1
|
Wood C, Saltera Z, Garcia I, Nguyen M, Rios A, Oropeza J, Ugwa D, Mukherjee U, Sehar U, Reddy PH. Age-associated changes in the heart: implications for COVID-19 therapies. Aging (Albany NY) 2025; 17:206251. [PMID: 40372276 DOI: 10.18632/aging.206251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025]
Abstract
Cardiac aging involves progressive structural, functional, cellular, and molecular changes that impair heart function. This review explores key mechanisms, including oxidative stress, mitochondrial dysfunction, impaired autophagy, and chronic low-grade inflammation. Excess reactive oxygen species (ROS) damage heart muscle cells, contributing to fibrosis and cellular aging. Mitochondrial dysfunction reduces energy production and increases oxidative stress, accelerating cardiac decline. Impaired autophagy limits the removal of damaged proteins and organelles, while inflammation activates signaling molecules that drive tissue remodeling. Gender differences reveal estrogen's protective role in premenopausal women, with men showing greater susceptibility to heart muscle dysfunction and injury. After menopause, women lose this hormonal protection, increasing their risk of cardiovascular conditions. Ethnic disparities, particularly among underserved minority populations, emphasize how social factors such as access to care, environment, and chronic stress contribute to worsening cardiovascular outcomes. The coronavirus disease pandemic has introduced further challenges by increasing the incidence of heart damage through inflammation, blood clots, and long-term heart failure, especially in older adults with existing metabolic conditions like diabetes and high blood pressure. The virus's interaction with receptors on heart and blood vessel cells, along with a weakened immune response in older adults, intensifies cardiac aging. Emerging therapies include delivery of therapeutic extracellular vesicles, immune cell modulation, and treatments targeting mitochondria. In addition, lifestyle strategies such as regular physical activity, nutritional improvements, and stress reduction remain vital to maintaining cardiac health. Understanding how these biological and social factors intersect is critical to developing targeted strategies that promote healthy aging of the heart.
Collapse
Affiliation(s)
- Colby Wood
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Zach Saltera
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Isaiah Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Michelle Nguyen
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Andres Rios
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jacqui Oropeza
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Destiny Ugwa
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Upasana Mukherjee
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
2
|
Rasouli M, Naeimzadeh Y, Hashemi N, Hosseinzadeh S. Age-Related Alterations in Mesenchymal Stem Cell Function: Understanding Mechanisms and Seeking Opportunities to Bypass the Cellular Aging. Curr Stem Cell Res Ther 2024; 19:15-32. [PMID: 36642876 DOI: 10.2174/1574888x18666230113144016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 01/17/2023]
Abstract
Undoubtedly, mesenchymal stem cells (MSCs) are the most common cell therapy candidates in clinical research and therapy. They not only exert considerable therapeutic effects to alleviate inflammation and promote regeneration, but also show low-immunogenicity properties, which ensure their safety following allogeneic transplantation. Thanks to the necessity of providing a sufficient number of MSCs to achieve clinically efficient outcomes, prolonged in vitro cultivation is indisputable. However, either following long-term in vitro expansion or aging in elderly individuals, MSCs face cellular senescence. Senescent MSCs undergo an impairment in their function and therapeutic capacities and secrete degenerative factors which negatively affect young MSCs. To this end, designing novel investigations to further elucidate cellular senescence and to pave the way toward finding new strategies to reverse senescence is highly demanded. In this review, we will concisely discuss current progress on the detailed mechanisms of MSC senescence and various inflicted changes following aging in MSC. We will also shed light on the examined strategies underlying monitoring and reversing senescence in MSCs to bypass the comprised therapeutic efficacy of the senescent MSCs.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Jiang X, Li W, Ge L, Lu M. Mesenchymal Stem Cell Senescence during Aging:From Mechanisms to Rejuvenation Strategies. Aging Dis 2023; 14:1651-1676. [PMID: 37196126 PMCID: PMC10529739 DOI: 10.14336/ad.2023.0208] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/08/2023] [Indexed: 05/19/2023] Open
Abstract
In cell transplantation therapy, mesenchymal stem cells(MSCs)are ideal seed cells due to their easy acquisition and cultivation, strong regenerative capacity, multi-directional differentiation abilities, and immunomodulatory effects. Autologous MSCs are better applicable compared with allogeneic MSCs in clinical practice. The elderly are the main population for cell transplantation therapy, but as donor aging, MSCs in the tissue show aging-related changes. When the number of generations of in vitro expansion is increased, MSCs will also exhibit replicative senescence. The quantity and quality of MSCs decline during aging, which limits the efficacy of autologous MSCs transplantation therapy. In this review, we examine the changes in MSC senescence as a result of aging, discuss the progress of research on mechanisms and signalling pathways of MSC senescence, and discuss possible rejuvenation strategies of aged MSCs to combat senescence and enhance the health and therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Xinchen Jiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| | - Wenshui Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| | - Lite Ge
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China, Changsha
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| |
Collapse
|
4
|
Primmer SR, Liao CY, Kummert OMP, Kennedy BK. Lamin A to Z in normal aging. Aging (Albany NY) 2022; 14:8150-8166. [PMID: 36260869 DOI: 10.18632/aging.204342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Almost since the discovery that mutations in the LMNA gene, encoding the nuclear structure components lamin A and C, lead to Hutchinson-Gilford progeria syndrome, people have speculated that lamins may have a role in normal aging. The most common HPGS mutation creates a splice variant of lamin A, progerin, which promotes accelerated aging pathology. While some evidence exists that progerin accumulates with normal aging, an increasing body of work indicates that prelamin A, a precursor of lamin A prior to C-terminal proteolytic processing, accumulates with age and may be a driver of normal aging. Prelamin A shares properties with progerin and is also linked to a rare progeroid disease, restrictive dermopathy. Here, we describe mechanisms underlying changes in prelamin A with aging and lay out the case that this unprocessed protein impacts normative aging. This is important since intervention strategies can be developed to modify this pathway as a means to extend healthspan and lifespan.
Collapse
Affiliation(s)
| | - Chen-Yu Liao
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Brian K Kennedy
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Healthy Longevity, National University Health System, Singapore.,Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
5
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
6
|
Tanshinone ΙΙA-Incubated Mesenchymal Stem Cells Inhibit Lipopolysaccharide-Induced Inflammation of N9 Cells through TREM2 Signaling Pathway. Stem Cells Int 2022; 2022:9977610. [PMID: 35283996 PMCID: PMC8916899 DOI: 10.1155/2022/9977610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/17/2021] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Our previous study found that incubating mesenchymal stem cells (MSC) with tanshinone IIA (TIIA) before transplantation could significantly increase the inhibitory effect of MSC on neuroinflammation. Here, we investigated the possible mechanism of this effect. N9 cells and MSC were inoculated at a ratio of 1 : 1 into a Transwell coculture system. MSC were inoculated into the upper chamber, and N9 cells were inoculated into the lower chamber. In this experiment, N9 cells were treated with 1 μg/mL lipopolysaccharide (LPS) for 24 hours to induce inflammation, MSC were treated with 10 μM TIIA for 48 hours to prepare TIIA-incubated MSC (TIIA-MSC), and TREM2 siRNA was used to silence the TREM2 gene in MSC. The changes in IL-1β, IL-6, and TNF-α were evaluated by Western blotting. We found that LPS significantly increased the levels of IL-1β, IL-6, and TNF-α. While both MSC and TIIA-MSC downregulated the levels of (P = 0.092, P = 0.002), IL-6 (P = 0.014, P < 0.001), and TNF-α (P = 0.044, P = 0.003), TIIA-MSC downregulated IL-6 more significantly (P = 0.026). In addition, silencing TREM2 reduced the ability of TIIA-MSC to attenuate IL-6 (P = 0.005) and TNF-α (P = 0.033). These data suggest that the enhanced anti-inflammatory effect of TIIA-MSC on LPS-induced N9 cells may be mediated through the TREM2 signaling pathway.
Collapse
|
7
|
Mustafin RN, Khusnutdinova EK. The relationship of lamins with epigenetic factors during aging. Vavilovskii Zhurnal Genet Selektsii 2022; 26:40-49. [PMID: 35342861 PMCID: PMC8892175 DOI: 10.18699/vjgb-22-06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/23/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
The key factor of genome instability during aging is transposon dysregulation. This may be due to senile changes in the expression of lamins, which epigenetically modulate transposons. Lamins directly physically interact with transposons. Epigenetic regulators such as SIRT7, BAF, and microRNA can also serve as intermediaries for their interactions. There is also an inverse regulation, since transposons are sources of miRNAs that affect lamins. We suggest that lamins can be attributed to epigenetic factors, since they are part of the NURD, interact with histone deacetylases and regulate gene expression without changing the nucleotide sequences. The role of lamins in the etiopathogenesis of premature aging syndromes may be associated with interactions with transposons. In various human cells, LINE1 is present in the heterochromatin domains of the genome associated with lamins, while SIRT7 facilitates the interaction of this retroelement with lamins. Both retroelements and the nuclear lamina play an important role in the antiviral response of organisms. This may be due to the role of lamins in protection from both viruses and transposons, since viruses and transposons are evolutionarily related. Transposable elements and lamins are secondary messengers of environmental stressors that can serve as triggers for aging and carcinogenesis. Transposons play a role in the development of cancer, while the microRNAs derived from them, participating in the etiopathogenesis of tumors, are important in human aging. Lamins have similar properties, since lamins are dysregulated in cancer, and microRNAs affecting them are involved in carcinogenesis. Changes in the expression of specif ic microRNAs were also revealed
in laminopathies. Identif ication of the epigenetic mechanisms of interaction of lamins with transposons during
aging
can become the basis for the development of methods of life extension and targeted therapy of age-associated
cancer
Collapse
Affiliation(s)
| | - E. K. Khusnutdinova
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
| |
Collapse
|
8
|
Nguyen MT, Lee W. MiR-141-3p regulates myogenic differentiation in C2C12 myoblasts via CFL2-YAP-mediated mechanotransduction. BMB Rep 2022. [PMID: 35000671 PMCID: PMC8891624 DOI: 10.5483/bmbrep.2022.55.2.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Skeletal myogenesis is essential to keep muscle mass and integrity, and impaired myogenesis is closely related to the etiology of muscle wasting. Recently, miR-141-3p has been shown to be induced under various conditions associated with muscle wasting, such as aging, oxidative stress, and mitochondrial dysfunction. However, the functional significance and mechanism of miR-141-3p in myogenic differentiation have not been explored to date. In this study, we investigated the roles of miR-141-3p on CFL2 expression, proliferation, and myogenic differentiation in C2C12 myoblasts. MiR-141-3p appeared to target the 3’UTR of CFL2 directly and suppressed the expression of CFL2, an essential factor for actin filament (F-actin) dynamics. Transfection of miR-141-3p mimic in myoblasts increased F-actin formation and augmented nuclear Yes-associated protein (YAP), a key component of mechanotransduction. Furthermore, miR-141-3p mimic increased myoblast proliferation and promoted cell cycle progression throughout the S and G2/M phases. Consequently, miR-141-3p mimic led to significant suppressions of myogenic factors expression, such as MyoD, MyoG, and MyHC, and hindered the myogenic differentiation of myoblasts. Thus, this study reveals the crucial role of miR-141-3p in myogenic differentiation via CFL2-YAP-mediated mechanotransduction and provides implications of miRNA-mediated myogenic regulation in skeletal muscle homeostasis.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju 38066, Korea
| |
Collapse
|
9
|
Malchiodi ZX, Cao H, Gay MD, Safronenka A, Bansal S, Tucker RD, Weinberg BA, Cheema A, Shivapurkar N, Smith JP. Cholecystokinin Receptor Antagonist Improves Efficacy of Chemotherapy in Murine Models of Pancreatic Cancer by Altering the Tumor Microenvironment. Cancers (Basel) 2021; 13:4949. [PMID: 34638432 PMCID: PMC8508339 DOI: 10.3390/cancers13194949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is resistant to chemotherapy in part due to the dense desmoplastic fibrosis surrounding the tumor, the immunosuppressive cells in the tumor microenvironment (TME), and the early rate of metastases. In this study, we examined the effects of a CCK receptor antagonist, proglumide, alone and in combination with gemcitabine in murine models of pancreatic cancer. Tumor growth rate, metastases, and survival were assessed in mice bearing syngeneic murine or human pancreatic tumors treated with PBS (control), gemcitabine, proglumide, or the combination of gemcitabine and proglumide. Excised tumors were evaluated histologically for fibrosis, immune cells, molecular markers, and uptake of chemotherapy by mass spectroscopy. Peripheral blood was analyzed with a microRNAs biomarker panel associated with fibrosis and oncogenesis. Differentially expressed genes between tumors of mice treated with gemcitabine monotherapy and combination therapy were compared by RNAseq. When given in combination the two compounds exhibited inhibitory effects by decreasing tumor growth rate by 70%, metastases, and prolonging survival. Proglumide monotherapy altered the TME by decreasing fibrosis, increasing intratumoral CD8+ T-cells, and decreasing arginase-positive cells, thus rendering the tumor sensitive to chemotherapy. Proglumide altered the expression of genes involved in fibrosis, epithelial-mesenchymal transition, and invasion. CCK-receptor antagonism with proglumide renders pancreatic cancer susceptible to chemotherapy.
Collapse
Affiliation(s)
- Zoe X. Malchiodi
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
| | - Hong Cao
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Martha D. Gay
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Anita Safronenka
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Sunil Bansal
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
| | - Robin D. Tucker
- Department of Pathology, Georgetown University, Washington, DC 20057, USA;
| | - Benjamin A. Weinberg
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Amrita Cheema
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
| | - Narayan Shivapurkar
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Jill P. Smith
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| |
Collapse
|
10
|
Cai J, Qi H, Yao K, Yao Y, Jing D, Liao W, Zhao Z. Non-Coding RNAs Steering the Senescence-Related Progress, Properties, and Application of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:650431. [PMID: 33816501 PMCID: PMC8017203 DOI: 10.3389/fcell.2021.650431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023] Open
Abstract
The thirst to postpone and even reverse aging progress has never been quenched after all these decades. Unequivocally, mesenchymal stem cells (MSCs), with extraordinary abilities such as self-renewal and multi-directional differentiation, deserve the limelight in this topic. Though having several affable clinical traits, MSCs going through senescence would, on one hand, contribute to age-related diseases and, on the other hand, lead to compromised or even counterproductive therapeutical outcomes. Notably, increasing evidence suggests that non-coding RNAs (ncRNAs) could invigorate various regulatory processes. With even a slight dip or an uptick of expression, ncRNAs would make a dent in or even overturn cellular fate. Thereby, a systematic illustration of ncRNAs identified so far to steer MSCs during senescence is axiomatically an urgent need. In this review, we introduce the general properties and mechanisms of senescence and its relationship with MSCs and illustrate the ncRNAs playing a role in the cellular senescence of MSCs. It is then followed by the elucidation of ncRNAs embodied in extracellular vesicles connecting senescent MSCs with other cells and diversified processes in and beyond the skeletal system. Last, we provide a glimpse into the clinical methodologies of ncRNA-based therapies in MSC-related fields. Hopefully, the intricate relationship between senescence and MSCs will be revealed one day and our work could be a crucial stepping-stone toward that future.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hexu Qi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, Osaka Dental University, Hirakata, Japan
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Fei D, Wang Y, Zhai Q, Zhang X, Zhang Y, Wang Y, Li B, Wang Q. KAT6A regulates stemness of aging bone marrow-derived mesenchymal stem cells through Nrf2/ARE signaling pathway. Stem Cell Res Ther 2021; 12:104. [PMID: 33541408 PMCID: PMC7860225 DOI: 10.1186/s13287-021-02164-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background This study aimed to explore the effect of KAT6A on the decreased stemness of aging bone marrow-derived mesenchymal stem cells (BMSCs) and its potential mechanism. Methods The acetylation level and KAT6A expression of BMSCs from the young (YBMSCs) and the old (OBMSCs) were examined. Gain- and loss-of-function experiments were performed to determine the effect of KAT6A on BMSC proliferation, colony formation, and osteogenic differentiation. The effect of KAT6A on Nrf2/ARE signaling pathway was investigated after KAT6A inhibition in YBMSCs or overexpression in OBMSCs, and the role of Nrf2/ARE signaling pathway on stemness was examined by investigating proliferation, colony formation, and osteogenic differentiation. Further in vivo study was performed to explore osteogenesis ability of OBMSCs after modulation of KAT6A and Nrf2/ARE pathway through cell sheet technology. Results The acetylation level and KAT6A expression of OBMSCs were decreased, and KAT6A downregulation resulted in decreased proliferation, colony formation, and osteogenic differentiation of OBMSCs. Mechanically, KAT6A was found to regulate Nrf2/ARE signaling pathway and inhibit ROS accumulation in OBMSCs, thus promoting proliferation, colony formation, and osteogenic differentiation of OBMSCs. Further study demonstrated that KAT6A could promote osteogenesis of OBMSCs by regulating Nrf2/ARE signaling pathway. Conclusions Downregulation of KAT6A resulted in the decreased stemness of OBMSCs by inhibiting the Nrf2/ARE signaling pathway. Graphical abstract KAT6A was downregulated in aging bone marrow-derived mesenchymal stem cells (BMSCs), and downregulation of KAT6A resulted in Nrf2/ARE signaling pathway inhibition and ROS accumulation, thus leading to decreased stemness of aging BMSCs.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02164-5.
Collapse
Affiliation(s)
- Dongdong Fei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yazheng Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Qiming Zhai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xige Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yang Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yang Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Qintao Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
12
|
Potter ML, Hill WD, Isales CM, Hamrick MW, Fulzele S. MicroRNAs are critical regulators of senescence and aging in mesenchymal stem cells. Bone 2021; 142:115679. [PMID: 33022453 PMCID: PMC7901145 DOI: 10.1016/j.bone.2020.115679] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) have recently come under scrutiny for their role in various age-related diseases. Similarly, cellular senescence has been linked to disease and aging. MicroRNAs and senescence likely play an intertwined role in driving these pathologic states. In this review, we present the connection between these two drivers of age-related disease concerning mesenchymal stem cells (MSCs). First, we summarize key miRNAs that are differentially expressed in MSCs and other musculoskeletal lineage cells during senescence and aging. Additionally, we also reviewed miRNAs that are regulated via traditional senescence-associated secretory phenotype (SASP) cytokines in MSC. Lastly, we summarize miRNAs that have been found to target components of the cell cycle arrest pathways inherently activated in senescence. This review attempts to highlight potential miRNA targets for regenerative medicine applications in age-related musculoskeletal disease.
Collapse
Affiliation(s)
- Matthew L Potter
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America
| | - William D Hill
- Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, 29403, United States of America
| | - Carlos M Isales
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America
| | - Mark W Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
13
|
Epigenetic Regulation in Mesenchymal Stem Cell Aging and Differentiation and Osteoporosis. Stem Cells Int 2020; 2020:8836258. [PMID: 32963550 PMCID: PMC7501554 DOI: 10.1155/2020/8836258] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a reliable source for cell-based regenerative medicine owing to their multipotency and biological functions. However, aging-induced systemic homeostasis disorders in vivo and cell culture passaging in vitro induce a functional decline of MSCs, switching MSCs to a senescent status with impaired self-renewal capacity and biased differentiation tendency. MSC functional decline accounts for the pathogenesis of many diseases and, more importantly, limits the large-scale applications of MSCs in regenerative medicine. Growing evidence implies that epigenetic mechanisms are a critical regulator of the differentiation programs for cell fate and are subject to changes during aging. Thus, we here review epigenetic dysregulations that contribute to MSC aging and osteoporosis. Comprehending detailed epigenetic mechanisms could provide us with a novel horizon for dissecting MSC-related pathogenesis and further optimizing MSC-mediated regenerative therapies.
Collapse
|
14
|
Cenni V, Capanni C, Mattioli E, Schena E, Squarzoni S, Bacalini MG, Garagnani P, Salvioli S, Franceschi C, Lattanzi G. Lamin A involvement in ageing processes. Ageing Res Rev 2020; 62:101073. [PMID: 32446955 DOI: 10.1016/j.arr.2020.101073] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/05/2020] [Accepted: 04/11/2020] [Indexed: 12/29/2022]
Abstract
Lamin A, a main constituent of the nuclear lamina, is the major splicing product of the LMNA gene, which also encodes lamin C, lamin A delta 10 and lamin C2. Involvement of lamin A in the ageing process became clear after the discovery that a group of progeroid syndromes, currently referred to as progeroid laminopathies, are caused by mutations in LMNA gene. Progeroid laminopathies include Hutchinson-Gilford Progeria, Mandibuloacral Dysplasia, Atypical Progeria and atypical-Werner syndrome, disabling and life-threatening diseases with accelerated ageing, bone resorption, lipodystrophy, skin abnormalities and cardiovascular disorders. Defects in lamin A post-translational maturation occur in progeroid syndromes and accumulated prelamin A affects ageing-related processes, such as mTOR signaling, epigenetic modifications, stress response, inflammation, microRNA activation and mechanosignaling. In this review, we briefly describe the role of these pathways in physiological ageing and go in deep into lamin A-dependent mechanisms that accelerate the ageing process. Finally, we propose that lamin A acts as a sensor of cell intrinsic and environmental stress through transient prelamin A accumulation, which triggers stress response mechanisms. Exacerbation of lamin A sensor activity due to stably elevated prelamin A levels contributes to the onset of a permanent stress response condition, which triggers accelerated ageing.
Collapse
Affiliation(s)
- Vittoria Cenni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cristina Capanni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisabetta Mattioli
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Schena
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Squarzoni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge, University Hospital, Stockholm, Sweden
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Center Alma Mater Research Institute on Global Challenges and Climate Changes, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
15
|
Cakouros D, Gronthos S. The changing epigenetic landscape of Mesenchymal Stem/Stromal Cells during aging. Bone 2020; 137:115440. [PMID: 32445894 DOI: 10.1016/j.bone.2020.115440] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022]
Abstract
There is mounting evidence in the literature that mesenchymal stromal/stem cell (MSC) like populations derived from different tissues, undergo epigenetic changes during aging, leading to compromised connective tissue integrity and function. This body of work has linked the biological aging of MSC to changes in their epigenetic signatures affecting growth, lifespan, self-renewal and multi-potential, due to deregulation of processes such as cellular senescence, oxidative stress, DNA damage, telomere shortening and DNA damage. This review addresses recent findings examining DNA methylation, histone modifications and miRNA changes in aging MSC populations. Moreover, we explore how epigenetic factors alter cellular pathways and associated biological networks, contributing to the MSC aging phenotype. Finally we discuss the crucial areas requiring a greater understanding of these processes, in order to piece together a global picture of the changing epigenetic landscape in MSC during aging.
Collapse
Affiliation(s)
- Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
16
|
Zhou X, Hong Y, Zhang H, Li X. Mesenchymal Stem Cell Senescence and Rejuvenation: Current Status and Challenges. Front Cell Dev Biol 2020; 8:364. [PMID: 32582691 PMCID: PMC7283395 DOI: 10.3389/fcell.2020.00364] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, mesenchymal stem cell (MSC)-based therapy has been intensively investigated and shown promising results in the treatment of various diseases due to their easy isolation, multiple lineage differentiation potential and immunomodulatory effects. To date, hundreds of phase I and II clinical trials using MSCs have been completed and many are ongoing. Accumulating evidence has shown that transplanted allogeneic MSCs lose their beneficial effects due to immunorejection. Nevertheless, the function of autologous MSCs is adversely affected by age, a process termed senescence, thus limiting their therapeutic potential. Despite great advances in knowledge, the potential mechanisms underlying MSC senescence are not entirely clear. Understanding the molecular mechanisms that contribute to MSC senescence is crucial when exploring novel strategies to rejuvenate senescent MSCs. In this review, we aim to provide an overview of the biological features of senescent MSCs and the recent progress made regarding the underlying mechanisms including epigenetic changes, autophagy, mitochondrial dysfunction and telomere shortening. We also summarize the current approaches to rejuvenate senescent MSCs including gene modification and pretreatment strategies. Collectively, rejuvenation of senescent MSCs is a promising strategy to enhance the efficacy of autologous MSC-based therapy, especially in elderly patients.
Collapse
Affiliation(s)
- Xueke Zhou
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yimei Hong
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hao Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xin Li
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
17
|
Yao B, Wan X, Zheng X, Zhong T, Hu J, Zhou Y, Qin A, Ma Y, Yin D. Critical roles of microRNA-141-3p and CHD8 in hypoxia/reoxygenation-induced cardiomyocyte apoptosis. Cell Biosci 2020; 10:20. [PMID: 32123560 PMCID: PMC7035710 DOI: 10.1186/s13578-020-00384-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Background Cardiovascular diseases are currently the leading cause of death in humans. The high mortality of cardiac diseases is associated with myocardial ischemia and reperfusion (I/R). Recent studies have reported that microRNAs (miRNAs) play important roles in cell apoptosis. However, it is not known yet whether miR-141-3p contributes to the regulation of cardiomyocyte apoptosis. It has been well established that in vitro hypoxia/reoxygenation (H/R) model can follow in vivo myocardial I/R injury. This study aimed to investigate the effects of miR-141-3p and CHD8 on cardiomyocyte apoptosis following H/R. Results We found that H/R remarkably reduces the expression of miR-141-3p but enhances CHD8 expression both in mRNA and protein in H9c2 cardiomyocytes. We also found either overexpression of miR-141-3p by transfection of miR-141-3p mimics or inhibition of CHD8 by transfection of small interfering RNA (siRNA) significantly decrease cardiomyocyte apoptosis induced by H/R. Moreover, miR-141-3p interacts with CHD8. Furthermore, miR-141-3p and CHD8 reduce the expression of p21. Conclusion MiR-141-3p and CHD8 play critical roles in cardiomyocyte apoptosis induced by H/R. These studies suggest that miR-141-3p and CHD8 mediated cardiomyocyte apoptosis may offer a novel therapeutic strategy against myocardial I/R injury-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Bifeng Yao
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Xiaoya Wan
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Xinbin Zheng
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Ting Zhong
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Jia Hu
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Yu Zhou
- 2Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Anna Qin
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Yeshuo Ma
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Deling Yin
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China.,3Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37604 USA
| |
Collapse
|
18
|
Magenta A, Lorde R, Syed SB, Capogrossi MC, Puca A, Madeddu P. Molecular therapies delaying cardiovascular aging: disease- or health-oriented approaches. VASCULAR BIOLOGY 2020; 2:R45-R58. [PMID: 32923974 PMCID: PMC7439942 DOI: 10.1530/vb-19-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
Regenerative medicine is a new therapeutic modality that aims to mend tissue damage by encouraging the reconstitution of physiological integrity. It represents an advancement over conventional therapies that allow reducing the damage but result in disease chronicization. Age-related decline in spontaneous capacity of repair, especially in organs like the heart that have very limited proliferative capacity, contributes in reducing the benefit of conventional therapy. ncRNAs are emerging as key epigenetic regulators of cardiovascular regeneration. Inhibition or replacement of miRNAs may offer reparative solutions to cardiovascular disease. The first part of this review article is devoted to illustrating novel therapies emerging from research on miRNAs. In the second part, we develop new therapeutic concepts emerging from genetics of longevity. Prolonged survival, as in supercentenarians, denotes an exceptional capacity to repair and cope with risk factors and diseases. These characteristics are shared with offspring, suggesting that the regenerative phenotype is heritable. New evidence indicates that genetic traits responsible for prolongation of health span in humans can be passed to and benefit the outcomes of animal models of cardiovascular disease. Genetic studies have also focused on determinants of accelerated senescence and related druggable targets. Evolutionary genetics assessing the genetic basis of adaptation and comparing successful and unsuccessful genetic changes in response to selection within populations represent a powerful basis to develop novel therapies aiming to prolong cardiovascular and whole organism health.
Collapse
Affiliation(s)
| | - Reggio Lorde
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Sunayana Begum Syed
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Maurizio C Capogrossi
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, USA
| | - Annibale Puca
- Ageing Unit, IRCCS MultiMedica, Milan, Italy.,Department of Medicine, Surgery and Dentistry, 'Scuola Medica Salernitana' University of Salerno, Baronissi, Italy
| | - Paolo Madeddu
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, UK
| |
Collapse
|
19
|
Meng CY, Xue F, Zhao ZQ, Hao T, Guo SB, Feng W. Influence of MicroRNA-141 on Inhibition of the Proliferation of Bone Marrow Mesenchymal Stem Cells in Steroid-Induced Osteonecrosis via SOX11. Orthop Surg 2020; 12:277-285. [PMID: 31916393 PMCID: PMC7031553 DOI: 10.1111/os.12603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
Objective To investigate whether miR‐141 and the sex determination region of Y chromosome box 11 (SOX11) play roles in steroid‐induced avascular necrosis of the femoral head (SANFH), and to explore whether miR‐141 could target SOX11 to influence the proliferation of bone marrow mesenchymal stem cells (BMSC). Methods Bone marrow mesenchymal stem cells (BMSC) were isolated and cultured from 4‐week‐old Sprague Dawley rats. A flow cytometry assay was performed to identify BMSC. BMSC were divided into two groups: a control group and a dexamethasone (DEX) group. BMSC were transfected by miR‐141 mimic, miR‐141 inhibitor, and SOX11. Real‐time polymerase chain reaction (PCR) assay was performed to investigate the mRNA expression of miR‐141 and SOX11. The results were used to determine the effect of transfection and to verify the expression in each group and the association between miR‐141 and SOX11. Luciferase reporter assay revealed the targeted binding site between miR‐141 and the 3′‐untranslated region of SOX11 mRNA. MTT assays were performed to investigate the proliferation of BMSC in the miR‐141 mimic, miR‐141 inhibitor, and SOX11 groups. Result The results of the flow cytometry assay suggested that cells were positive for CD29 and CD90 while negative for CD45. This meant that the isolated and cultured cells were not hematopoietic stem cells. In addition, cell transfection was successful based on the expression of miR‐141 and SOX11. According to the results of real‐time PCR assay, the mRNA expression of miR‐141 in SANFH was upregulated (4.117 ± 0.042 vs 1 ± 0.027, P < 0.001), while SOX11 was downregulated (0.611 ± 0.055 vs 1 ± 0.027, P < 0.001) compared with the control group. Based on the results of the luciferase experiment, MiR‐141 could directly target the expression of SOX11. Inhibition of miR‐141 could upregulate the expression of SOX11 (2.623 ± 0.220 vs 1 ± 0.095, P < 0.001) according to the results of a real‐time PCR assay. MiR‐141 inhibited the proliferation of BMSC (0.618 ± 0.092 vs 1.004 ± 0.082, P < 0.001), while suppression of miR‐141 increased the proliferation of BMSC (0.960 ± 0.095 vs 0.742 ± 0.091, P < 0.001). Furthermore, according to the results of the MTT assay, SOX11 promoted the proliferation of BMSC (1.064 ± 0.093 vs 0.747 ± 0.090, P < 0.001). Conclusion MiR‐141 inhibited the proliferation of BMSC in SANFH by targeting SOX11. Inhibition of miR‐141 upregulated the expression of SOX11 and promoted the proliferation of BMSC. MiR‐141 and SOX11 could be new targets for investigating the mechanism of SANFH.
Collapse
Affiliation(s)
- Chen-Yang Meng
- Orthopedics Department, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Fei Xue
- Orthopedics Department, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhen-Qun Zhao
- Orthopedics Department, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ting Hao
- Orthopedics Department, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Shi-Bing Guo
- Orthopedics Department, Inner Mongolia Institute of Orthopedics, Hohhot, China
| | - Wei Feng
- Orthopedics Department, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
20
|
Ullah M, Ng NN, Concepcion W, Thakor AS. Emerging role of stem cell-derived extracellular microRNAs in age-associated human diseases and in different therapies of longevity. Ageing Res Rev 2020; 57:100979. [PMID: 31704472 DOI: 10.1016/j.arr.2019.100979] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
Organismal aging involves the progressive decline in organ function and increased susceptibility to age-associated diseases. This has been associated with the aging of stem cell populations within the body that decreases the capacity of stem cells to self-renew, differentiate, and regenerate damaged tissues and organs. This review aims to explore how aging is associated with the dysregulation of stem cell-derived extracellular vesicles (SCEVs) and their corresponding miRNA cargo (SCEV-miRNAs), which are short non-coding RNAs involved in post-transcriptional regulation of target genes. Recent evidence has suggested that in aging stem cells, SCEV-miRNAs may play a vital role regulating various processes that contribute to aging: cellular senescence, stem cell exhaustion, telomere length, and circadian rhythm. Hence, further clarifying the age-dependent molecular mechanisms through which SCEV-miRNAs exert their downstream effects may inform a greater understanding of the biology of aging, elucidate their role in stem cell function, and identify important targets for future regenerative therapies. Additionally, current studies evaluating therapeutic role of SCEVs and SCEV-miRNAs in treating several age-associated diseases are also discussed.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California, 94304, USA.
| | - Nathan Norton Ng
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California, 94304, USA
| | - Waldo Concepcion
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California, 94304, USA
| |
Collapse
|
21
|
Tensin-3 Regulates Integrin-Mediated Proliferation and Differentiation of Tonsil-Derived Mesenchymal Stem Cells. Cells 2019; 9:cells9010089. [PMID: 31905841 PMCID: PMC7017379 DOI: 10.3390/cells9010089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/17/2019] [Accepted: 12/28/2019] [Indexed: 02/08/2023] Open
Abstract
Human palatine tonsils are potential tissue source of multipotent mesenchymal stem cells (MSCs). The proliferation rate of palatine tonsil-derived MSCs (TMSCs) is far higher than that of bone marrow-derived MSCs (BMSCs) or adipose tissue-derived MSCs (ADSCs). In our previous study, we had found through DNA microarray analysis that tensin-3 (TNS3), a type of focal adhesion protein, was more highly expressed in TMSCs than in both BMSCs and ADSCs. Here, the role of TNS3 in TMSCs and its relationship with integrin were investigated. TNS3 expression was significantly elevated in TMSCs than in other cell types. Cell growth curves revealed a significant decrease in the proliferation and migration of TMSCs treated with siRNA for TNS3 (siTNS3). siTNS3 treatment upregulated p16 and p21 levels and downregulated SOX2 expression and focal adhesion kinase, protein kinase B, and c-Jun N-terminal kinase phosphorylation. siTNS3 transfection significantly reduced adipogenic differentiation of TMSCs and slightly decreased osteogenic and chondrogenic differentiation. Furthermore, TNS3 inhibition reduced active integrin beta-1 (ITGβ1) expression, while total ITGβ1 expression was not affected. Inhibition of ITGβ1 expression in TMSCs by siRNA showed similar results observed in TNS3 inhibition. Thus, TNS3 may play an important role in TMSC proliferation and differentiation by regulating active ITGβ1 expression.
Collapse
|
22
|
Gilbert W, Bragg R, Elmansi AM, McGee-Lawrence ME, Isales CM, Hamrick MW, Hill WD, Fulzele S. Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology. Cytokine 2019; 123:154783. [PMID: 31336263 PMCID: PMC6948927 DOI: 10.1016/j.cyto.2019.154783] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Musculoskeletal disorders are the leading cause of disability worldwide; two of the most prevalent of which are osteoporosis and sarcopenia. Each affect millions in the aging population across the world and the associated morbidity and mortality contributes to billions of dollars in annual healthcare cost. Thus, it is important to better understand the underlying pathologic mechanisms of the disease process. Regulatory chemokine, CXCL12, and its receptor, CXCR4, are recognized to be essential in the recruitment, localization, maintenance, development and differentiation of progenitor stem cells of the musculoskeletal system. CXCL12 signaling results in the development and functional ability of osteoblasts, osteoclasts, satellite cells and myoblasts critical to maintaining musculoskeletal homeostasis. Interestingly, one suggested pathologic mechanism of osteoporosis and sarcopenia is a decline in the regenerative capacity of musculoskeletal progenitor stem cells. Thus, because CXCL12 is critical to progenitor function, a disruption in the CXCL12 signaling axis might play a distinct role in these pathological processes. Therefore, in this article, we perform a review of CXCL12, its physiologic and pathologic function in bone and muscle, and potential targets for therapeutic development.
Collapse
Affiliation(s)
- William Gilbert
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Robert Bragg
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States
| | - Meghan E McGee-Lawrence
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Augusta University, Augusta, GA 30912, United States
| | - Mark W Hamrick
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
23
|
Zhai W, Yong D, El-Jawhari JJ, Cuthbert R, McGonagle D, Win Naing M, Jones E. Identification of senescent cells in multipotent mesenchymal stromal cell cultures: Current methods and future directions. Cytotherapy 2019; 21:803-819. [PMID: 31138507 DOI: 10.1016/j.jcyt.2019.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/30/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Regardless of their tissue of origin, multipotent mesenchymal stromal cells (MSCs) are commonly expanded in vitro for several population doublings to achieve a sufficient number of cells for therapy. Prolonged MSC expansion has been shown to result in phenotypical, morphological and gene expression changes in MSCs, which ultimately lead to the state of senescence. The presence of senescent cells in therapeutic MSC batches is undesirable because it reduces their viability, differentiation potential and trophic capabilities. Additionally, senescent cells acquire senescence-activated secretory phenotype, which may not only induce apoptosis in the neighboring host cells following MSC transplantation, but also trigger local inflammatory reactions. This review outlines the current and promising new methodologies for the identification of senescent cells in MSC cultures, with a particular emphasis on non-destructive and label-free methodologies. Technologies allowing identification of individual senescent cells, based on new surface markers, offer potential advantage for targeted senescent cell removal using new-generation senolytic agents, and subsequent production of therapeutic MSC batches fully devoid of senescent cells. Methods or a combination of methods that are non-destructive and label-free, for example, involving cell size and spectroscopic measurements, could be the best way forward because they do not modify the cells of interest, thus maximizing the final output of therapeutic-grade MSC cultures. The further incorporation of machine learning methods has also recently shown promise in facilitating, automating and enhancing the analysis of these measured data.
Collapse
Affiliation(s)
- Weichao Zhai
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK; Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Derrick Yong
- Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Jehan Jomaa El-Jawhari
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK; Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Richard Cuthbert
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK
| | - May Win Naing
- Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Elena Jones
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK.
| |
Collapse
|
24
|
Lai WF, Lin M, Wong WT. Tackling Aging by Using miRNA as a Target and a Tool. Trends Mol Med 2019; 25:673-684. [PMID: 31126873 DOI: 10.1016/j.molmed.2019.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Abstract
miRNA is a class of short noncoding RNA that regulates gene expression at the post-transcriptional level. Evidence of age-associated changes in miRNA expression has been collected in models ranging from nematodes to humans; however, there has been little discussion of how to turn our knowledge of miRNA biology into antiaging therapy. This opinion article provides a snapshot of our current understanding of the roles of miRNA in modulating the aging process. We discuss major chemical techniques for modifying the miRNA structure as well as developing delivery systems for intervention. Finally, technical needs to be met for bench-to-clinic translation of miRNA-based interventions are highlighted for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Health Science Centre, Shenzhen University, Shenzhen, China.
| | - Marie Lin
- Health Science Centre, Shenzhen University, Shenzhen, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
25
|
Fariyike B, Singleton Q, Hunter M, Hill WD, Isales CM, Hamrick MW, Fulzele S. Role of MicroRNA-141 in the Aging Musculoskeletal System: A Current Overview. Mech Ageing Dev 2019; 178:9-15. [PMID: 30528652 PMCID: PMC6998035 DOI: 10.1016/j.mad.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/31/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
MicroRNA's are small non-coding RNAs that regulate the expression of genes by targeting the 3' UTR's of mRNA. Studies reveal that miRNAs play a pivotal role in normal musculoskeletal function such as mesenchymal stem cell differentiation, survivability and apoptosis, osteogenesis, and chondrogenesis. Changes in normal miRNA expression have been linked to a number of pathological disease processes. Additionally, with aging, it is noted that there is dysregulation in the normal function of stem cell differentiation, bone formation/degradation, chondrocyte function, and muscle degeneration. Due to the change in expression of miRNA in degenerative musculoskeletal pathology, it is believed that these molecules may be at least partially responsible for cellular dysfunction. A number of miRNAs have already been identified to play a role in osteoarthritis, osteoporosis and sarcopenia. One miRNA that has become of interest recently is miRNA 141. The purpose of this article is to review the current literature available on miRNA 141 and how it could play a role in osteoporosis, osteoarthritis and musculoskeletal pathology overall.
Collapse
Affiliation(s)
- Babatunde Fariyike
- Department of Orthopedics, Augusta University, Augusta, GA, United States
| | - Quante Singleton
- Department of Orthopedics, Augusta University, Augusta, GA, United States
| | - Monte Hunter
- Department of Orthopedics, Augusta University, Augusta, GA, United States
| | - William D Hill
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Carlos M Isales
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Department of Medicine, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Mark W Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States.
| |
Collapse
|
26
|
Li Z, Yan M, Yu Y, Wang Y, Lei G, Pan Y, Li N, Gobin R, Yu J. LncRNA H19 promotes the committed differentiation of stem cells from apical papilla via miR-141/SPAG9 pathway. Cell Death Dis 2019; 10:130. [PMID: 30755596 PMCID: PMC6372621 DOI: 10.1038/s41419-019-1337-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) exert significant roles at transcriptional and post-transcriptional levels. Stem cells from apical papilla (SCAPs) differentiate into dentin/bone-like tissues under certain conditions. So far, whether lncRNA-H19 can affect the proliferative behaviors and osteo/odontogenesis of SCAPs, as well as its specific mechanism remain to be elucidated. Here, SCAPs were isolated and transfected with the lentiviruses or packaging vectors. Our results showed that lncRNA-H19 had no significant effect on the proliferative behaviors of SCAPs, as presented by CCK-8 assay, EdU assay and flow cytometry (FCM). Furthermore, alkaline phosphatase (ALP) activity, alizarin red staining, Western blot assay (WB), quantitative real-time polymerase chain reaction (qRT-PCR) and in vivo bone formation assay were conducted to verify the biological influences of H19 on SCAPs. Overexpression of H19 led to the enhanced osteo/odontogenesis of SCAPs, whereas knockdown of H19 inhibited these effects. Mechanistically, H19 competitively bound to miR-141 and prevented SPAG9 from miRNA-mediated degradation, thus significantly elevating phosphorylated levels of p38 and JNK and facilitating the committed differentiation of SCAPs. Taken together, the osteo/odontogenesis of SCAPs was upregulated by overexpression of H19 via miR-141/SPAG9 pathway.
Collapse
Affiliation(s)
- Zehan Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Ming Yan
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yan Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yanqiu Wang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Gang Lei
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yin Pan
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Na Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Romila Gobin
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China. .,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
27
|
Dietrich C, Singh M, Kumar N, Singh SR. The Emerging Roles of microRNAs in Stem Cell Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1056:11-26. [PMID: 29754172 DOI: 10.1007/978-3-319-74470-4_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging is the continuous loss of tissue and organ function over time. MicroRNAs (miRNAs) are thought to play a vital role in this process. miRNAs are endogenous small noncoding RNAs that control the expression of target mRNA. They are involved in many biological processes such as developmental timing, differentiation, cell death, stem cell proliferation and differentiation, immune response, aging and cancer. Accumulating studies in recent years suggest that miRNAs play crucial roles in stem cell division and differentiation. In the present chapter, we present a brief overview of these studies and discuss their contributions toward our understanding of the importance of miRNAs in normal and aged stem cell function in various model systems.
Collapse
Affiliation(s)
- Catharine Dietrich
- Stem Cell Regulation and Animal Aging Section, Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Manish Singh
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Nishant Kumar
- Hospitalist Division, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, VA, USA
| | - Shree Ram Singh
- Stem Cell Regulation and Animal Aging Section, Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
28
|
Jiang Y, Ji JY. Understanding lamin proteins and their roles in aging and cardiovascular diseases. Life Sci 2018; 212:20-29. [DOI: 10.1016/j.lfs.2018.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 02/04/2023]
|
29
|
Vono R, Jover Garcia E, Spinetti G, Madeddu P. Oxidative Stress in Mesenchymal Stem Cell Senescence: Regulation by Coding and Noncoding RNAs. Antioxid Redox Signal 2018; 29:864-879. [PMID: 28762752 PMCID: PMC6080119 DOI: 10.1089/ars.2017.7294] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Mesenchymal stem cells (MSCs), adult stem cells with the potential of differentiation into mesodermal lineages, play an important role in tissue homeostasis and regeneration. In different organs, a subpopulation of MSCs is located near the vasculature and possibly represents the original source of lineage-committed mesenchymal progenitors. Recent Advances: The plasticity and immune characteristics of MSCs render them a preferential tool for regenerative cell therapy. CRITICAL ISSUES The culture expansion needed before MSC transplantation is associated with cellular senescence. Moreover, accelerated senescence of the total and perivascular MSC pool has been observed in humans and mouse models of premature aging disorders. MSC dysfunction is acknowledged as a culprit for the aging-associated degeneration of mesodermal tissues, but the underlying epigenetic pathways remain elusive. This article reviews current understanding of mechanisms impinging on MSC health, including oxidative stress, Nrf2-antioxidant responsive element activity, sirtuins, noncoding RNAs, and PKCs. FUTURE DIRECTIONS We provide evidence that epigenetic profiling of MSCs is utilitarian to the prediction of therapeutic outcomes. In addition, strategies that target oxidative stress-associated mechanisms represent promising approaches to counteract the detrimental effect of age and senescence in MSCs.-Antioxid. Redox Signal. 29, 864-879.
Collapse
Affiliation(s)
- Rosa Vono
- 1 Laboratory of Cardiovascular Research , IRCCS MultiMedica, Milan, Italy
| | - Eva Jover Garcia
- 2 School of Clinical Sciences, Bristol Heart Institute, University of Bristol , United Kingdom
| | - Gaia Spinetti
- 1 Laboratory of Cardiovascular Research , IRCCS MultiMedica, Milan, Italy
| | - Paolo Madeddu
- 2 School of Clinical Sciences, Bristol Heart Institute, University of Bristol , United Kingdom
| |
Collapse
|
30
|
Frankel D, Delecourt V, Harhouri K, De Sandre-Giovannoli A, Lévy N, Kaspi E, Roll P. MicroRNAs in hereditary and sporadic premature aging syndromes and other laminopathies. Aging Cell 2018; 17:e12766. [PMID: 29696758 PMCID: PMC6052405 DOI: 10.1111/acel.12766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Hereditary and sporadic laminopathies are caused by mutations in genes encoding lamins, their partners, or the metalloprotease ZMPSTE24/FACE1. Depending on the clinical phenotype, they are classified as tissue‐specific or systemic diseases. The latter mostly manifest with several accelerated aging features, as in Hutchinson–Gilford progeria syndrome (HGPS) and other progeroid syndromes. MicroRNAs are small noncoding RNAs described as powerful regulators of gene expression, mainly by degrading target mRNAs or by inhibiting their translation. In recent years, the role of these small RNAs has become an object of study in laminopathies using in vitro or in vivo murine models as well as cells/tissues of patients. To date, few miRNAs have been reported to exert protective effects in laminopathies, including miR‐9, which prevents progerin accumulation in HGPS neurons. The recent literature has described the potential implication of several other miRNAs in the pathophysiology of laminopathies, mostly by exerting deleterious effects. This review provides an overview of the current knowledge of the functional relevance and molecular insights of miRNAs in laminopathies. Furthermore, we discuss how these discoveries could help to better understand these diseases at the molecular level and could pave the way toward identifying new potential therapeutic targets and strategies based on miRNA modulation.
Collapse
Affiliation(s)
- Diane Frankel
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Service de Biologie Cellulaire; Marseille France
| | | | | | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Département de Génétique Médicale; Marseille France
| | - Nicolas Lévy
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Département de Génétique Médicale; Marseille France
| | - Elise Kaspi
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Service de Biologie Cellulaire; Marseille France
| | - Patrice Roll
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Service de Biologie Cellulaire; Marseille France
| |
Collapse
|
31
|
Abstract
Stem cell aging is a process in which stem cells progressively lose their ability to self-renew or differentiate, succumb to senescence or apoptosis, and eventually become functionally depleted. Unresolved oxidative stress and concomitant oxidative damages of cellular macromolecules including nucleic acids, proteins, lipids, and carbohydrates have been recognized to contribute to stem cell aging. Excessive production of reactive oxygen species and insufficient cellular antioxidant reserves compromise cell repair and metabolic homeostasis, which serves as a mechanistic switch for a variety of aging-related pathways. Understanding the molecular trigger, regulation, and outcomes of those signaling networks is critical for developing novel therapies for aging-related diseases by targeting stem cell aging. Here we explore the key features of stem cell aging biology, with an emphasis on the roles of oxidative stress in the aging process at the molecular level. As a concept of cytoprotection of stem cells in transplantation, we also discuss how systematic enhancement of endogenous antioxidant capacity before or during graft into tissues can potentially raise the efficacy of clinical therapy. Finally, future directions for elucidating the control of oxidative stress and developing preventive/curative strategies against stem cell aging are discussed.
Collapse
Affiliation(s)
- Feng Chen
- 1 State Key Discipline of Infectious Diseases and Chemical Biology Laboratory for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Yingxia Liu
- 1 State Key Discipline of Infectious Diseases and Chemical Biology Laboratory for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Nai-Kei Wong
- 1 State Key Discipline of Infectious Diseases and Chemical Biology Laboratory for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Jia Xiao
- 1 State Key Discipline of Infectious Diseases and Chemical Biology Laboratory for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China.,2 Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- 3 GMH Institute of CNS Regeneration, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Lee JY, Yu KR, Lee BC, Kang I, Kim JJ, Jung EJ, Kim HS, Seo Y, Choi SW, Kang KS. GATA4-dependent regulation of the secretory phenotype via MCP-1 underlies lamin A-mediated human mesenchymal stem cell aging. Exp Mol Med 2018; 50:1-12. [PMID: 29760459 PMCID: PMC5951912 DOI: 10.1038/s12276-018-0092-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/12/2018] [Accepted: 03/08/2018] [Indexed: 12/29/2022] Open
Abstract
Defects in the nuclear lamina occur during physiological aging and as a result of premature aging disorders. Aging is also accompanied by an increase in transcription of genes encoding cytokines and chemokines, a phenomenon known as the senescence-associated secretory phenotype (SASP). Progerin and prelamin A trigger premature senescence and loss of function of human mesenchymal stem cells (hMSCs), but little is known about how defects in nuclear lamin A regulate SASP. Here, we show that both progerin overexpression and ZMPSTE24 depletion induce paracrine senescence, especially through the expression of monocyte chemoattractant protein-1 (MCP-1), in hMSCs. Importantly, we identified that GATA4 is a mediator regulating MCP-1 expression in response to prelamin A or progerin in hMSCs. Co-immunoprecipitation revealed that GATA4 expression is maintained due to impaired p62-mediated degradation in progerin-expressing hMSCs. Furthermore, depletion of GATA4 abrogated SASP-dependent senescence through suppression of NF-ĸB and MCP-1 in hMSCs with progerin or prelamin A. Thus, our findings indicate that abnormal lamin A proteins trigger paracrine senescence through a GATA4-dependent pathway in hMSCs. This molecular link between defective lamin A and GATA4 can provide insights into physiological aging and pathological aging disorders. Abnormal versions of proteins that support the structure and function of the membrane of the cell nucleus are implicated in premature aging disorders, and also in normal aging. Researchers in South Korea led by Kyung-Sun Kang at Seoul National University investigated the protein network known as the nuclear lamina. They studied a specific type of human stem cell that gives rise to bone, cartilage, muscle and fat. They found that altering the levels of proteins produced by specific key genes promotes cell aging, and the alterations led to abnormalities in the proteins of the nuclear lamina. The researchers suggest that their work provides new insights into the molecular and cellular causes of premature and normal aging. Understanding the molecular triggers of aging could lead to treatments to delay both its normal and disease-linked forms.
Collapse
Affiliation(s)
- Jin Young Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Rok Yu
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.,Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Byung-Chul Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Insung Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Jun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eui-Jung Jung
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung-Sik Kim
- Pusan National University School of Medicine, Busan, 49241, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Republic of Korea
| | - Yoojin Seo
- Pusan National University School of Medicine, Busan, 49241, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Republic of Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea. .,College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
33
|
Wu TJ, Fong YC, Lin CY, Huang YL, Tang CH. Glucose enhances aggrecan expression in chondrocytes via the PKCα/p38-miR141-3p signaling pathway. J Cell Physiol 2018; 233:6878-6887. [PMID: 29319178 DOI: 10.1002/jcp.26451] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/05/2018] [Indexed: 01/01/2023]
Abstract
Aggrecan is a high molecular weight proteoglycan that plays a critical role in cartilage structure and the function of joints, providing intervertebral disc and cartilage with the ability to resist compressive loads. Aggrecan degradation in articular cartilage is a significant event in early-stage osteoarthritis (OA). Currently, no effective treatment exists for OA other than pain relief. Dextrose (D-glucose) prolotherapy has shown promising activity in the treatment of different musculoskeletal disorders, including OA. However, little is known about the molecular mechanism of the glucose effect in OA and on the regulation of chondrogenesis. We show for the first time that glucose upregulates aggrecan expression and subsequent chondrogenesis in ATDC5 cells. Moreover, we found that glucose-induced aggrecan expression is mediated through the protein kinase Cα (PKCα)- and p38-dependent pathway. As demonstrated by microRNA (miR) and luciferase analyses, the glucose-induced PKCα/p38 signaling axis is responsible for downregulating miR141-3p which targets to the 3'untranslated region of aggrecan. In summary, we show that glucose enhances chondrogenesis by upregulating aggrecan expression via the PKCα-p38-miR141-3p signaling pathway. This result provides new insights into the mechanism of glucose on chondrogenesis.
Collapse
Affiliation(s)
- Tsung-Ju Wu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Physical Medicine and Rehabilitation, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Chin Fong
- Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yun-Lin County, Taiwan.,Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Chih-Yang Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
34
|
NGS Reveals Molecular Pathways Affected by Obesity and Weight Loss-Related Changes in miRNA Levels in Adipose Tissue. Int J Mol Sci 2017; 19:ijms19010066. [PMID: 29280944 PMCID: PMC5796016 DOI: 10.3390/ijms19010066] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 12/22/2022] Open
Abstract
Both obesity and weight loss may cause molecular changes in adipose tissue. This study aimed to characterize changes in adipose tissue miRNome in order to identify molecular pathways affected by obesity and weight changes. Next generation sequencing (NGS) was applied to identify microRNAs (miRNAs) differentially expressed in 47 samples of visceral (VAT) and subcutaneous (SAT) adipose tissues from normal-weight (N), obese (O) and obese after surgery-induced weight loss (PO) individuals. Subsequently miRNA expression was validated by real-time PCR in 197 adipose tissues and bioinformatics analysis performed to identify molecular pathways affected by obesity-related changes in miRNA expression. NGS identified 344 miRNAs expressed in adipose tissues with ≥5 reads per million. Using >2 and <−2 fold change as cut-offs we showed that the expression of 54 miRNAs differed significantly between VAT-O and SAT-O. Equally, between SAT-O and SAT-N, the expression of 20 miRNAs differed significantly, between SAT-PO and SAT-N the expression of 79 miRNAs differed significantly, and between SAT-PO and SAT-O, the expression of 61 miRNAs differed significantly. Ontological analyses disclosed several molecular pathways regulated by these miRNAs in adipose tissue. NGS-based miRNome analysis characterized changes of the miRNA profile of adipose tissue, which are associated with changes of weight possibly responsible for a differential regulation of molecular pathways in adipose tissue when the individual is obese and after the individual has lost weight.
Collapse
|
35
|
Choi SW, Lee JY, Kang KS. miRNAs in stem cell aging and age-related disease. Mech Ageing Dev 2017; 168:20-29. [DOI: 10.1016/j.mad.2017.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 07/21/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
|
36
|
Han W, Wang B, Liu J, Chen L. The p16/miR-217/EGR1 pathway modulates age-related tenogenic differentiation in tendon stem/progenitor cells. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1015-1021. [PMID: 29036495 DOI: 10.1093/abbs/gmx104] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Indexed: 01/24/2023] Open
Abstract
Previous studies have shown that the differentiation potential declines with the age of progenitor cells and is linked to altered levels of senescence markers. The purpose of this study was to test whether senescence marker p16 affects age-related tenogenic differentiation in tendon stem/progenitor cells (TSPCs). Young and aged TSPCs were isolated from young/healthy and aged/degenerated human Achilles tendons, respectively. Cellular aging and capacity for tenogenic differentiation were examined. The results showed that the tenogenic differentiation capacity of TSPCs significantly decreases with advancing age. TSPCs from elderly donors showed upregulation of senescence-associated β-galactosidase and p16 and concurrently a decrease in Type I collagen concentration and in the expressions of tendon-related markers: Scx, Tnmd, Bgn, Dcn, Col1, and Col3. Overexpression of p16 significantly inhibited tenogenic differentiation of young TSPCs. Analysis of the mechanism revealed that this effect is mediated by microRNA-217 and its target EGR1. These results indicated that p16 inhibits tenogenic differentiation of TSPCs via microRNA signaling pathways, which may serve as a potential target for the prevention or treatment in the future.
Collapse
Affiliation(s)
- Weifeng Han
- Department of Orthopaedics, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - Bing Wang
- Department of Orthopaedics, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - Junpeng Liu
- Department of Orthopaedics, Air Force General Hospital, People's Liberation Army of China, Beijing 100142, China
| | - Lei Chen
- Institute of Orthopaedics, the First Affiliated Hospital of Chinese People's Liberation Army General Hospital, Beijing 100048, China
| |
Collapse
|
37
|
Feng J, Xue S, Pang Q, Rang Z, Cui F. miR-141-3p inhibits fibroblast proliferation and migration by targeting GAB1 in keloids. Biochem Biophys Res Commun 2017; 490:302-308. [DOI: 10.1016/j.bbrc.2017.06.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/11/2017] [Indexed: 01/14/2023]
|
38
|
MicroRNA Regulation of Oxidative Stress-Induced Cellular Senescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2398696. [PMID: 28593022 PMCID: PMC5448073 DOI: 10.1155/2017/2398696] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 12/18/2022]
Abstract
Aging is a time-related process of functional deterioration at cellular, tissue, organelle, and organismal level that ultimately brings life to end. Cellular senescence, a state of permanent cell growth arrest in response to cellular stress, is believed to be the driver of the aging process and age-related disorders. The free radical theory of aging, referred to as oxidative stress (OS) theory below, is one of the most studied aging promoting mechanisms. In addition, genetics and epigenetics also play large roles in accelerating and/or delaying the onset of aging and aging-related diseases. Among various epigenetic events, microRNAs (miRNAs) turned out to be important players in controlling OS, aging, and cellular senescence. miRNAs can generate rapid and reversible responses and, therefore, are ideal players for mediating an adaptive response against stress through their capacity to fine-tune gene expression. However, the importance of miRNAs in regulating OS in the context of aging and cellular senescence is largely unknown. The purpose of our article is to highlight recent advancements in the regulatory role of miRNAs in OS-induced cellular senescence.
Collapse
|
39
|
Caravia XM, Roiz-Valle D, Morán-Álvarez A, López-Otín C. Functional relevance of miRNAs in premature ageing. Mech Ageing Dev 2017; 168:10-19. [PMID: 28502819 DOI: 10.1016/j.mad.2017.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/30/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023]
Abstract
Ageing is a complex biological process characterized by the progressive loss of biological fitness due to the accumulation of macromolecular and cellular damage that affects most living organisms. Moreover, ageing is an important risk factor for many pathologies, including cardiovascular diseases, neurological disorders, and cancer. However, the ageing rate can be modulated by genetic, nutritional, and pharmacological factors, highlighting the concept of "ageing plasticity". Progeroid syndromes are a group of rare genetic diseases that resemble many characteristics of physiological ageing. Accordingly, studies on these diseases have been very useful for gaining mechanistic insights in ageing biology. In recent years, a great effort has been made in ageing research and several works have confirmed that geromiRs, the growing subgroup of miRNAs implicated in ageing, are able to modulate organismal lifespan. However, very little is still known about the impact of miRNA in premature ageing. In this review, we will address the functional relevance of this class of small non-coding RNAs in the regulation of the hallmarks of progeroid syndromes. In addition, we will discuss the potential strategies for managing progeria based on geromiR modulation.
Collapse
Affiliation(s)
- Xurde M Caravia
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Alba Morán-Álvarez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer, Spain.
| |
Collapse
|
40
|
Guijarro MV, Carnero A. Genome-Wide miRNA Screening for Genes Bypassing Oncogene-Induced Senescence. Methods Mol Biol 2017; 1534:53-68. [PMID: 27812867 DOI: 10.1007/978-1-4939-6670-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
MicroRNAs are small noncoding RNAs that regulate gene expression by binding to sequences within the 3'-UTR of mRNAs. Genome-wide screens have proven powerful in associating genes with certain phenotypes or signal transduction pathways and thus are valuable tools to define gene function. Here we describe a genome-wide miRNA screening strategy to identify miRNAs that are required to bypass oncogene-induced senescence.
Collapse
Affiliation(s)
- Maria V Guijarro
- Musculoskeletal and Oncology Lab, Department of Orthopaedics and Rehabilitation, University of Florida, 1600 Archer Road, MSB M2-212, Gainesville, FL, 32610, USA.
| | - Amancio Carnero
- Molecular Biology of Cancer Group, Oncohematology and Genetic Department, Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Campus HUVR, Edificio IBIS, Avda. Manuel Siurot s/n. 41013, Sevilla, Spain.
| |
Collapse
|
41
|
Jiang Q, Wang Y, Shi X. Propofol Inhibits Neurogenesis of Rat Neural Stem Cells by Upregulating MicroRNA-141-3p. Stem Cells Dev 2016; 26:189-196. [PMID: 27796156 DOI: 10.1089/scd.2016.0257] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Prolonged or high-dose exposure to anesthetics, such as propofol, can cause brain cell degeneration and subsequent long-term learning or memory deficits, particularly in the developing brain. However, the cellular and molecular mechanisms underlying the deleterious effects of propofol at certain stages of development remain unclear. In this study we found that propofol inhibited the proliferation, neuronal differentiation, and migration of neural stem cells (NSCs) while upregulating miR-141-3p. Silencing of miR-141-3p abrogated the effects of propofol on NSC neurogenesis. Propofol treatment downregulated IGF2BP2, a direct target of miR-141-3p, whereas overexpression of IGF2BP2 attenuated the effects of propofol and miR-141-3p on NSC neurogenesis. In short, propofol inhibits NSC neurogenesis through a mechanism involving the miR-141-3p/IGF2BP2 axis. Our results may provide a potential approach for preventing the neurodegenerative effects of propofol in the developing brain.
Collapse
Affiliation(s)
- Qiliang Jiang
- 1 Department of Anaesthesiology and Intensive Care Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Yingwei Wang
- 2 Department of Anaesthesiology, Huashan Hospital, Fudan University , Shanghai, China
| | - Xueyin Shi
- 1 Department of Anaesthesiology and Intensive Care Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
42
|
Agrawal R, Dale TP, Al-Zubaidi MA, Benny Malgulwar P, Forsyth NR, Kulshreshtha R. Pluripotent and Multipotent Stem Cells Display Distinct Hypoxic miRNA Expression Profiles. PLoS One 2016; 11:e0164976. [PMID: 27783707 PMCID: PMC5081191 DOI: 10.1371/journal.pone.0164976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 10/04/2016] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs are reported to have a crucial role in the regulation of self-renewal and differentiation of stem cells. Hypoxia has been identified as a key biophysical element of the stem cell culture milieu however, the link between hypoxia and miRNA expression in stem cells remains poorly understood. We therefore explored miRNA expression in hypoxic human embryonic and mesenchymal stem cells (hESCs and hMSCs). A total of 50 and 76 miRNAs were differentially regulated by hypoxia (2% O2) in hESCs and hMSCs, respectively, with a negligible overlap of only three miRNAs. We found coordinate regulation of precursor and mature miRNAs under hypoxia suggesting their regulation mainly at transcriptional level. Hypoxia response elements were located upstream of 97% of upregulated hypoxia regulated miRNAs (HRMs) suggesting hypoxia-inducible-factor (HIF) driven transcription. HIF binding to the candidate cis-elements of specific miRNAs under hypoxia was confirmed by Chromatin immunoprecipitation coupled with qPCR. Role analysis of a subset of upregulated HRMs identified linkage to reported inhibition of differentiation while a downregulated subset of HRMs had a putative role in the promotion of differentiation. MiRNA-target prediction correlation with published hypoxic hESC and hMSC gene expression profiles revealed HRM target genes enriched in the cytokine:cytokine receptor, HIF signalling and pathways in cancer. Overall, our study reveals, novel and distinct hypoxia-driven miRNA signatures in hESCs and hMSCs with the potential for application in optimised culture and differentiation models for both therapeutic application and improved understanding of stem cell biology.
Collapse
Affiliation(s)
- Rahul Agrawal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India-110016
| | - Tina P. Dale
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, University of Keele, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7QB, United Kingdom
| | - Mohammed A. Al-Zubaidi
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, University of Keele, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7QB, United Kingdom
- College of Pharmacy, Al-Mustansiriyah University, Baghdad, Iraq
| | - Prit Benny Malgulwar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India-110029
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, University of Keele, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7QB, United Kingdom
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India-110016
| |
Collapse
|
43
|
Bellotti C, Capanni C, Lattanzi G, Donati D, Lucarelli E, Duchi S. Detection of mesenchymal stem cells senescence by prelamin A accumulation at the nuclear level. SPRINGERPLUS 2016; 5:1427. [PMID: 27625981 PMCID: PMC5001959 DOI: 10.1186/s40064-016-3091-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/17/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND Human mesenchymal stem cells (MSC), during in vitro expansion, undergo a progressive loss of proliferative potential that leads to the senescent state, associated with a reduction of their "medicinal" properties. This may hampers their efficacy in the treatment of injured tissues. Quality controls on MSC-based cell therapy products should include an assessment of the senescent state. However, a reliable and specific marker is still missing. From studies on lamin-associated disorders, has emerged the correlation between defective lamin A maturation and cellular senescence. FINDINGS Primary cultured hMSC lines (n = 3), were analyzed by immunostaining at different life-span stages for the accumulation of prelamin A, along with other markers of cellular senescence. During culture, cells at the last stage of their life span displayed evident signs of senescence consistent with the positivity of SA-β-gal staining. We also observed a significant increase of prelamin A positive cells. Furthermore, we verified that the cells marked by prelamin A were also positive for p21(Waf1) while negative for Ki67. CONCLUSIONS Overall data support that the detection of prelamin A identifies senescent MSC, providing an easy and reliable tool to be use alone or in combination with known senescence markers to screen MSC before their use in clinical applications.
Collapse
Affiliation(s)
- Chiara Bellotti
- Osteoarticular Regeneration Laboratory, 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, 40036 Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Cristina Capanni
- Institute of Molecular Genetics - Unit of Bologna, CNR-National Research Council of Italy, Bologna, Italy
- Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Giovanna Lattanzi
- Institute of Molecular Genetics - Unit of Bologna, CNR-National Research Council of Italy, Bologna, Italy
- Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Davide Donati
- Osteoarticular Regeneration Laboratory, 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, 40036 Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Enrico Lucarelli
- Osteoarticular Regeneration Laboratory, 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, 40036 Italy
| | - Serena Duchi
- Osteoarticular Regeneration Laboratory, 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, 40036 Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
44
|
Trans-nonachlor decreases miR-141-3p levels in human melanocytes in vitro promoting melanoma cell characteristics and shows a multigenerational impact on miR-8 levels in Drosophila. Toxicology 2016; 368-369:129-141. [DOI: 10.1016/j.tox.2016.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 01/13/2023]
|
45
|
Gu S, Ran S, Liu B, Liang J. miR-152 induces human dental pulp stem cell senescence by inhibiting SIRT7 expression. FEBS Lett 2016; 590:1123-31. [PMID: 26991832 DOI: 10.1002/1873-3468.12138] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/07/2016] [Accepted: 03/11/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Shensheng Gu
- Department of Endodontics; Ninth People's Hospital; Shanghai Jiaotong University, School of Medicine; Shanghai Key Laboratory of Stomatology; China
| | - Shujun Ran
- Department of Endodontics; Ninth People's Hospital; Shanghai Jiaotong University, School of Medicine; Shanghai Key Laboratory of Stomatology; China
| | - Bin Liu
- Department of Endodontics; Ninth People's Hospital; Shanghai Jiaotong University, School of Medicine; Shanghai Key Laboratory of Stomatology; China
| | - Jingping Liang
- Department of Endodontics; Ninth People's Hospital; Shanghai Jiaotong University, School of Medicine; Shanghai Key Laboratory of Stomatology; China
| |
Collapse
|
46
|
LMNA mutations resulting in lipodystrophy and HIV protease inhibitors trigger vascular smooth muscle cell senescence and calcification: Role of ZMPSTE24 downregulation. Atherosclerosis 2016; 245:200-11. [DOI: 10.1016/j.atherosclerosis.2015.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/21/2015] [Accepted: 12/07/2015] [Indexed: 11/23/2022]
|
47
|
miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:520-32. [PMID: 26792405 DOI: 10.1016/j.bbamcr.2016.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/12/2015] [Accepted: 01/08/2016] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are important seed cells for tissue engineering and are promising targets for cell-based therapies. However, the replicative senescence of MSCs during in vitro culture limits their research and clinical applications. The molecular mechanisms underlying the replicative senescence of MSCs are not fully understood. Evidence suggests that miRNAs play important roles in replicative senescence. A microarray analysis found that the miR-29c-3p level was significantly increased during the MSC senescence process. In our study, we investigated the roles of miR-29c-3p in senescence of MSCs. We cultured MSCs for long periods of time, up and down-regulated the miR-29c-3p expression in MSCs, and examined the senescent phenotype changes. The over-expression of miR-29c-3p led to enhanced senescence-associated-β-galactosidase (SA-β-gal) staining, senescence associated secretory phenotype (SASP), senescence associated heterochromatic foci (SAHF), reduced proliferation ability, retarded osteogenic differentiation and corresponding changes in senescence markers, whereas the miR-29c-3p down-regulation had the opposite results. Dual-luciferase reporter assays demonstrated that CNOT6 is the target gene of miR-29c-3p. Knockdown of CNOT6 confirmed its inhibitory effects on the senescence of MSCs. In addition, Western blot results showed that both the p53-p21 and the p16-pRB pathways were activated during the miR-29c-3p-induced senescence of MSCs. In conclusion, our results demonstrate that miR-29c-3p promotes the senescence of MSCs by targeting CNOT6 through p53-p21 and p16-pRB pathways and highlight the contribution of post-transcriptional regulation to stem cell senescence.
Collapse
|
48
|
Liu H, Xia X, Li B. Mesenchymal stem cell aging: Mechanisms and influences on skeletal and non-skeletal tissues. Exp Biol Med (Maywood) 2015; 240:1099-106. [PMID: 26088863 DOI: 10.1177/1535370215591828] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aging population and the incidence of aging-related diseases such as osteoporosis are on the rise. Aging at the tissue and organ levels usually involves tissue stem cells. Human and animal model studies indicate that aging affects two aspects of mesenchymal stem cell (MSC): a decrease in the bone marrow MSC pool and biased differentiation into adipocyte at the cost of osteoblast, which underlie the etiology of osteoporosis. Aging of MSC cells is also detrimental to some non-skeletal tissues, in particular the hematopoietic system, where MSCs serve as a niche component. In addition, aging compromises the therapeutic potentials of MSC cells, including cells isolated from aged individuals or cells cultured for many passages. Here we discuss the recent progress on our understanding of MSC aging, with a focus on the effects of MSC aging on bone remodeling and hematopoiesis and the mechanisms of MSC aging.
Collapse
Affiliation(s)
- Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuechun Xia
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
49
|
Sieprath T, Corne TDJ, Nooteboom M, Grootaert C, Rajkovic A, Buysschaert B, Robijns J, Broers JLV, Ramaekers FCS, Koopman WJH, Willems PHGM, De Vos WH. Sustained accumulation of prelamin A and depletion of lamin A/C both cause oxidative stress and mitochondrial dysfunction but induce different cell fates. Nucleus 2015; 6:236-46. [PMID: 25996284 PMCID: PMC4615646 DOI: 10.1080/19491034.2015.1050568] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cell nucleus is structurally and functionally organized by lamins, intermediate filament proteins that form the nuclear lamina. Point mutations in genes that encode a specific subset of lamins, the A-type lamins, cause a spectrum of diseases termed laminopathies. Recent evidence points to a role for A-type lamins in intracellular redox homeostasis. To determine whether lamin A/C depletion and prelamin A accumulation differentially induce oxidative stress, we have performed a quantitative microscopy-based analysis of reactive oxygen species (ROS) levels and mitochondrial membrane potential (Δψm) in human fibroblasts subjected to sustained siRNA-mediated knockdown of LMNA and ZMPSTE24, respectively. We measured a highly significant increase in basal ROS levels and an even more prominent rise of induced ROS levels in lamin A/C depleted cells, eventually resulting in Δψm hyperpolarization and apoptosis. Depletion of ZMPSTE24 on the other hand, triggered a senescence pathway that was associated with moderately increased ROS levels and a transient Δψm depolarization. Both knockdowns were accompanied by an upregulation of several ROS detoxifying enzymes. Taken together, our data suggest that both persistent prelamin A accumulation and lamin A/C depletion elevate ROS levels, but to a different extent and with different effects on cell fate. This may contribute to the variety of disease phenotypes witnessed in laminopathies.
Collapse
Key Words
- CM-H2DCFDA, 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate
- HGPS, Hutchinson-Gilford progeria syndrome
- LA, lamin A
- LMNAkd, LMNA knockdown
- MEF, mouse embryonic fibroblasts
- NHDF, normal human dermal fibroblasts
- NT, non-targeting
- OCR, oxygen consumtion rate
- PDL, population doubling level
- PLA, prelamin A
- RD, restrictive dermopathy
- ROS, reactive oxygen species
- TBHP, tert-butyl hydrogen peroxide
- TMRM, tetramethyl rhodamine methyl ester
- ZMPSTE24
- ZMPSTE24kd, ZMPSTE24 knockdown
- apoptosis
- hMSCs, human mesenchymal stem cells
- high-content microscopy
- lamin A/C
- laminopathies
- mitochondria
- mitochondrial dysfunction
- oxidative stress
- prelamin A
- senescence
- Δψm, mitochondrial membrane potential
Collapse
Affiliation(s)
- Tom Sieprath
- a Laboratory of Cell Biology and Histology; Department of Veterinary Sciences ; University of Antwerp ; Antwerp , Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Weilner S, Grillari-Voglauer R, Redl H, Grillari J, Nau T. The role of microRNAs in cellular senescence and age-related conditions of cartilage and bone. Acta Orthop 2015; 86:92-9. [PMID: 25175665 PMCID: PMC4366666 DOI: 10.3109/17453674.2014.957079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE We reviewed the current state of research on microRNAs in age-related diseases in cartilage and bone. METHODS PubMed searches were conducted using separate terms to retrieve articles on (1) the role of microRNAs on aging and tissue degeneration, (2) specific microRNAs that influence cellular and organism senescence, (3) microRNAs in age-related musculoskeletal conditions, and (4) the diagnostic and therapeutic potential of microRNAs in age-related musculoskeletal conditions. RESULTS An increasing number of studies have identified microRNAs associated with cellular aging and tissue degeneration. Specifically in regard to frailty, microRNAs have been found to influence the onset and course of age-related musculoskeletal conditions such as osteoporosis, osteoarthritis, and posttraumatic arthritis. Both intracellular and extracellular microRNAs may be suitable to function as diagnostic biomarkers. INTERPRETATION The research data currently available suggest that microRNAs play an important role in orchestrating age-related processes and conditions of the musculoskeletal system. Further research may help to improve our understanding of the complexity of these processes at the cellular and extracellular level. The option to develop microRNA biomarkers and novel therapeutic agents for the degenerating diseases of bone and cartilage appears to be promising.
Collapse
Affiliation(s)
- Sylvia Weilner
- Department of Biotechnology, VIBT-BOKU, University of Natural Resources and Life Sciences,Evercyte GmbH
| | - Regina Grillari-Voglauer
- Department of Biotechnology, VIBT-BOKU, University of Natural Resources and Life Sciences,Evercyte GmbH
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology,The Austrian Cluster for Tissue Regeneration
| | - Johannes Grillari
- Department of Biotechnology, VIBT-BOKU, University of Natural Resources and Life Sciences,Evercyte GmbH,Christian Doppler Laboratory for Biotechnology of Skin Aging
| | - Thomas Nau
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology,The Austrian Cluster for Tissue Regeneration,Institute for Musculoskeletal Analysis Research and Therapy (IMSART), Vienna, Austria
| |
Collapse
|