions between tumour cells and host tissues. While the motility of tumour cells and certain host cells promotes metastatic spread, the motility of tumour-reactive T cells likely increases their antitumour effects. Therefore, it is important to elucidate the mechanisms underlying all types of cell motility, with the ultimate goal of identifying combination therapies that will increase the motility of beneficial cells and block the spread of harmful cells.
Collapse
Affiliation(s)
- Christina H. Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
- Department of Pharmacology, Michigan Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- ;
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA, USA
- ;
| |
Collapse
|
16
|
Combedazou A, Gayral S, Colombié N, Fougerat A, Laffargue M, Ramel D. Small GTPases orchestrate cell-cell communication during collective cell movement. Small GTPases 2017; 11:103-112. [PMID: 28980871 DOI: 10.1080/21541248.2017.1366965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Collective cell migration is a critical mechanism involved in cell movement during various physiological and pathological processes such as angiogenesis and metastasis formation. During collective movement, cells remain functionally connected and can coordinate individual cell behaviors to ensure efficient migration. A cell-cell communication process ensures this complex coordination. Although the mechanisms regulating cell-cell communication remain unclear, recent findings indicate that it is based on acto-myosin cytoskeleton tension transmission from cell to cell through adherens junctions. As for single cell migration, small GTPases of the Rho and Rab families have been shown to be critical regulators of collective motion. Here, we discuss our current understanding on how these small GTPases are themselves regulated and how they control cell-cell communication during collective migration. Moreover, we also shed light on the key role of cell-cell communication and RhoGTPases in the physiological context of endothelial cell migration during angiogenesis.
Collapse
Affiliation(s)
- Anne Combedazou
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Stéphanie Gayral
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, France
| | - Nathalie Colombié
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Anne Fougerat
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, France
| | - Muriel Laffargue
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, France
| | - Damien Ramel
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, France
| |
Collapse
|
17
|
Theveneau E, Linker C. Leaders in collective migration: are front cells really endowed with a particular set of skills? F1000Res 2017; 6:1899. [PMID: 29152225 PMCID: PMC5664975 DOI: 10.12688/f1000research.11889.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2017] [Indexed: 12/21/2022] Open
Abstract
Collective cell migration is the coordinated movement emerging from the interaction of at least two cells. In multicellular organisms, collective cell migration is ubiquitous. During development, embryonic cells often travel in numbers, whereas in adults, epithelial cells close wounds collectively. There is often a division of labour and two categories of cells have been proposed: leaders and followers. These two terms imply that followers are subordinated to leaders whose proposed broad range of actions significantly biases the direction of the group of cells towards a specific target. These two terms are also tied to topology. Leaders are at the front while followers are located behind them. Here, we review recent work on some of the main experimental models for collective cell migration, concluding that leader-follower terminology may not be the most appropriate. It appears that not all collectively migrating groups are driven by cells located at the front. Moreover, the qualities that define leaders (pathfinding, traction forces and matrix remodelling) are not specific to front cells. These observations indicate that the terms leaders and followers are not suited to every case. We think that it would be more accurate to dissociate the function of a cell from its position in the group. The position of cells can be precisely defined with respect to the direction of movement by purely topological terms such as "front" or "rear" cells. In addition, we propose the more ample and strictly functional definition of "steering cells" which are able to determine the directionality of movement for the entire group. In this context, a leader cell represents only a specific case in which a steering cell is positioned at the front of the group.
Collapse
Affiliation(s)
- Eric Theveneau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Claudia Linker
- Randall Division of Cell & Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
18
|
Saadin A, Starz-Gaiano M. Circuitous Genetic Regulation Governs a Straightforward Cell Migration. Trends Genet 2016; 32:660-673. [PMID: 27600524 DOI: 10.1016/j.tig.2016.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022]
Abstract
Drosophila border cells undergo a straightforward and stereotypical collective migration during egg development. However, a complex genetic program underlies this process. A variety of approaches, including biochemical, genetic, and imaging strategies have identified many regulatory components, revealing layers of control. This complexity suggests that the active processes of evaluating the environment, remodeling the cytoskeleton, and coordinating movements among cells, demand rapid systems for modulating cell behaviors. Multiple signaling inputs, nodes of integration, and feedback loops act as molecular rheostats to fine-tune gene expression levels and physical responses. Since key genetic regulators of border cell migration have been shown to be required in other types of cell migration, this model system continues to provide an important avenue for genetic discovery.
Collapse
Affiliation(s)
- Afsoon Saadin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
19
|
Abstract
During embryonic development, tissues undergo major rearrangements that lead to germ layer positioning, patterning, and organ morphogenesis. Often these morphogenetic movements are accomplished by the coordinated and cooperative migration of the constituent cells, referred to as collective cell migration. The molecular and biomechanical mechanisms underlying collective migration of developing tissues have been investigated in a variety of models, including border cell migration, tracheal branching, blood vessel sprouting, and the migration of the lateral line primordium, neural crest cells, or head mesendoderm. Here we review recent advances in understanding collective migration in these developmental models, focusing on the interaction between cells and guidance cues presented by the microenvironment and on the role of cell–cell adhesion in mechanical and behavioral coupling of cells within the collective.
Collapse
Affiliation(s)
- Elena Scarpa
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| |
Collapse
|
20
|
Combedazou A, Choesmel-Cadamuro V, Gay G, Liu J, Dupré L, Ramel D, Wang X. Myosin II governs collective cell migration behaviour downstream of guidance receptor signalling. J Cell Sci 2016; 130:97-103. [PMID: 27034137 DOI: 10.1242/jcs.179952] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/18/2016] [Indexed: 02/04/2023] Open
Abstract
Border cell migration during Drosophila oogenesis is a potent model to study collective cell migration, a process involved in development and metastasis. Border cell clusters adopt two main types of behaviour during migration: linear and rotational. However, the molecular mechanism controlling the switch from one to the other is unknown. Here, we demonstrate that non-muscle Myosin II (NMII, also known as Spaghetti squash) activity controls the linear-to-rotational switch. Furthermore, we show that the regulation of NMII takes place downstream of guidance receptor signalling and is critical to ensure efficient collective migration. This study thus provides new insight into the molecular mechanism coordinating the different cell behaviours in a migrating cluster.
Collapse
Affiliation(s)
- Anne Combedazou
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Valérie Choesmel-Cadamuro
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Guillaume Gay
- DamCB, Data Analysis and Modelling for Cell Biology, Marseille F-13005, France
| | - Jiaying Liu
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Loïc Dupré
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan, 31024 Toulouse, France.,Université Toulouse III Paul-Sabatier, 31062 Toulouse, France.,CNRS, UMR 5282, 31204 Toulouse, France
| | - Damien Ramel
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Xiaobo Wang
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
21
|
A Conserved GEF for Rho-Family GTPases Acts in an EGF Signaling Pathway to Promote Sleep-like Quiescence in Caenorhabditis elegans. Genetics 2016; 202:1153-66. [PMID: 26801183 DOI: 10.1534/genetics.115.183038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/18/2016] [Indexed: 11/18/2022] Open
Abstract
Sleep is evolutionarily conserved and required for organism homeostasis and survival. Despite this importance, the molecular and cellular mechanisms underlying sleep are not well understood. Caenorhabditis elegans exhibits sleep-like behavioral quiescence and thus provides a valuable, simple model system for the study of cellular and molecular regulators of this process. In C. elegans, epidermal growth factor receptor (EGFR) signaling is required in the neurosecretory neuron ALA to promote sleep-like behavioral quiescence after cellular stress. We describe a novel role for VAV-1, a conserved guanine nucleotide exchange factor (GEF) for Rho-family GTPases, in regulation of sleep-like behavioral quiescence. VAV-1, in a GEF-dependent manner, acts in ALA to suppress locomotion and feeding during sleep-like behavioral quiescence in response to cellular stress. Additionally, VAV-1 activity is required for EGF-induced sleep-like quiescence and normal levels of EGFR and secretory dense core vesicles in ALA. Importantly, the role of VAV-1 in promoting cellular stress-induced behavioral quiescence is vital for organism health because VAV-1 is required for normal survival after cellular stress.
Collapse
|
22
|
Felix M, Chayengia M, Ghosh R, Sharma A, Prasad M. Pak3 regulates apical-basal polarity in migrating border cells during Drosophila oogenesis. Development 2015; 142:3692-703. [PMID: 26395489 DOI: 10.1242/dev.125682] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/08/2015] [Indexed: 01/07/2023]
Abstract
Group cell migration is a highly coordinated process that is involved in a number of physiological events such as morphogenesis, wound healing and tumor metastasis. Unlike single cells, collectively moving cells are physically attached to each other and retain some degree of apical-basal polarity during the migratory phase. Although much is known about direction sensing, how polarity is regulated in multicellular movement remains unclear. Here we report the role of the protein kinase Pak3 in maintaining apical-basal polarity in migrating border cell clusters during Drosophila oogenesis. Pak3 is enriched in border cells and downregulation of its function impedes border cell movement. Time-lapse imaging suggests that Pak3 affects protrusive behavior of the border cell cluster, specifically regulating the stability and directionality of protrusions. Pak3 functions downstream of guidance receptor signaling to regulate the level and distribution of F-actin in migrating border cells. We also provide evidence that Pak3 genetically interacts with the lateral polarity marker Scribble and that it regulates JNK signaling in the moving border cells. Since Pak3 depletion results in mislocalization of several apical-basal polarity markers and overexpression of Jra rescues the polarity of the Pak3-depleted cluster, we propose that Pak3 functions through JNK signaling to modulate apical-basal polarity of the migrating border cell cluster. We also observe loss of apical-basal polarity in Rac1-depleted border cell clusters, suggesting that guidance receptor signaling functions through Rac GTPase and Pak3 to regulate the overall polarity of the cluster and mediate efficient collective movement of the border cells to the oocyte boundary.
Collapse
Affiliation(s)
- Martina Felix
- Department of Biological Sciences, Indian Institute of Science Education & Research-Kolkata, Mohanpur Campus, Mohanpur 741246, Nadia, West Bengal, India
| | - Mrinal Chayengia
- Department of Biological Sciences, Indian Institute of Science Education & Research-Kolkata, Mohanpur Campus, Mohanpur 741246, Nadia, West Bengal, India
| | - Ritabrata Ghosh
- Department of Biological Sciences, Indian Institute of Science Education & Research-Kolkata, Mohanpur Campus, Mohanpur 741246, Nadia, West Bengal, India
| | - Aditi Sharma
- Department of Biological Sciences, Indian Institute of Science Education & Research-Kolkata, Mohanpur Campus, Mohanpur 741246, Nadia, West Bengal, India
| | - Mohit Prasad
- Department of Biological Sciences, Indian Institute of Science Education & Research-Kolkata, Mohanpur Campus, Mohanpur 741246, Nadia, West Bengal, India
| |
Collapse
|
23
|
Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 2015; 25:556-66. [DOI: 10.1016/j.tcb.2015.06.003] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022]
|
24
|
Abstract
The Vav family is a group of tyrosine phosphorylation-regulated signal transduction molecules hierarchically located downstream of protein tyrosine kinases. The main function of these proteins is to work as guanosine nucleotide exchange factors (GEFs) for members of the Rho GTPase family. In addition, they can exhibit a variety of catalysis-independent roles in specific signaling contexts. Vav proteins play essential signaling roles for both the development and/or effector functions of a large variety of cell lineages, including those belonging to the immune, nervous, and cardiovascular systems. They also contribute to pathological states such as cancer, immune-related dysfunctions, and atherosclerosis. Here, I will provide an integrated view about the evolution, regulation, and effector properties of these signaling molecules. In addition, I will discuss the pros and cons for their potential consideration as therapeutic targets.
Collapse
Key Words
- Ac, acidic
- Ahr, aryl hydrocarbon receptor
- CH, calponin homology
- CSH3, most C-terminal SH3 domain of Vav proteins
- DAG, diacylglycerol
- DH, Dbl-homology domain
- Dbl-homology
- GDP/GTP exchange factors
- GEF, guanosine nucleotide exchange factor
- HIV, human immunodeficiency virus
- IP3, inositoltriphosphate
- NFAT, nuclear factor of activated T-cells
- NSH3, most N-terminal SH3 domain of Vav proteins
- PH, plekstrin-homology domain
- PI3K, phosphatidylinositol-3 kinase
- PIP3, phosphatidylinositol (3,4,5)-triphosphate
- PKC, protein kinase C
- PKD, protein kinase D
- PLC-g, phospholipase C-g
- PRR, proline-rich region
- PTK, protein tyrosine kinase
- Phox, phagocyte oxidase
- Rho GTPases
- SH2, Src homology 2
- SH3, Src homology 3
- SNP, single nucleotide polymorphism
- TCR, T-cell receptor
- Vav
- ZF, zinc finger region
- cGMP, cyclic guanosine monophosphate
- cancer
- cardiovascular biology
- disease
- immunology
- nervous system
- signaling
- therapies
Collapse
Affiliation(s)
- Xosé R Bustelo
- a Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer ; Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca ; Campus Unamuno; Salamanca , Spain
| |
Collapse
|
25
|
Donnelly SK, Bravo-Cordero JJ, Hodgson L. Rho GTPase isoforms in cell motility: Don't fret, we have FRET. Cell Adh Migr 2015; 8:526-34. [PMID: 25482645 PMCID: PMC4594258 DOI: 10.4161/cam.29712] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Rho-family of p21 small GTPases are directly linked to the regulation of actin-based motile machinery and play a key role in the control of cell migration. Aside from the original and most well-characterized canonical Rho GTPases RhoA, Rac1, and Cdc42, numerous isoforms of these key proteins have been identified and shown to have specific roles in regulating various cellular motility processes. The major difficulty in addressing these isoform-specific effects is that isoforms typically contain highly similar primary amino acid sequences and thus are able to interact with the same upstream regulators and the downstream effector targets. Here, we will introduce the major members of each GTPase subfamily and discuss recent advances in the design and application of fluorescent resonance energy transfer-based probes, which are at the forefront of the technologies available to directly probe the differential, spatiotemporal activation dynamics of these proteins in live single cells. Currently, it is possible to specifically detect the activation status of RhoA vs. RhoC isoforms, as well as Cdc42 vs. TC-10 isoforms in living cells. Clearly, additional efforts are still required to produce biosensor systems capable of detecting other isoforms of Rho GTPases including RhoB, Rac2/3, RhoG, etc. Through such efforts, we will uncover the isoform-specific roles of these near-identical proteins in living cells, clearly an important area of the Rho GTPase biology that is not yet fully appreciated.
Collapse
Affiliation(s)
- Sara K Donnelly
- a Department of Anatomy and Structural Biology ; Albert Einstein College of Medicine of Yeshiva University ; Bronx , NY USA
| | | | | |
Collapse
|
26
|
Pajic M, Herrmann D, Vennin C, Conway JR, Chin VT, Johnsson AKE, Welch HC, Timpson P. The dynamics of Rho GTPase signaling and implications for targeting cancer and the tumor microenvironment. Small GTPases 2015; 6:123-33. [PMID: 26103062 PMCID: PMC4601362 DOI: 10.4161/21541248.2014.973749] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Numerous large scale genomics studies have demonstrated that cancer is a molecularly heterogeneous disease, characterized by acquired changes in the structure and DNA sequence of tumor genomes. More recently, the role of the equally complex tumor microenvironment in driving the aggressiveness of this disease is increasingly being realized. Tumor cells are surrounded by activated stroma, creating a dynamic environment that promotes cancer development, metastasis and chemoresistance. The Rho family of small GTPases plays an essential role in the regulation of cell shape, cytokinesis, cell adhesion, and cell motility. Importantly, these processes need to be considered in the context of a complex 3-dimensional (3D) environment, with reciprocal feedback and cross-talk taking place between the tumor cells and host environment. Here we discuss the role of molecular networks involving Rho GTPases in cancer, and the therapeutic implications of inhibiting Rho signaling in both cancer cells and the emerging concept of targeting the surrounding stroma.
Collapse
Affiliation(s)
- Marina Pajic
- a The Kinghorn Cancer Center; Cancer Division; Garvan Institute of Medical Research ; Sydney , Australia
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Jung YH, Lee SJ, Oh SY, Lee HJ, Ryu JM, Han HJ. Oleic acid enhances the motility of umbilical cord blood derived mesenchymal stem cells through EphB2-dependent F-actin formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1905-17. [PMID: 25962624 DOI: 10.1016/j.bbamcr.2015.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/16/2015] [Accepted: 05/05/2015] [Indexed: 01/10/2023]
Abstract
The role of unsaturated fatty acids (UFAs) is essential for determining stem cell functions. Eph/Ephrin interactions are important for regulation of stem cell fate and localization within their niche, which is significant for a wide range of stem cell behavior. Although oleic acid (OA) and Ephrin receptors (Ephs) have critical roles in the maintenance of stem cell functions, interrelation between Ephs and OA has not been explored. Therefore, the present study investigated the effect of OA-pretreated UCB-MSCs in skin wound-healing and underlying mechanism of Eph expression. OA promoted the motility of UCB-MSCs via EphB2 expression. OA-mediated GPR40 activation leads to Gαq-dependent PKCα phosphorylation. In addition, OA-induced phosphorylation of GSK3β was followed by β-catenin nuclear translocation in UCB-MSCs. Activation of β-catenin was blocked by PKC inhibitors, and OA-induced EphB2 expression was suppressed by β-cateninsiRNA transfection. Of those Rho-GTPases, Rac1 was activated in an EphB2-dependent manner. Accordingly, knocking down EphB2 suppressed F-actin expression. In vivo skin wound-healing assay revealed that OA-treated UCB-MSCs enhanced skin wound repair compared to UCB-MSCs pretreated with EphB2siRNA and OA. In conclusion, we showed that OA enhances UCB-MSC motility through EphB2-dependent F-actin formation involving PKCα/GSK3β/β-catenin and Rac1 signaling pathways.
Collapse
Affiliation(s)
- Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea; BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea
| | - Sei-Jung Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea; BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea
| | - Sang Yub Oh
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea; BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea; BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea
| | - Jung Min Ryu
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea; BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea; BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea.
| |
Collapse
|
28
|
Martín-Bermudo MD, Bardet PL, Bellaïche Y, Malartre M. The vav oncogene antagonises EGFR signalling and regulates adherens junction dynamics during Drosophila eye development. Development 2015; 142:1492-501. [PMID: 25813543 DOI: 10.1242/dev.110585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/02/2015] [Indexed: 12/13/2022]
Abstract
Organ shaping and patterning depends on the coordinated regulation of multiple processes. The Drosophila compound eye provides an excellent model to study the coordination of cell fate and cell positioning during morphogenesis. Here, we find that loss of vav oncogene function during eye development is associated with a disorganised retina characterised by the presence of additional cells of all types. We demonstrate that these defects result from two distinct roles of Vav. First, and in contrast to its well-established role as a positive effector of the EGF receptor (EGFR), we show that readouts of the EGFR pathway are upregulated in vav mutant larval eye disc and pupal retina, indicating that Vav antagonises EGFR signalling during eye development. Accordingly, decreasing EGFR signalling in vav mutant eyes restores retinal organisation and rescues most vav mutant phenotypes. Second, using live imaging in the pupal retina, we observe that vav mutant cells do not form stable adherens junctions, causing various defects, such as recruitment of extra primary pigment cells. In agreement with this role in junction dynamics, we observe that these phenotypes can be exacerbated by lowering DE-Cadherin or Cindr levels. Taken together, our findings establish that Vav acts at multiple times during eye development to prevent excessive cell recruitment by limiting EGFR signalling and by regulating junction dynamics to ensure the correct patterning and morphogenesis of the Drosophila eye.
Collapse
Affiliation(s)
| | - Pierre-Luc Bardet
- Institut Curie, CNRS UMR3215, INSERM U934, Paris Cedex 05 75248, France
| | - Yohanns Bellaïche
- Institut Curie, CNRS UMR3215, INSERM U934, Paris Cedex 05 75248, France
| | - Marianne Malartre
- Centro Andaluz de Biología del Desarrollo CSIC-Univ. Pablo de Olavide, Sevilla 41013, Spain Université Paris-Sud, INSERM UMR-S757, Orsay 91405, France Centre de Génétique Moléculaire (UPR3404), CNRS, 1 avenue de la Terrasse, Gif-Sur-Yvette 91198, France
| |
Collapse
|
29
|
Cai D, Chen SC, Prasad M, He L, Wang X, Choesmel-Cadamuro V, Sawyer JK, Danuser G, Montell DJ. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 2014; 157:1146-59. [PMID: 24855950 DOI: 10.1016/j.cell.2014.03.045] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/03/2014] [Accepted: 03/12/2014] [Indexed: 11/16/2022]
Abstract
E-cadherin is a major homophilic cell-cell adhesion molecule that inhibits motility of individual cells on matrix. However, its contribution to migration of cells through cell-rich tissues is less clear. We developed an in vivo sensor of mechanical tension across E-cadherin molecules, which we combined with cell-type-specific RNAi, photoactivatable Rac, and morphodynamic profiling, to interrogate how E-cadherin contributes to collective migration of cells between other cells. Using the Drosophila ovary as a model, we found that adhesion between border cells and their substrate, the nurse cells, functions in a positive feedback loop with Rac and actin assembly to stabilize forward-directed protrusion and directionally persistent movement. Adhesion between individual border cells communicates direction from the lead cell to the followers. Adhesion between motile cells and polar cells holds the cluster together and polarizes each individual cell. Thus, E-cadherin is an integral component of the guidance mechanisms that orchestrate collective chemotaxis in vivo.
Collapse
Affiliation(s)
- Danfeng Cai
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Shann-Ching Chen
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037-1000, USA
| | - Mohit Prasad
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Li He
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Xiaobo Wang
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Université P. Sabatier Toulouse III and CNRS, LBCMCP, 31062 Toulouse Cedex 9, France
| | | | - Jessica K Sawyer
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Gaudenz Danuser
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037-1000, USA
| | - Denise J Montell
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA.
| |
Collapse
|
30
|
Kanca O, Ochoa-Espinosa A, Affolter M. IV. Tools and methods for studying cell migration and cell rearrangement in tissue and organ development. Methods 2014; 68:228-32. [PMID: 24631575 DOI: 10.1016/j.ymeth.2014.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022] Open
Abstract
A vast diversity of biological systems, ranging from prokaryotes to multicellular organisms, show cell migration behavior. Many of the basic cellular and molecular concepts in cell migration apply to diverse model organisms. Drosophila, with its vast repertoire of tools for imaging and for manipulation, is one of the favorite organisms to study cell migration. Moreover, distinct Drosophila tissues and organs offer diverse cell migration models that are amenable to live imaging and genetic manipulations. In this review, we will provide an overview of the fruit fly toolbox that is of particular interest for the analysis of cell migration. We provide examples to highlight how those tools were used in diverse migration systems, with an emphasis on tracheal morphogenesis, a process that combines morphogenesis with cell migration.
Collapse
Affiliation(s)
- Oguz Kanca
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
31
|
Rebollo E, Karkali K, Mangione F, Martín-Blanco E. Live imaging in Drosophila: The optical and genetic toolkits. Methods 2014; 68:48-59. [PMID: 24814031 DOI: 10.1016/j.ymeth.2014.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 11/19/2022] Open
Abstract
Biological imaging based on light microscopy comes at the core of the methods that let us understanding morphology and its dynamics in synergy to the spatiotemporal distribution of cellular and molecular activities as the organism develops and becomes functional. Non-linear optical tools and superesolution methodologies are under constant development and their applications to live imaging of whole organisms keep improving as we speak. Genetically coded biosensors, multicolor clonal methods and optogenetics in different organisms and, in particular, in Drosophila follow equivalent paths. We anticipate a brilliant future for live imaging providing the roots for the holistic understanding, rather than for individual parts, of development and function at the whole-organism level.
Collapse
Affiliation(s)
- Elena Rebollo
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Katerina Karkali
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Federica Mangione
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain.
| |
Collapse
|
32
|
Abstract
Integrin-mediated adhesion used by Drosophila blood cells to migrate in vivo. SCAR/WAVE is required for lamellipodia but also for clearance of apoptotic cells. The formins Fhos and Diaphanous regulate Drosophila macrophage migration and morphology. Calcium waves drive hydrogen peroxide production to regulate inflammatory migrations. The steroid hormone Ecdysone controls the onset of immune competence.
Drosophila melanogaster contains a population of blood cells called hemocytes that represent the functional equivalent of vertebrate macrophages. These cells undergo directed migrations to disperse during development and reach sites of tissue damage or altered self. These chemotactic behaviors are controlled by the expression of PDGF/Vegf-related ligands in developing embryos and local production of hydrogen peroxide at wounds. Recent work reveals that many molecules important in vertebrate cell motility, including integrins, formins, Ena/VASP proteins and the SCAR/WAVE complex, have a conserved function in these innate immune cells. The use of this model organism has elucidated how damage signals are activated by calcium signaling during inflammation and that the steroid hormone ecdysone activates immune competence at key developmental stages.
Collapse
Affiliation(s)
- Iwan Robert Evans
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; The Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Will Wood
- Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
33
|
Bell GP, Thompson BJ. Colorectal cancer progression: lessons from Drosophila? Semin Cell Dev Biol 2014; 28:70-7. [PMID: 24583474 DOI: 10.1016/j.semcdb.2014.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/13/2014] [Indexed: 12/31/2022]
Abstract
Human colorectal cancers arise as benign adenomas, tumours that retain their epithelial character, and then progress to malignant adenocarcinomas and carcinomas in which the epithelium becomes disrupted. Carcinomas often exhibit transcriptional downregulation of E-cadherin and other epithelial genes in an epithelial-to-mesenchymal transition (EMT), a mechanism first discovered in Drosophila to be mediated by the transcription factors Twist and Snail. In contrast, adenocarcinomas retain expression of E-cadherin and disruption of the epithelium occurs through formation of progressively smaller epithelial cysts with apical Crumbs/CRB3, Stardust/PALS1, and Bazooka/PAR3 localised to the inner lumen. Results from Drosophila show that morphologically similar cysts form upon induction of clonal heterogeneity in Wnt, Smad, or Ras signalling levels, which causes extrusion of epithelial cells at clonal boundaries. Thus, intratumour heterogeneity might also promote formation of adenocarcinomas in humans. Finally, epithelial cysts can collectively migrate, as in the case of Drosophila border cells, a potential model system for the invasive migration of adenocarcinoma cells.
Collapse
Affiliation(s)
- Graham P Bell
- Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | - Barry J Thompson
- Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom.
| |
Collapse
|