1
|
CaMKK2 facilitates Golgi-associated vesicle trafficking to sustain cancer cell proliferation. Cell Death Dis 2021; 12:1040. [PMID: 34725334 PMCID: PMC8560770 DOI: 10.1038/s41419-021-04335-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) regulates cell and whole-body metabolism and supports tumorigenesis. The cellular impacts of perturbing CAMKK2 expression are, however, not yet fully characterised. By knocking down CAMKK2 levels, we have identified a number of significant subcellular changes indicative of perturbations in vesicle trafficking within the endomembrane compartment. To determine how they might contribute to effects on cell proliferation, we have used proteomics to identify Gemin4 as a direct interactor, capable of binding CAMKK2 and COPI subunits. Prompted by this, we confirmed that CAMKK2 knockdown leads to concomitant and significant reductions in δ-COP protein. Using imaging, we show that CAMKK2 knockdown leads to Golgi expansion, the induction of ER stress, abortive autophagy and impaired lysosomal acidification. All are phenotypes of COPI depletion. Based on our findings, we hypothesise that CAMKK2 sustains cell proliferation in large part through effects on organelle integrity and membrane trafficking.
Collapse
|
2
|
Blatnik AJ, McGovern VL, Burghes AHM. What Genetics Has Told Us and How It Can Inform Future Experiments for Spinal Muscular Atrophy, a Perspective. Int J Mol Sci 2021; 22:8494. [PMID: 34445199 PMCID: PMC8395208 DOI: 10.3390/ijms22168494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by motor neuron loss and subsequent atrophy of skeletal muscle. SMA is caused by deficiency of the essential survival motor neuron (SMN) protein, canonically responsible for the assembly of the spliceosomal small nuclear ribonucleoproteins (snRNPs). Therapeutics aimed at increasing SMN protein levels are efficacious in treating SMA. However, it remains unknown how deficiency of SMN results in motor neuron loss, resulting in many reported cellular functions of SMN and pathways affected in SMA. Herein is a perspective detailing what genetics and biochemistry have told us about SMA and SMN, from identifying the SMA determinant region of the genome, to the development of therapeutics. Furthermore, we will discuss how genetics and biochemistry have been used to understand SMN function and how we can determine which of these are critical to SMA moving forward.
Collapse
Affiliation(s)
| | | | - Arthur H. M. Burghes
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Rightmire Hall, Room 168, 1060 Carmack Road, Columbus, OH 43210, USA; (A.J.B.III); (V.L.M.)
| |
Collapse
|
3
|
Peng N, Li J, He J, Shi X, Huang H, Mo Y, Ye H, Wu G, Wu F, Xiang B, Zhong J, Li L, Zhu S. c-Myc-mediated SNRPB upregulation functions as an oncogene in hepatocellular carcinoma. Cell Biol Int 2020; 44:1103-1111. [PMID: 31930637 DOI: 10.1002/cbin.11307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/10/2020] [Indexed: 01/09/2023]
Abstract
Dysregulation of genes involved in alternative splicing contributes to hepatocarcinogenesis. SNRPB, a component of spliceosome, is implicated in human cancers, yet its clinical significance and biological function in hepatocellular carcinoma (HCC) remains unknown. Here, we show that SNRPB expression is increased in HCC tissues, compared with the nontumorous tissues, at both messenger RNA and protein levels in two independent cohorts. High expression of SNRPB is significantly associated with higher pathological grade, vascular invasion, serum alpha-fetoprotein level, tumor metastasis, and poor disease-free and overall survivals. Luciferase reporter and chromatin immunoprecipitation assays demonstrate that SNRPB upregulation in HCC is mediated by c-Myc. Positive correlation is found between SNRPB and c-Myc expression in clinical samples. In vitro studies show that ectopic expression of SNRPB promotes HCC cell proliferation and migration, whereas knockdown of SNRPB results in the opposite phenotypes. Collectively, our data suggest SNRPB function as an oncogene and serve as a potential prognostic factor in HCC.
Collapse
Affiliation(s)
- Ningfu Peng
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jindu Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jingrong He
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xianmao Shi
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Hao Huang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yishuai Mo
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hang Ye
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Guobin Wu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Feixiang Wu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jianhong Zhong
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Shaoliang Zhu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
4
|
Theme 2 In vitro experimental models. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:112-129. [DOI: 10.1080/21678421.2018.1510569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Mertsch S, Schlicht K, Melkonyan H, Schlatt S, Thanos S. snRPN controls the ability of neurons to regenerate axons. Restor Neurol Neurosci 2018; 36:31-43. [PMID: 29439367 DOI: 10.3233/rnn-170780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Retinal ganglion cells (RGCs) of mammals lose the ability to regenerate injured axons during postnatal maturation, but little is known about the underlying molecular mechanisms. OBJECTIVE It remains of particular importance to understand the mechanisms of axonal regeneration to develop new therapeutic approaches for nerve injuries. METHODS Retinas from newborn to adult monkeys (Callithrix jacchus)1 were obtained immediately after death and cultured in vitro. Growths of axons were monitored using microscopy and time-lapse video cinematography. Immunohistochemistry, Western blotting, qRT-PCR, and genomics were performed to characterize molecules associated with axonal regeneration and growth. A genomic screen was performed by using retinal explants versus native and non-regenerative explants obtained from eye cadavers on the day of birth, and hybridizing the mRNA with cross-reacting cDNA on conventional human microarrays. Followed the genomic screen, siRNA experiments were conducted to identify the functional involvement of identified candidates. RESULTS Neuron-specific human ribonucleoprotein N (snRPN) was found to be a potential regulator of impaired axonal regeneration during neuronal maturation in these animals. In particular, up-regulation of snRPN was observed during retinal maturation, coinciding with a decline in regenerative ability. Axon regeneration was reactivated in snRPN-knockout retinal ex vivo explants of adult monkey. CONCLUSION These results suggest that coordinated snRPN-driven activities within the neuron-specific ribonucleoprotein complex regulate the regenerative ability of RGCs in primates, thereby highlighting a potential new role for snRPN within neurons and the possibility of novel postinjury therapies.
Collapse
Affiliation(s)
- Sonja Mertsch
- Institute of Experimental Ophthalmology and DFG-Excellence Center, Cells in Motion (CiM, area C.4), School of Medicine, University of Münster, Münster, Germany.,Department of Ophthalmology, Laboratory of Experimental Ophthalmology, University Clinic Duesseldorf, Duesseldorf, Germany
| | - Katrin Schlicht
- Institute of Experimental Ophthalmology and DFG-Excellence Center, Cells in Motion (CiM, area C.4), School of Medicine, University of Münster, Münster, Germany
| | - Harutyun Melkonyan
- Institute of Experimental Ophthalmology and DFG-Excellence Center, Cells in Motion (CiM, area C.4), School of Medicine, University of Münster, Münster, Germany
| | - Stefan Schlatt
- Institute of Regenerative Medicine (CeRA) and DFG-Excellence Center, Cells in Motion (CiM, area A.2), School of Medicine, University of Münster, Münster, Germany
| | - Solon Thanos
- Institute of Experimental Ophthalmology and DFG-Excellence Center, Cells in Motion (CiM, area C.4), School of Medicine, University of Münster, Münster, Germany
| |
Collapse
|
6
|
Thompson LW, Morrison KD, Shirran SL, Groen EJN, Gillingwater TH, Botting CH, Sleeman JE. Neurochondrin interacts with the SMN protein suggesting a novel mechanism for spinal muscular atrophy pathology. J Cell Sci 2018; 131:jcs.211482. [PMID: 29507115 PMCID: PMC5963842 DOI: 10.1242/jcs.211482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/16/2018] [Indexed: 12/15/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neurodegenerative condition caused by a reduction in the amount of functional survival motor neuron (SMN) protein. SMN has been implicated in transport of mRNA in neural cells for local translation. We previously identified microtubule-dependent mobile vesicles rich in SMN and SNRPB, a member of the Sm family of small nuclear ribonucleoprotein (snRNP)-associated proteins, in neural cells. By comparing the interactomes of SNRPB and SNRPN, a neural-specific Sm protein, we now show that the essential neural protein neurochondrin (NCDN) interacts with Sm proteins and SMN in the context of mobile vesicles in neurites. NCDN has roles in protein localisation in neural cells and in maintenance of cell polarity. NCDN is required for the correct localisation of SMN, suggesting they may both be required for formation and transport of trafficking vesicles. NCDN may have potential as a therapeutic target for SMA together with, or in place of the targeting of SMN expression. This article has an associated First Person interview with the first author of the paper. Highlighted Article: The essential neural protein neurochondrin interacts with the spinal muscular atrophy (SMA) protein SMN in cell lines and in mice. This might be relevant to the molecular pathology of SMA.
Collapse
Affiliation(s)
- Luke W Thompson
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| | - Kim D Morrison
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| | - Sally L Shirran
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| | - Ewout J N Groen
- Edinburgh Medical School, Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School, Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Catherine H Botting
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| | - Judith E Sleeman
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| |
Collapse
|
7
|
Zhao L, Yang S, Cheng Y, Hou C, You X, Zhao J, Zhang Y, He W. Identification of transcriptional biomarkers by RNA-sequencing for improved detection of β2-agonists abuse in goat skeletal muscle. PLoS One 2017; 12:e0181695. [PMID: 28746361 PMCID: PMC5528896 DOI: 10.1371/journal.pone.0181695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022] Open
Abstract
In this paper, high-throughput RNA-sequencing (RNA-seq) was used to search for transcriptional biomarkers for β2-agonists. In combination with drug mechanisms, a smaller group of genes with higher detection accuracy was screened out. Unknown samples were first predicted by this group of genes, and liquid chromatograph tandem mass spectrometer (LC-MS/MS) was applied to positive samples to validate the biomarkers. The results of principal component analysis (PCA), hierarchical cluster analysis (HCA) and discriminant analysis (DA) indicated that the eight genes screened by high-throughput RNA-seq were able to distinguish samples in the experimental group and control group. Compared with the nine genes selected from an earlier literature, 17 genes including these nine genes were proven to have a more satisfactory effect, which validated the accuracy of gene selection by RNA-seq. Then, six key genes were selected from the 17 genes according to the variable importance in projection (VIP) value of greater than 1. The test results using the six genes and 17 genes were similar, revealing that the six genes were critical genes. By using the six genes, three positive samples possibly treated with drugs were screened out from 25 unknown samples through DA and partial least squares discriminant analysis (PLS-DA). Then, the three samples were verified by a standard method, and mapenterol was detected in a sample. Therefore, the six genes can be used as biomarkers to detect β2-agonists. Compared with the previous study, accurate detection of β2-agonists abuse using six key genes is an improvement method, which show great significance in the monitoring of β2-agonists abuse in animal husbandry.
Collapse
Affiliation(s)
- Luyao Zhao
- Key Laboratory of Livestock-product Quality and Safety Research Division, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing, PR China
| | - Shuming Yang
- Key Laboratory of Livestock-product Quality and Safety Research Division, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing, PR China
- * E-mail:
| | - Yongyou Cheng
- Key Laboratory of Livestock-product Quality and Safety Research Division, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing, PR China
| | - Can Hou
- Key Laboratory of Livestock-product Quality and Safety Research Division, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing, PR China
| | - Xinyong You
- Key Laboratory of Livestock-product Quality and Safety Research Division, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing, PR China
| | - Jie Zhao
- Key Laboratory of Livestock-product Quality and Safety Research Division, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing, PR China
| | - Ying Zhang
- Key Laboratory of Livestock-product Quality and Safety Research Division, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing, PR China
| | - Wenjing He
- Key Laboratory of Livestock-product Quality and Safety Research Division, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing, PR China
| |
Collapse
|
8
|
Hosseinibarkooie S, Schneider S, Wirth B. Advances in understanding the role of disease-associated proteins in spinal muscular atrophy. Expert Rev Proteomics 2017. [PMID: 28635376 DOI: 10.1080/14789450.2017.1345631] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is a neurodegenerative disorder characterized by alpha motor neuron loss in the spinal cord due to reduced survival motor neuron (SMN) protein level. While the genetic basis of SMA is well described, the specific molecular pathway underlying SMA is still not fully understood. Areas covered: This review discusses the recent advancements in understanding the molecular pathways in SMA using different omics approaches and genetic modifiers identified in both vertebrate and invertebrate systems. The findings that are summarized in this article were deduced from original articles and reviews with a particular focus on the latest advancements in the field. Expert commentary: The identification of genetic modifiers such as PLS3 and NCALD in humans or of SMA modulators such as Elavl4 (HuD), Copa, Uba1, Mapk10 (Jnk3), Nrxn2 and Tmem41b (Stasimon) in various SMA animal models improved our knowledge of impaired cellular pathways in SMA. Inspiration from modifier genes and their functions in motor neuron and neuromuscular junctions may open a new avenue for future SMA combinatorial therapies.
Collapse
Affiliation(s)
- Seyyedmohsen Hosseinibarkooie
- a Institute of Human Genetics , University of Cologne , Cologne , Germany.,b Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,c Institute for Genetics , University of Cologne , Cologne , Germany
| | - Svenja Schneider
- a Institute of Human Genetics , University of Cologne , Cologne , Germany.,b Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,c Institute for Genetics , University of Cologne , Cologne , Germany
| | - Brunhilde Wirth
- a Institute of Human Genetics , University of Cologne , Cologne , Germany.,b Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,c Institute for Genetics , University of Cologne , Cologne , Germany.,d Center for Rare Diseases Cologne , University Hospital of Cologne, University of Cologne , Cologne , Germany
| |
Collapse
|
9
|
Donlin-Asp PG, Fallini C, Campos J, Chou CC, Merritt ME, Phan HC, Bassell GJ, Rossoll W. The Survival of Motor Neuron Protein Acts as a Molecular Chaperone for mRNP Assembly. Cell Rep 2017; 18:1660-1673. [PMID: 28199839 PMCID: PMC5492976 DOI: 10.1016/j.celrep.2017.01.059] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 12/23/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease caused by reduced levels of the survival of motor neuron (SMN) protein. SMN is part of a multiprotein complex that facilitates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). SMN has also been found to associate with mRNA-binding proteins, but the nature of this association was unknown. Here, we have employed a combination of biochemical and advanced imaging methods to demonstrate that SMN promotes the molecular interaction between IMP1 protein and the 3' UTR zipcode region of β-actin mRNA, leading to assembly of messenger ribonucleoprotein (mRNP) complexes that associate with the cytoskeleton to facilitate trafficking. We have identified defects in mRNP assembly in cells and tissues from SMA disease models and patients that depend on the SMN Tudor domain and explain the observed deficiency in mRNA localization and local translation, providing insight into SMA pathogenesis as a ribonucleoprotein (RNP)-assembly disorder.
Collapse
Affiliation(s)
- Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Claudia Fallini
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jazmin Campos
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ching-Chieh Chou
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Megan E Merritt
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Han C Phan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
10
|
Donlin-Asp PG, Bassell GJ, Rossoll W. A role for the survival of motor neuron protein in mRNP assembly and transport. Curr Opin Neurobiol 2016; 39:53-61. [PMID: 27131421 DOI: 10.1016/j.conb.2016.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/27/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Localization and local translation of mRNA plays a key role in neuronal development and function. While studies in various systems have provided insights into molecular mechanisms of mRNA transport and local protein synthesis, the factors that control the assembly of mRNAs and mRNA binding proteins into messenger ribonucleoprotein (mRNP) transport granules remain largely unknown. In this review we will discuss how insights on a motor neuron disease, spinal muscular atrophy (SMA), is advancing our understanding of regulated assembly of transport competent mRNPs and how defects in their assembly and delivery may contribute to the degeneration of motor neurons observed in SMA and other neurological disorders.
Collapse
Affiliation(s)
- Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
11
|
Li H, Custer SK, Gilson T, Hao LT, Beattie CE, Androphy EJ. α-COP binding to the survival motor neuron protein SMN is required for neuronal process outgrowth. Hum Mol Genet 2015; 24:7295-307. [PMID: 26464491 DOI: 10.1093/hmg/ddv428] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/06/2015] [Indexed: 01/30/2023] Open
Abstract
Spinal muscular atrophy (SMA), a heritable neurodegenerative disease, results from insufficient levels of the survival motor neuron (SMN) protein. α-COP binds to SMN, linking the COPI vesicular transport pathway to SMA. Reduced levels of α-COP restricted development of neuronal processes in NSC-34 cells and primary cortical neurons. Remarkably, heterologous expression of human α-COP restored normal neurite length and morphology in SMN-depleted NSC-34 cells in vitro and zebrafish motor neurons in vivo. We identified single amino acid mutants of α-COP that selectively abrogate SMN binding, retain COPI-mediated Golgi-ER trafficking functionality, but were unable to support neurite outgrowth in cellular and zebrafish models of SMA. Taken together, these demonstrate the functional role of COPI association with the SMN protein in neuronal development.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA and
| | - Sara K Custer
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA and
| | - Timra Gilson
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA and
| | - Le Thi Hao
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Christine E Beattie
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Elliot J Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA and
| |
Collapse
|
12
|
The Comparative Utility of Viromer RED and Lipofectamine for Transient Gene Introduction into Glial Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:458624. [PMID: 26539498 PMCID: PMC4619820 DOI: 10.1155/2015/458624] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 11/18/2022]
Abstract
The introduction of genes into glial cells for mechanistic studies of cell function and as a therapeutic for gene delivery is an expanding field. Though viral vector based systems do exhibit good delivery efficiency and long-term production of the transgene, the need for transient gene expression, broad and rapid gene setup methodologies, and safety concerns regarding in vivo application still incentivize research into the use of nonviral gene delivery methods. In the current study, aviral gene delivery vectors based upon cationic lipid (Lipofectamine 3000) lipoplex or polyethylenimine (Viromer RED) polyplex technologies were examined in cell lines and primary glial cells for their transfection efficiencies, gene expression levels, and toxicity. The transfection efficiencies of polyplex and lipoplex agents were found to be comparable in a limited, yet similar, transfection setting, with or without serum across a number of cell types. However, differential effects on cell-specific transgene expression and reduced viability with cargo loaded polyplex were observed. Overall, our data suggests that polyplex technology could perform comparably to the market dominant lipoplex technology in transfecting various cells lines including glial cells but also stress a need for further refinement of polyplex reagents to minimize their effects on cell viability.
Collapse
|
13
|
Abstract
Neurons are extremely polarized cells. Axon lengths often exceed the dimension of the neuronal cell body by several orders of magnitude. These extreme axonal lengths imply that neurons have mastered efficient mechanisms for long distance signaling between soma and synaptic terminal. These elaborate mechanisms are required for neuronal development and maintenance of the nervous system. Neurons can fine-tune long distance signaling through calcium wave propagation and bidirectional transport of proteins, vesicles, and mRNAs along microtubules. The signal transmission over extreme lengths also ensures that information about axon injury is communicated to the soma and allows for repair mechanisms to be engaged. This review focuses on the different mechanisms employed by neurons to signal over long axonal distances and how signals are interpreted in the soma, with an emphasis on proteomic studies. We also discuss how proteomic approaches could help further deciphering the signaling mechanisms operating over long distance in axons.
Collapse
Affiliation(s)
- Atsushi Saito
- From the ‡Department of Anatomy and Neurobiology, Washington University in St Louis, School of Medicine, St Louis, 63110, Missouri
| | - Valeria Cavalli
- From the ‡Department of Anatomy and Neurobiology, Washington University in St Louis, School of Medicine, St Louis, 63110, Missouri.
| |
Collapse
|
14
|
Nuclear bodies: new insights into assembly/dynamics and disease relevance. Curr Opin Cell Biol 2014; 28:76-83. [DOI: 10.1016/j.ceb.2014.03.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 01/15/2023]
|