1
|
Yang HJ, Asakawa H, Ohtsuki C, Haraguchi T, Hiraoka Y. Transient Breakage of the Nucleocytoplasmic Barrier Controls Spore Maturation via Mobilizing the Proteasome Subunit Rpn11 in the Fission Yeast Schizosaccharomyces pombe. J Fungi (Basel) 2020; 6:jof6040242. [PMID: 33113963 PMCID: PMC7712896 DOI: 10.3390/jof6040242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022] Open
Abstract
Forespore membrane (FSM) closure is a process of specialized cytokinesis in yeast meiosis. FSM closure begins with the contraction of the FSM opening and finishes with the disassembly of the leading-edge proteins (LEPs) from the FSM opening. Here, we show that the FSM opening starts to contract when the event of virtual nuclear envelope breakdown (vNEBD) occurs in anaphase II of the fission yeast Schizosaccharomyces pombe. The occurrence of vNEBD controls the redistribution of the proteasomal subunit Rpn11 from the nucleus to the cytosol. To investigate the importance of Rpn11 re-localization during vNEBD, Rpn11 was sequestered at the inner nuclear membrane by fusion with the transmembrane region of Bqt4 (Rpn11-GFP-INM). Remarkably, in the absence of endogenous rpn11+, the cells carrying Rpn11-GFP-INM had abnormal or no spore formation. Live-cell imaging analysis further reveals that the FSM opening failed to contract when vNEBD occurred, and the LEP Meu14 was persistently present at the FSM in the rpn11-gfp-INM cells. The results suggest that the dynamic localization of Rpn11 during vNEBD is essential for spore development.
Collapse
Affiliation(s)
- Hui-Ju Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
- Correspondence:
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; (H.A.); (C.O.); (T.H.); (Y.H.)
| | - Chizuru Ohtsuki
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; (H.A.); (C.O.); (T.H.); (Y.H.)
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; (H.A.); (C.O.); (T.H.); (Y.H.)
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; (H.A.); (C.O.); (T.H.); (Y.H.)
| |
Collapse
|
2
|
Krapp A, Hamelin R, Armand F, Chiappe D, Krapp L, Cano E, Moniatte M, Simanis V. Analysis of the S. pombe Meiotic Proteome Reveals a Switch from Anabolic to Catabolic Processes and Extensive Post-transcriptional Regulation. Cell Rep 2020; 26:1044-1058.e5. [PMID: 30673600 DOI: 10.1016/j.celrep.2018.12.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/09/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022] Open
Abstract
Meiotic progression in S. pombe is regulated by stage-specific gene expression and translation, changes in RNA stability, expression of anti-sense transcripts, and targeted proteolysis of regulatory proteins. We have used SILAC labeling to examine the relative levels of proteins in diploid S. pombe cells during meiosis. Among the 3,268 proteins quantified at all time points, the levels of 880 proteins changed at least 2-fold; the majority of proteins showed stepwise increases or decreases during the meiotic divisions, while some changed transiently. Overall, we observed reductions in proteins involved in anabolism and increases in proteins involved in catabolism. We also observed increases in the levels of proteins of the ESCRT-III complex and revealed a role for ESCRT-III components in chromosome segregation and spore formation. Correlation with studies of meiotic gene expression and ribosome occupancy reveals that many of the changes in steady-state protein levels are post-transcriptional.
Collapse
Affiliation(s)
- Andrea Krapp
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, 1015 Lausanne, Switzerland
| | - Romain Hamelin
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, AI 0149, Station 15, 1015 Lausanne, Switzerland
| | - Florence Armand
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, AI 0149, Station 15, 1015 Lausanne, Switzerland
| | - Diego Chiappe
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, AI 0149, Station 15, 1015 Lausanne, Switzerland
| | - Lucien Krapp
- EPFL SV IBI-SV UPDALPE, AAB 1 17, Station 19, 1015 Lausanne, Switzerland
| | - Elena Cano
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, 1015 Lausanne, Switzerland
| | - Marc Moniatte
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, AI 0149, Station 15, 1015 Lausanne, Switzerland
| | - Viesturs Simanis
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, 1015 Lausanne, Switzerland.
| |
Collapse
|
3
|
Simanis V. Pombe's thirteen - control of fission yeast cell division by the septation initiation network. J Cell Sci 2015; 128:1465-74. [PMID: 25690009 DOI: 10.1242/jcs.094821] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The septation initiation network (SIN) regulates aspects of cell growth and division in Schizosaccharomyces pombe and is essential for cytokinesis. Insufficient signalling results in improper assembly of the contractile ring and failure of cytokinesis, generating multinucleated cells, whereas too much SIN signalling uncouples cytokinesis from the rest of the cell cycle. SIN signalling is therefore tightly controlled to coordinate cytokinesis with chromosome segregation. Signalling originates from the cytoplasmic face of the spindle pole body (SPB), and asymmetric localisation of some SIN proteins to one of the two SPBs during mitosis is important for regulation of the SIN. Recent studies have identified in vivo substrates of the SIN, which include components involved in mitotic control, those of the contractile ring and elements of the signalling pathway regulating polarised growth. The SIN is also required for spore formation following meiosis. This has provided insights into how the SIN performs its diverse functions in the cell cycle and shed new light on its regulation.
Collapse
Affiliation(s)
- Viesturs Simanis
- École Polytechnique Fédérale de Lausanne School of Life Sciences (EPFL-SV), Swiss Institute For Experimental Cancer Research (ISREC), UPSIM, SV2.1830, Station 19, CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Wachowicz P, Chasapi A, Krapp A, Cano Del Rosario E, Schmitter D, Sage D, Unser M, Xenarios I, Rougemont J, Simanis V. Analysis of S. pombe SIN protein association to the SPB reveals two genetically separable states of the SIN. J Cell Sci 2014; 128:741-54. [PMID: 25501816 DOI: 10.1242/jcs.160150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Schizosaccharomyces pombe septation initiation network (SIN) regulates cytokinesis, and asymmetric association of SIN proteins with the mitotic spindle pole bodies (SPBs) is important for its regulation. Here, we have used semi-automated image analysis to study SIN proteins in large numbers of wild-type and mutant cells. Our principal conclusions are: first, that the association of Cdc7p with the SPBs in early mitosis is frequently asymmetric, with a bias in favour of the new SPB; second, that the early association of Cdc7p-GFP to the SPB depends on Plo1p but not Spg1p, and is unaffected by mutations that influence its asymmetry in anaphase; third, that Cdc7p asymmetry in anaphase B is delayed by Pom1p and by activation of the spindle assembly checkpoint, and is promoted by Rad24p; and fourth, that the length of the spindle, expressed as a fraction of the length of the cell, at which Cdc7p becomes asymmetric is similar in cells dividing at different sizes. These data reveal that multiple regulatory mechanisms control the SIN in mitosis and lead us to propose a two-state model to describe the SIN.
Collapse
Affiliation(s)
- Paulina Wachowicz
- Cell cycle control laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV-ISREC, 1015 Lausanne, Switzerland
| | - Anastasia Chasapi
- Swiss-Prot. Group and Vital-IT Group, Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Andrea Krapp
- Cell cycle control laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV-ISREC, 1015 Lausanne, Switzerland
| | - Elena Cano Del Rosario
- Cell cycle control laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV-ISREC, 1015 Lausanne, Switzerland
| | - Daniel Schmitter
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Daniel Sage
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Michael Unser
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ioannis Xenarios
- Swiss-Prot. Group and Vital-IT Group, Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Jacques Rougemont
- Bioinformatics and Biostatistics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Viesturs Simanis
- Cell cycle control laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV-ISREC, 1015 Lausanne, Switzerland
| |
Collapse
|