1
|
Zhang Y, Seidel M, Rabesahala de Meritens C, Beckmann A, Ahmed S, Hurtz M, Lai FA, Zorio E, Parthimos D, Zissimopoulos S. Disparate molecular mechanisms in cardiac ryanodine receptor channelopathies. Front Mol Biosci 2024; 11:1505698. [PMID: 39777228 PMCID: PMC11703740 DOI: 10.3389/fmolb.2024.1505698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Aims Mutations in the cardiac ryanodine receptor (RyR2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). This study investigates the underlying molecular mechanisms for CPVT mutations within the RyR2 N-terminus domain (NTD). Methods and Results We consulted the high-resolution RyR2 structure in both open and closed configuration to identify mutations G357S/R407I and A77T, which lie within the NTD intra- and inter-subunit interface with the Core Solenoid (CSol), respectively. Their structural and functional roles were compared to R169L, a mutation that lies within the NTD-NTD inter-subunit interface. Using chemical cross-linking and co-immunoprecipitation assays, we show that R169L disrupts NTD tetramerization, while it does not alter the NTD-CSol interaction. Single cell Ca2+ imaging revealed that R169L increases the number of spontaneous Ca2+ transients and the proportion of oscillating cells, while reducing the Ca2+ store content. G357S and R407I do not affect NTD tetramerization, but they also do not alter the NTD-CSol interaction. Functionally, RyR2G357S-expressing cells have Ca2+ handling properties similar to RyR2WT. A77T enhances the NTD-CSol interaction, while it does not affect NTD tetramerization. Like R169L, A77T also increases the number of spontaneous Ca2+ transients and the proportion of oscillating cells, and it reduces the Ca2+ store content. However, unlike R169L that displays Ca2+ transients of normal amplitude and shorter duration, Ca2+ transients for A77T are of smaller amplitude and normal duration. Conclusion The NTD-CSol inter-subunit interface variant, A77T, produces a hyperactive channel by altering a different structure-function parameter to other CPVT mutations within the RyR2 NTD. Reduced NTD-NTD inter-subunit interaction and reinforced NTD inter-subunit interaction with CSol are distinct molecular mechanisms for gain-of-function RyR2 arrhythmogenic mutations.
Collapse
Affiliation(s)
- Yadan Zhang
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Monika Seidel
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | | | - Astrid Beckmann
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Syeda Ahmed
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Melanie Hurtz
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - F. Anthony Lai
- College of Medicine and Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Esther Zorio
- Inherited Cardiac Disease Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CAFAMUSME Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Medicine Department, Universitat de València, Valencia, Spain
- Research group CB16/11/00261, Center for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Dimitris Parthimos
- School of Medicine, Division of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom
| | - Spyros Zissimopoulos
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| |
Collapse
|
2
|
Thomas NL, Dart C, Helassa N. Editorial: The role of calcium and calcium binding proteins in cell physiology and disease. Front Physiol 2023; 14:1228885. [PMID: 37362430 PMCID: PMC10289193 DOI: 10.3389/fphys.2023.1228885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Affiliation(s)
- N. Lowri Thomas
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - C. Dart
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, North West England, United Kingdom
| | - N. Helassa
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, North West England, United Kingdom
| |
Collapse
|
3
|
Zhang Y, Rabesahala de Meritens C, Beckmann A, Lai FA, Zissimopoulos S. Defective ryanodine receptor N-terminus inter-subunit interaction is a common mechanism in neuromuscular and cardiac disorders. Front Physiol 2022; 13:1032132. [PMID: 36311249 PMCID: PMC9597452 DOI: 10.3389/fphys.2022.1032132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/28/2022] [Indexed: 07/28/2023] Open
Abstract
The ryanodine receptor (RyR) is a homotetrameric channel mediating sarcoplasmic reticulum Ca2+ release required for skeletal and cardiac muscle contraction. Mutations in RyR1 and RyR2 lead to life-threatening malignant hyperthermia episodes and ventricular tachycardia, respectively. In this brief report, we use chemical cross-linking to demonstrate that pathogenic RyR1 R163C and RyR2 R169Q mutations reduce N-terminus domain (NTD) tetramerization. Introduction of positively-charged residues (Q168R, M399R) in the NTD-NTD inter-subunit interface normalizes RyR2-R169Q NTD tetramerization. These results indicate that perturbation of NTD-NTD inter-subunit interactions is an underlying molecular mechanism in both RyR1 and RyR2 pathophysiology. Importantly, our data provide proof of concept that stabilization of this critical RyR1/2 structure-function parameter offers clear therapeutic potential.
Collapse
Affiliation(s)
- Yadan Zhang
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | | | - Astrid Beckmann
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - F. Anthony Lai
- College of Medicine and Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Spyros Zissimopoulos
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| |
Collapse
|
4
|
Molecular, Subcellular, and Arrhythmogenic Mechanisms in Genetic RyR2 Disease. Biomolecules 2022; 12:biom12081030. [PMID: 35892340 PMCID: PMC9394283 DOI: 10.3390/biom12081030] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
The ryanodine receptor (RyR2) has a critical role in controlling Ca2+ release from the sarcoplasmic reticulum (SR) throughout the cardiac cycle. RyR2 protein has multiple functional domains with specific roles, and four of these RyR2 protomers are required to form the quaternary structure that comprises the functional channel. Numerous mutations in the gene encoding RyR2 protein have been identified and many are linked to a wide spectrum of arrhythmic heart disease. Gain of function mutations (GoF) result in a hyperactive channel that causes excessive spontaneous SR Ca2+ release. This is the predominant cause of the inherited syndrome catecholaminergic polymorphic ventricular tachycardia (CPVT). Recently, rare hypoactive loss of function (LoF) mutations have been identified that produce atypical effects on cardiac Ca2+ handling that has been termed calcium release deficiency syndrome (CRDS). Aberrant Ca2+ release resulting from both GoF and LoF mutations can result in arrhythmias through the Na+/Ca2+ exchange mechanism. This mini-review discusses recent findings regarding the role of RyR2 domains and endogenous regulators that influence RyR2 gating normally and with GoF/LoF mutations. The arrhythmogenic consequences of GoF/LoF mutations will then be discussed at the macromolecular and cellular level.
Collapse
|
5
|
Nikolaienko R, Bovo E, Rebbeck RT, Kahn D, Thomas DD, Cornea RL, Zima AV. The functional significance of redox-mediated intersubunit cross-linking in regulation of human type 2 ryanodine receptor. Redox Biol 2020; 37:101729. [PMID: 32980662 PMCID: PMC7522892 DOI: 10.1016/j.redox.2020.101729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/19/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
The type 2 ryanodine receptor (RyR2) plays a key role in the cardiac intracellular calcium (Ca2+) regulation. We have previously shown that oxidative stress activates RyR2 in rabbit cardiomyocytes by promoting the formation of disulfide bonds between neighboring RyR2 subunits. However, the functional significance of this redox modification for human RyR2 (hRyR2) remains largely unknown. Here, we studied the redox regulation of hRyR2 in HEK293 cells transiently expressing the ryr2 gene. Analysis of hRyR2 cross-linking and of the redox-GFP readout response to diamide oxidation revealed that hRyR2 cysteines involved in the intersubunit cross-linking are highly sensitive to oxidative stress. In parallel experiments, the effect of diamide on endoplasmic reticulum (ER) Ca2+ release was studied in cells co-transfected with hRyR2, ER Ca2+ pump (SERCA2a) and the ER-targeted Ca2+ sensor R-CEPIA1er. Expression of hRyR2 and SERCA2a produced “cardiac-like” Ca2+ waves due to spontaneous hRyR2 activation. Incubation with diamide caused a fast decline of the luminal ER Ca2+ (or ER Ca2+ load) followed by the cessation of Ca2+ waves. The maximal effect of diamide on ER Ca2+ load and Ca2+ waves positively correlates with the maximum level of hRyR2 cross-linking, indicating a functional significance of this redox modification. Furthermore, the level of hRyR2 cross-linking positively correlates with the degree of calmodulin (CaM) dissociation from the hRyR2 complex. In skeletal muscle RyR (RyR1), cysteine 3635 (C3635) is viewed as dominantly responsible for the redox regulation of the channel. Here, we showed that the corresponding cysteine 3602 (C3602) in hRyR2 does not participate in intersubunit cross-linking and plays a limited role in the hRyR2 regulation by CaM during oxidative stress. Collectively, these results suggest that redox-mediated intersubunit cross-linking is an important regulator of hRyR2 function under pathological conditions associated with oxidative stress. Oxidative stress promotes cardiac ryanodine receptor (RyR2) intersubunit crosslinking. Human RyR2 crosslinking promotes Ca leak and calmodulin dissociation. RyR2 C3602 is not involved in crosslinking, slightly affects calmodulin binding. RyR2 crosslinking is an important pathology related RyR2 regulator.
Collapse
Affiliation(s)
- Roman Nikolaienko
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA
| | - Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Daniel Kahn
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA.
| |
Collapse
|
6
|
Seidel M, de Meritens CR, Johnson L, Parthimos D, Bannister M, Thomas NL, Ozekhome-Mike E, Lai FA, Zissimopoulos S. Identification of an amino-terminus determinant critical for ryanodine receptor/Ca2+ release channel function. Cardiovasc Res 2020; 117:780-791. [PMID: 32077934 PMCID: PMC7898959 DOI: 10.1093/cvr/cvaa043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/05/2019] [Accepted: 02/17/2020] [Indexed: 01/12/2023] Open
Abstract
AIMS The cardiac ryanodine receptor (RyR2), which mediates intracellular Ca2+ release to trigger cardiomyocyte contraction, participates in development of acquired and inherited arrhythmogenic cardiac disease. This study was undertaken to characterize the network of inter- and intra-subunit interactions regulating the activity of the RyR2 homotetramer. METHODS AND RESULTS We use mutational investigations combined with biochemical assays to identify the peptide sequence bridging the β8 with β9 strand as the primary determinant mediating RyR2 N-terminus self-association. The negatively charged side chains of two aspartate residues (D179 and D180) within the β8-β9 loop are crucial for the N-terminal inter-subunit interaction. We also show that the RyR2 N-terminus domain interacts with the C-terminal channel pore region in a Ca2+-independent manner. The β8-β9 loop is required for efficient RyR2 subunit oligomerization but it is dispensable for N-terminus interaction with C-terminus. Deletion of the β8-β9 sequence produces unstable tetrameric channels with subdued intracellular Ca2+ mobilization implicating a role for this domain in channel opening. The arrhythmia-linked R176Q mutation within the β8-β9 loop decreases N-terminus tetramerization but does not affect RyR2 subunit tetramerization or the N-terminus interaction with C-terminus. RyR2R176Q is a characteristic hypersensitive channel displaying enhanced intracellular Ca2+ mobilization suggesting an additional role for the β8-β9 domain in channel closing. CONCLUSION These results suggest that efficient N-terminus inter-subunit communication mediated by the β8-β9 loop may constitute a primary regulatory mechanism for both RyR2 channel activation and suppression.
Collapse
Affiliation(s)
- Monika Seidel
- Department of Cardiology, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - Camille Rabesahala de Meritens
- Department of Cardiology, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - Louisa Johnson
- Department of Cardiology, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - Dimitris Parthimos
- Department of Cardiology, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Mark Bannister
- Department of Cardiology, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - Nia Lowri Thomas
- Department of Cardiology, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Esizaze Ozekhome-Mike
- Department of Cardiology, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - Francis Anthony Lai
- College of Medicine, QU Health, and Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Spyros Zissimopoulos
- Department of Cardiology, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| |
Collapse
|
7
|
Nikolaienko R, Bovo E, Zima AV. Redox Dependent Modifications of Ryanodine Receptor: Basic Mechanisms and Implications in Heart Diseases. Front Physiol 2018; 9:1775. [PMID: 30574097 PMCID: PMC6291498 DOI: 10.3389/fphys.2018.01775] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
Heart contraction vitally depends on tightly controlled intracellular Ca regulation. Because contraction is mainly driven by Ca released from the sarcoplasmic reticulum (SR), this organelle plays a particularly important role in Ca regulation. The type two ryanodine receptor (RyR2) is the major SR Ca release channel in ventricular myocytes. Several cardiac pathologies, including myocardial infarction and heart failure, are associated with increased RyR2 activity and diastolic SR Ca leak. It has been suggested that the increased RyR2 activity plays an important role in arrhythmias and contractile dysfunction. Several studies have linked increased SR Ca leak during myocardial infarction and heart failure to the activation of RyR2 in response to oxidative stress. This activation might include direct oxidation of RyR2 as well as indirect activation via phosphorylation or altered interactions with regulatory proteins. Out of ninety cysteine residues per RyR2 subunit, twenty one were reported to be in reduced state that could be potential targets for redox modifications that include S-nitrosylation, S-glutathionylation, and disulfide cross-linking. Despite its clinical significance, molecular mechanisms of RyR dysfunction during oxidative stress are not fully understood. Herein we review the most recent insights into redox-dependent modulation of RyR2 during oxidative stress and heart diseases.
Collapse
Affiliation(s)
- Roman Nikolaienko
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
| | - Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
8
|
Stanczyk PJ, Seidel M, White J, Viero C, George CH, Zissimopoulos S, Lai FA. Association of cardiac myosin-binding protein-C with the ryanodine receptor channel - putative retrograde regulation? J Cell Sci 2018; 131:jcs.210443. [PMID: 29930088 PMCID: PMC6104826 DOI: 10.1242/jcs.210443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 05/31/2018] [Indexed: 11/20/2022] Open
Abstract
The cardiac muscle ryanodine receptor-Ca2+ release channel (RyR2) constitutes the sarcoplasmic reticulum (SR) Ca2+ efflux mechanism that initiates myocyte contraction, while cardiac myosin-binding protein-C (cMyBP-C; also known as MYBPC3) mediates regulation of acto-myosin cross-bridge cycling. In this paper, we provide the first evidence for the presence of direct interaction between these two proteins, forming a RyR2-cMyBP-C complex. The C-terminus of cMyBP-C binds with the RyR2 N-terminus in mammalian cells and the interaction is not mediated by a fibronectin-like domain. Notably, we detected complex formation between both recombinant cMyBP-C and RyR2, as well as between the native proteins in cardiac tissue. Cellular Ca2+ dynamics in HEK293 cells is altered upon co-expression of cMyBP-C and RyR2, with lowered frequency of RyR2-mediated spontaneous Ca2+ oscillations, suggesting that cMyBP-C exerts a potential inhibitory effect on RyR2-dependent Ca2+ release. Discovery of a functional RyR2 association with cMyBP-C provides direct evidence for a putative mechanistic link between cytosolic soluble cMyBP-C and SR-mediated Ca2+ release, via RyR2. Importantly, this interaction may have clinical relevance to the observed cMyBP-C and RyR2 dysfunction in cardiac pathologies, such as hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Paulina J Stanczyk
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,School of Biosciences, Sir Martin Evans Building, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Monika Seidel
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - Judith White
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,School of Biosciences, Sir Martin Evans Building, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Cedric Viero
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,Institute of Pharmacology and Toxicology, Medical School, Saarland University, Homburg/Saar, Germany
| | - Christopher H George
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - Spyros Zissimopoulos
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK .,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - F Anthony Lai
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK .,School of Biosciences, Sir Martin Evans Building, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AX, UK.,College of Medicine, Member of QU Health, Qatar University, P.O. Box 2013, Doha, Qatar
| |
Collapse
|
9
|
Denniss A, Dulhunty AF, Beard NA. Ryanodine receptor Ca 2+ release channel post-translational modification: Central player in cardiac and skeletal muscle disease. Int J Biochem Cell Biol 2018; 101:49-53. [PMID: 29775742 DOI: 10.1016/j.biocel.2018.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022]
Abstract
Calcium release from internal stores is a quintessential event in excitation-contraction coupling in cardiac and skeletal muscle. The ryanodine receptor Ca2+ release channel is embedded in the internal sarcoplasmic reticulum Ca2+ store, which releases Ca2+ into the cytoplasm, enabling contraction. Ryanodine receptors form the hub of a macromolecular complex extending from the extracellular space to the sarcoplasmic reticulum lumen. Ryanodine receptor activity is influenced by the integrated effects of associated co-proteins, ions, and post-translational phosphor and redox modifications. In healthy muscle, ryanodine receptors are phosphorylated and redox modified to basal levels, to support cellular function. A pathological increase in the degree of both post-translational modifications disturbs intracellular Ca2+ signalling, and is implicated in various cardiac and skeletal disorders. This review summarises our current understanding of the mechanisms linking ryanodine receptor post-translational modification to heart failure and skeletal myopathy and highlights the challenges and controversies within the field.
Collapse
Affiliation(s)
- Amanda Denniss
- Health Research Institute, Faculty of Science and Technology, University of Canberra, Bruce, ACT, Australia
| | - Angela F Dulhunty
- John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Nicole A Beard
- Health Research Institute, Faculty of Science and Technology, University of Canberra, Bruce, ACT, Australia.
| |
Collapse
|
10
|
Polster A, Perni S, Filipova D, Moua O, Ohrtman JD, Bichraoui H, Beam KG, Papadopoulos S. Junctional trafficking and restoration of retrograde signaling by the cytoplasmic RyR1 domain. J Gen Physiol 2017; 150:293-306. [PMID: 29284662 PMCID: PMC5806685 DOI: 10.1085/jgp.201711879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/07/2017] [Indexed: 11/20/2022] Open
Abstract
The type 1 ryanodine receptor (RyR1) in skeletal muscle is a homotetrameric protein that releases Ca2+ from the sarcoplasmic reticulum (SR) in response to an "orthograde" signal from the dihydropyridine receptor (DHPR) in the plasma membrane (PM). Additionally, a "retrograde" signal from RyR1 increases the amplitude of the Ca2+ current produced by CaV1.1, the principle subunit of the DHPR. This bidirectional signaling is thought to depend on physical links, of unknown identity, between the DHPR and RyR1. Here, we investigate whether the isolated cytoplasmic domain of RyR1 can interact structurally or functionally with CaV1.1 by producing an N-terminal construct (RyR11:4300) that lacks the C-terminal membrane domain. In CaV1.1-null (dysgenic) myotubes, RyR11:4300 is diffusely distributed, but in RyR1-null (dyspedic) myotubes it localizes in puncta at SR-PM junctions containing endogenous CaV1.1. Fluorescence recovery after photobleaching indicates that diffuse RyR11:4300 is mobile, whereas resistance to being washed out with a large-bore micropipette indicates that the punctate RyR11:4300 stably associates with PM-SR junctions. Strikingly, expression of RyR11:4300 in dyspedic myotubes causes an increased amplitude, and slowed activation, of Ca2+ current through CaV1.1, which is almost identical to the effects of full-length RyR1. Fast protein liquid chromatography indicates that ∼25% of RyR11:4300 in diluted cytosolic lysate of transfected tsA201 cells is present in complexes larger in size than the monomer, and intermolecular fluorescence resonance energy transfer implies that RyR11:4300 is significantly oligomerized within intact tsA201 cells and dyspedic myotubes. A large fraction of these oligomers may be homotetramers because freeze-fracture electron micrographs reveal that the frequency of particles arranged like DHPR tetrads is substantially increased by transfecting RyR-null myotubes with RyR11:4300 In summary, the RyR1 cytoplasmic domain, separated from its SR membrane anchor, retains a tendency toward oligomerization/tetramerization, binds to SR-PM junctions in myotubes only if CaV1.1 is also present and is fully functional in retrograde signaling to CaV1.1.
Collapse
Affiliation(s)
- Alexander Polster
- Department of Physiology and Biophysics, University of Colorado Denver Anschutz Medical Campus, Denver, CO
| | - Stefano Perni
- Department of Physiology and Biophysics, University of Colorado Denver Anschutz Medical Campus, Denver, CO
| | - Dilyana Filipova
- Institute of Vegetative Physiology, University Hospital of Cologne, Cologne, Germany
| | - Ong Moua
- Department of Physiology and Biophysics, University of Colorado Denver Anschutz Medical Campus, Denver, CO
| | - Joshua D Ohrtman
- Department of Physiology and Biophysics, University of Colorado Denver Anschutz Medical Campus, Denver, CO
| | - Hicham Bichraoui
- Department of Physiology and Biophysics, University of Colorado Denver Anschutz Medical Campus, Denver, CO
| | - Kurt G Beam
- Department of Physiology and Biophysics, University of Colorado Denver Anschutz Medical Campus, Denver, CO
| | - Symeon Papadopoulos
- Institute of Vegetative Physiology, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Regulation of Calcium Homeostasis by ER Redox: A Close-Up of the ER/Mitochondria Connection. J Mol Biol 2017; 429:620-632. [PMID: 28137421 DOI: 10.1016/j.jmb.2017.01.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 01/17/2023]
Abstract
Calcium signaling plays an important role in cell survival by influencing mitochondria-related processes such as energy production and apoptosis. The endoplasmic reticulum (ER) is the main storage compartment for cell calcium (Ca2+; ~60-500μM), and the Ca2+ released by the ER has a prompt effect on the homeostasis of the juxtaposed mitochondria. Recent findings have highlighted a close connection between ER redox and Ca2+ signaling that is mediated by Ca2+-handling proteins. This paper describes the redox-regulated mediators and mechanisms that orchestrate Ca2+ signals from the ER to mitochondria.
Collapse
|
12
|
Stanczyk PJ, Lai FA, Zissimopoulos S. Genetic and Biochemical Approaches for In Vivo and In Vitro Assessment of Protein Oligomerization: The Ryanodine Receptor Case Study. J Vis Exp 2016. [PMID: 27500320 PMCID: PMC5065051 DOI: 10.3791/54271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Oligomerization is often a structural requirement for proteins to accomplish their specific cellular function. For instance, tetramerization of the ryanodine receptor (RyR) is necessary for the formation of a functional Ca2+ release channel pore. Here, we describe detailed protocols for the assessment of protein self-association, including yeast two-hybrid (Y2H), co-immunoprecipitation (co-IP) and chemical cross-linking assays. In the Y2H system, protein self-interaction is detected by β-galactosidase assay in yeast co-expressing GAL4 bait and target fusions of the test protein. Protein self-interaction is further assessed by co-IP using HA- and cMyc-tagged fusions of the test protein co-expressed in mammalian HEK293 cells. The precise stoichiometry of the protein homo-oligomer is examined by cross-linking and SDS-PAGE analysis following expression in HEK293 cells. Using these different but complementary techniques, we have consistently observed the self-association of the RyR N-terminal domain and demonstrated its intrinsic ability to form tetramers. These methods can be applied to protein-protein interaction and homo-oligomerization studies of other mammalian integral membrane proteins.
Collapse
|
13
|
Abstract
The ryanodine receptor/Ca2+ release channel plays a pivotal role in skeletal and cardiac muscle excitation-contraction coupling. Defective regulation leads to neuromuscular disorders and arrhythmogenic cardiac disease. This mini-review focuses on channel regulation through structural intra- and inter-subunit interactions and their implications in ryanodine receptor pathophysiology.
Collapse
|
14
|
Ogawa N, Kurokawa T, Fujiwara K, Polat OK, Badr H, Takahashi N, Mori Y. Functional and Structural Divergence in Human TRPV1 Channel Subunits by Oxidative Cysteine Modification. J Biol Chem 2016; 291:4197-210. [PMID: 26702055 PMCID: PMC4759194 DOI: 10.1074/jbc.m115.700278] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/17/2015] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) channel is a tetrameric protein that acts as a sensor for noxious stimuli such as heat and for diverse inflammatory mediators such as oxidative stress to mediate nociception in a subset of sensory neurons. In TRPV1 oxidation sensing, cysteine (Cys) oxidation has been considered as the principle mechanism; however, its biochemical basis remains elusive. Here, we characterize the oxidative status of Cys residues in differential redox environments and propose a model of TRPV1 activation by oxidation. Through employing a combination of non-reducing SDS-PAGE, electrophysiology, and mass spectrometry we have identified the formation of subunit dimers carrying a stable intersubunit disulfide bond between Cys-258 and Cys-742 of human TRPV1 (hTRPV1). C258S and C742S hTRPV1 mutants have a decreased protein half-life, reflecting the role of the intersubunit disulfide bond in supporting channel stability. Interestingly, the C258S hTRPV1 mutant shows an abolished response to oxidants. Mass spectrometric analysis of Cys residues of hTRPV1 treated with hydrogen peroxide shows that Cys-258 is highly sensitive to oxidation. Our results suggest that Cys-258 residues are heterogeneously modified in the hTRPV1 tetrameric complex and comprise Cys-258 with free thiol for oxidation sensing and Cys-258, which is involved in the disulfide bond for assisting subunit dimerization. Thus, the hTRPV1 channel has a heterogeneous subunit composition in terms of both redox status and function.
Collapse
Affiliation(s)
- Nozomi Ogawa
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Tatsuki Kurokawa
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kenji Fujiwara
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Onur Kerem Polat
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Heba Badr
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Nobuaki Takahashi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Yasuo Mori
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan, Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
15
|
Functional Impact of Ryanodine Receptor Oxidation on Intracellular Calcium Regulation in the Heart. Rev Physiol Biochem Pharmacol 2016; 171:39-62. [PMID: 27251471 DOI: 10.1007/112_2016_2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 2 ryanodine receptor (RyR2) serves as the major intracellular Ca2+ release channel that drives heart contraction. RyR2 is activated by cytosolic Ca2+ via the process of Ca2+-induced Ca2+ release (CICR). To ensure stability of Ca2+ dynamics, the self-reinforcing CICR must be tightly controlled. Defects in this control cause sarcoplasmic reticulum (SR) Ca2+ mishandling, which manifests in a variety of cardiac pathologies that include myocardial infarction and heart failure. These pathologies are also associated with oxidative stress. Given that RyR2 contains a large number of cysteine residues, it is no surprise that RyR2 plays a key role in the cellular response to oxidative stress. RyR's many cysteine residues pose an experimental limitation in defining a specific target or mechanism of action for oxidative stress. As a result, the current understanding of redox-mediated RyR2 dysfunction remains incomplete. Several oxidative modifications, including S-glutathionylation and S-nitrosylation, have been suggested playing an important role in the regulation of RyR2 activity. Moreover, oxidative stress can increase RyR2 activity by forming disulfide bonds between two neighboring subunits (intersubunit cross-linking). Since intersubunit interactions within the RyR2 homotetramer complex dictate the channel gating, such posttranslational modification of RyR2 would have a significant impact on RyR2 function and Ca2+ regulation. This review summarizes recent findings on oxidative modifications of RyR2 and discusses contributions of these RyR2 modifications to SR Ca2+ mishandling during cardiac pathologies.
Collapse
|
16
|
Seo MD, Enomoto M, Ishiyama N, Stathopulos PB, Ikura M. Structural insights into endoplasmic reticulum stored calcium regulation by inositol 1,4,5-trisphosphate and ryanodine receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1980-91. [PMID: 25461839 DOI: 10.1016/j.bbamcr.2014.11.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Abstract
The two major calcium (Ca²⁺) release channels on the sarco/endoplasmic reticulum (SR/ER) are inositol 1,4,5-trisphosphate and ryanodine receptors (IP3Rs and RyRs). They play versatile roles in essential cell signaling processes, and abnormalities of these channels are associated with a variety of diseases. Structural information on IP3Rs and RyRs determined using multiple techniques including X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (EM), has significantly advanced our understanding of the mechanisms by which these Ca²⁺ release channels function under normal and pathophysiological circumstances. In this review, structural advances on the understanding of the mechanisms of IP3R and RyR function and dysfunction are summarized. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 443-749, Republic of Korea; College of Pharmacy, Ajou University, Suwon, Gyeonggi 443-749, Republic of Korea
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Noboru Ishiyama
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
17
|
Seidel M, Thomas NL, Williams AJ, Lai FA, Zissimopoulos S. Dantrolene rescues aberrant N-terminus intersubunit interactions in mutant pro-arrhythmic cardiac ryanodine receptors. Cardiovasc Res 2014; 105:118-28. [PMID: 25411383 DOI: 10.1093/cvr/cvu240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The ryanodine receptor (RyR2) is an intracellular Ca(2+) release channel essential for cardiac excitation-contraction coupling. Abnormal RyR2 channel function results in the generation of arrhythmias and sudden cardiac death. The present study was undertaken to investigate the mechanistic basis of RyR2 dysfunction in inherited arrhythmogenic cardiac disease. METHODS AND RESULTS We present several lines of complementary evidence, indicating that the arrhythmia-associated L433P mutation disrupts RyR2 N-terminus self-association. A combination of yeast two-hybrid, co-immunoprecipitation, and chemical cross-linking assays collectively demonstrate that a RyR2 N-terminal fragment carrying the L433P mutation displays substantially reduced self-interaction compared with wild type. Moreover, sucrose density gradient centrifugation reveals that the L433P mutation impairs tetramerization of the full-length channel. [(3)H]Ryanodine-binding assays demonstrate that disrupted N-terminal intersubunit interactions within RyR2(L433P) confer an altered sensitivity to Ca(2+) activation. Calcium imaging of RyR2(L433P)-expressing cells reveals substantially prolonged Ca(2+) transients and reduced Ca(2+) store content indicating defective channel closure. Importantly, dantrolene treatment reverses the L433P mutation-induced impairment and restores channel function. CONCLUSION The N-terminus domain constitutes an important structural determinant for the functional oligomerization of RyR2. Our findings are consistent with defective N-terminus self-association as a molecular mechanism underlying RyR2 channel deregulation in inherited arrhythmogenic cardiac disease. Significantly, the therapeutic action of dantrolene may occur via the restoration of normal RyR2 N-terminal intersubunit interactions.
Collapse
Affiliation(s)
- Monika Seidel
- Wales Heart Research Institute, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - N Lowri Thomas
- Wales Heart Research Institute, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Alan J Williams
- Wales Heart Research Institute, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - F Anthony Lai
- Wales Heart Research Institute, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Spyros Zissimopoulos
- Wales Heart Research Institute, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
18
|
Borko Ľ, Bauerová-Hlinková V, Hostinová E, Gašperík J, Beck K, Lai FA, Zahradníková A, Ševčík J. Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2897-912. [PMID: 25372681 PMCID: PMC4220973 DOI: 10.1107/s1399004714020343] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/10/2014] [Indexed: 01/11/2023]
Abstract
Human ryanodine receptor 2 (hRyR2) mediates calcium release from the sarcoplasmic reticulum, enabling cardiomyocyte contraction. The N-terminal region of hRyR2 (amino acids 1-606) is the target of >30 arrhythmogenic mutations and contains a binding site for phosphoprotein phosphatase 1. Here, the solution and crystal structures determined under near-physiological conditions, as well as a homology model of the hRyR2 N-terminal region, are presented. The N-terminus is held together by a unique network of interactions among its three domains, A, B and C, in which the central helix (amino acids 410-437) plays a prominent stabilizing role. Importantly, the anion-binding site reported for the mouse RyR2 N-terminal region is notably absent from the human RyR2. The structure concurs with the differential stability of arrhythmogenic mutations in the central helix (R420W, I419F and I419F/R420W) which are owing to disparities in the propensity of mutated residues to form energetically favourable or unfavourable contacts. In solution, the N-terminus adopts a globular shape with a prominent tail that is likely to involve residues 545-606, which are unresolved in the crystal structure. Docking the N-terminal domains into cryo-electron microscopy maps of the closed and open RyR1 conformations reveals C(α) atom movements of up to 8 Å upon channel gating, and predicts the location of the leucine-isoleucine zipper segment and the interaction site for spinophilin and phosphoprotein phosphatase 1 on the RyR surface.
Collapse
Affiliation(s)
- Ľubomír Borko
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Vladena Bauerová-Hlinková
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Eva Hostinová
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Juraj Gašperík
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Konrad Beck
- Cardiff University School of Dentistry, Heath Park, Cardiff CF14 4XY, Wales
| | - F. Anthony Lai
- Department of Cardiology, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales
| | - Alexandra Zahradníková
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 833 34 Bratislava, Slovakia
| | - Jozef Ševčík
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| |
Collapse
|
19
|
Abstract
Oligomerization of all three mammalian ryanodine receptor isoforms, a structural requirement for normal intracellular Ca2+ release channel function, is displayed by the discrete N-terminal domain which assembles into homo- and hetero-tetramers. This is demonstrated in yeast, mammalian cells and native tissue by complementary yeast two-hybrid, chemical cross-linking and co-immunoprecipitation assays. The IP3 (inositol 1,4,5-trisphosphate) receptor N-terminus (residues 1–667) similarly exhibits tetrameric association as indicated by chemical cross-linking and co-immunoprecipitation assays. The presence of either a 15-residue splice insertion or of the cognate ligand IP3 did not affect tetramerization of the IP3 receptor N-terminus. Thus N-terminus tetramerization appears to be an essential intrinsic property that is conserved in both the ryanodine receptor and IP3 receptor families of mammalian intracellular Ca2+ release channels. Intracellular Ca2+ channels are of paramount importance for numerous cellular processes. In the present paper we report on a novel N-terminus intersubunit interaction, an essential structure–function parameter, which is conserved in both families of intracellular Ca2+ channels.
Collapse
|
20
|
Mazurek SR, Bovo E, Zima AV. Regulation of sarcoplasmic reticulum Ca(2+) release by cytosolic glutathione in rabbit ventricular myocytes. Free Radic Biol Med 2014; 68:159-67. [PMID: 24334252 DOI: 10.1016/j.freeradbiomed.2013.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/18/2013] [Accepted: 12/01/2013] [Indexed: 01/21/2023]
Abstract
Of the major cellular antioxidant defenses, glutathione (GSH) is particularly important in maintaining the cytosolic redox potential. Whereas the healthy myocardium is maintained at a highly reduced redox state, it has been proposed that oxidation of GSH can affect the dynamics of Ca(2+)-induced Ca(2+) release. In this study, we used multiple approaches to define the effects of oxidized glutathione (GSSG) on ryanodine receptor (RyR)-mediated Ca(2+) release in rabbit ventricular myocytes. To investigate the role of GSSG on sarcoplasmic reticulum (SR) Ca(2+) release induced by the action potential, we used the thiol-specific oxidant diamide to increase intracellular GSSG in intact myocytes. To more directly assess the effect of GSSG on RyR activity, we introduced GSSG within the cytosol of permeabilized myocytes. RyR-mediated Ca(2+) release from the SR was significantly enhanced in the presence of GSSG. This resulted in decreased steady-state diastolic [Ca(2+)]SR, increased SR Ca(2+) fractional release, and increased spark- and non-spark-mediated SR Ca(2+) leak. Single-channel recordings from RyR's incorporated into lipid bilayers revealed that GSSG significantly increased RyR activity. Moreover, oxidation of RyR in the form of intersubunit crosslinking was present in intact myocytes treated with diamide and permeabilized myocytes treated with GSSG. Blocking RyR crosslinking with the alkylating agent N-ethylmaleimide prevented depletion of SR Ca(2+) load induced by diamide. These findings suggest that elevated cytosolic GSSG enhances SR Ca(2+) leak due to redox-dependent intersubunit RyR crosslinking. This effect can contribute to abnormal SR Ca(2+) handling during periods of oxidative stress.
Collapse
Affiliation(s)
- Stefan R Mazurek
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Elisa Bovo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|