1
|
Shiomi Y, Hayashi A, Saito Y, Kanemaki MT, Nishitani H. The Depletion of TRAIP Results in the Retention of PCNA on Chromatin During Mitosis Leads to Inhibiting DNA Replication Initiation. Genes Cells 2025; 30:e70006. [PMID: 39956965 DOI: 10.1111/gtc.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/18/2025]
Abstract
Loading PCNA onto chromatin is a pivotal step in DNA replication, cell cycle progression, and genome integrity. Conversely, unloading PCNA from chromatin is equally crucial for maintaining genome stability. Cells deficient in the PCNA unloader ATAD5-RFC exhibit elevated levels of chromatin-bound PCNA during S phase, but still show dissociation of PCNA from chromatin in mitosis. In this study, we found that depletion of TRAIP, an E3 ubiquitin ligase, results in the retention of PCNA on chromatin during mitosis. Although TRAIP-depleted cells with chromatin-bound PCNA during mitosis progressed into the subsequent G1 phase, they displayed reduced levels of Cdt1, a key replication licensing factor, and impaired S phase entry. In addition, TRAIP-depleted cells exhibited delayed S phase progression. These results suggest that TRAIP functions independently of ATAD5-RFC in removing PCNA from chromatin. Furthermore, TRAIP appears to be essential for precise pre-replication complexes (pre-RCs) formation necessary for faithful initiation of DNA replication and S phase progression.
Collapse
Affiliation(s)
- Yasushi Shiomi
- Graduate School of Science, University of Hyogo, Kamigori, Japan
| | - Akiyo Hayashi
- Graduate School of Science, University of Hyogo, Kamigori, Japan
| | - Yuichiro Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Department of Advanced Studies, The Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
- Department of Biological Science, The University of Tokyo, Tokyo, Japan
| | - Hideo Nishitani
- Graduate School of Science, University of Hyogo, Kamigori, Japan
| |
Collapse
|
2
|
Silencing TRAIP suppresses cell proliferation and migration/invasion of triple negative breast cancer via RB-E2F signaling and EMT. Cancer Gene Ther 2023; 30:74-84. [PMID: 36064576 PMCID: PMC9842503 DOI: 10.1038/s41417-022-00517-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/16/2022] [Accepted: 07/29/2022] [Indexed: 01/21/2023]
Abstract
TRAIP, as a 53 kDa E3 ubiquitin protein ligase, is involved in various cellular processes and closely related to the occurrence and development of tumors. At present, few studies on the relationship between TRAIP and triple negative breast cancer (TNBC) were reported. Bioinformatic analysis and Western blot, immunohistochemistry (IHC), CCK-8, colony formation, flow cytometry, wound healing, Transwell, and dual-luciferase reporter assays were performed, and xenograft mouse models were established to explore the role of TRAIP in TNBC. This study showed that the expression of TRAIP protein was upregulated in TNBC tissues and cell lines. Silencing of TRAIP significantly inhibited the proliferation, migration, and invasion of TNBC cells, whereas opposite results were observed in the TRAIP overexpression. In addition, TRAIP regulated cell proliferation, migration, and invasion through RB-E2F signaling and epithelial mesenchymal transformation (EMT). MiR-590-3p directly targeted the TRAIP 3'-UTR, and its expression were lower in TNBC tissues. Its mimic significantly downregulated the expression of TRAIP and subsequently suppressed cell proliferation, migration, and invasion. Rescue experiments indicated that TRAIP silencing reversed the promotion of miR-590-3p inhibitor on cell proliferation, migration, and invasion. TRAIP overexpression could also reverse the inhibition of miR-590-3p mimic on tumorigenesis. Finally, TRAIP knockdown significantly inhibited tumor growth and metastasis in animal experiments. In conclusion, TRAIP is an oncogene that influences the proliferation, migration, and invasion of TNBC cells through RB-E2F signaling and EMT. Therefore, TRAIP may be a potential therapeutic target for TNBC.
Collapse
|
3
|
Timofeeva AV, Fedorov IS, Shamina MA, Chagovets VV, Makarova NP, Kalinina EA, Nazarenko TA, Sukhikh GT. Clinical Relevance of Secreted Small Noncoding RNAs in an Embryo Implantation Potential Prediction at Morula and Blastocyst Development Stages. Life (Basel) 2021; 11:life11121328. [PMID: 34947859 PMCID: PMC8706231 DOI: 10.3390/life11121328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the improvements in biotechnological approaches and the selection of controlled ovarian hyperstimulation protocols, the resulting pregnancy rate from in vitro fertilization (IVF) protocols still does not exceed 30-40%. In this connection, there is an acute question of the development of a non-invasive, sensitive, and specific method for assessing the implantation potential of an embryo. A total of 110 subfertile couples were included in the study to undergo the IVF/ICSI program. Obtained embryos for transfer into the uterine cavity of patient cohort 1 (n = 60) and cohort 2 (n = 50) were excellent/good-quality blastocysts, and small noncoding RNA (sncRNA) content in the corresponding spent culture medium samples at the morula stage (n = 43) or at the blastocyst stage (n = 31) was analyzed by deep sequencing followed by qRT-PCR in real time. Two logistic regression models were developed to predict the implantation potential of the embryo with 100% sensitivity and 100% specificity: model 1 at the morula stage, using various combinations of hsa_piR_022258, hsa-let-7i-5p, hsa_piR_000765, hsa_piR_015249, hsa_piR_019122, and hsa_piR_008112, and model 2 at the blastocyst stage, using various combinations of hsa_piR_020497, hsa_piR_008113, hsa-miR-381-3p, hsa_piR_022258, and hsa-let-7a-5p. Protein products of sncRNA potential target genes participate in the selective turnover of proteins through the ubiquitination system and in the organization of the various cell cytoskeleton and nucleoskeleton structures, regulating the activity of the Hippo signaling pathway, which determines the fate specification of the blastomers.
Collapse
Affiliation(s)
- Angelika V. Timofeeva
- Laboratory of Applied Transcriptomics, Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia;
- Correspondence: or
| | - Ivan S. Fedorov
- Laboratory of Applied Transcriptomics, Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia;
| | - Maria A. Shamina
- Department of Assisted Reproductive Technologies, Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia; (M.A.S.); (N.P.M.); (E.A.K.)
| | - Vitaliy V. Chagovets
- Laboratory of Proteomics and Metabolomics of Human Reproduction, Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia;
| | - Nataliya P. Makarova
- Department of Assisted Reproductive Technologies, Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia; (M.A.S.); (N.P.M.); (E.A.K.)
| | - Elena A. Kalinina
- Department of Assisted Reproductive Technologies, Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia; (M.A.S.); (N.P.M.); (E.A.K.)
| | - Tatiana A. Nazarenko
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia; (T.A.N.); (G.T.S.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia; (T.A.N.); (G.T.S.)
| |
Collapse
|
4
|
Abstract
Unlike bacteria, mammalian cells need to complete DNA replication before segregating their chromosomes for the maintenance of genome integrity. Thus, cells have evolved efficient pathways to restore stalled and/or collapsed replication forks during S-phase, and when necessary, also to delay cell cycle progression to ensure replication completion. However, strong evidence shows that cells can proceed to mitosis with incompletely replicated DNA when under mild replication stress (RS) conditions. Consequently, the incompletely replicated genomic gaps form, predominantly at common fragile site regions, where the converging fork-like DNA structures accumulate. These branched structures pose a severe threat to the faithful disjunction of chromosomes as they physically interlink the partially duplicated sister chromatids. In this review, we provide an overview discussing how cells respond and deal with the under-replicated DNA structures that escape from the S/G2 surveillance system. We also focus on recent research of a mitotic break-induced replication pathway (also known as mitotic DNA repair synthesis), which has been proposed to operate during prophase in an attempt to finish DNA synthesis at the under-replicated genomic regions. Finally, we discuss recent data on how mild RS may cause chromosome instability and mutations that accelerate cancer genome evolution.
Collapse
Affiliation(s)
- Camelia Mocanu
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| | - Kok-Lung Chan
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| |
Collapse
|
5
|
D'Altri T, Wilhelmson AS, Schuster MB, Wenzel A, Kalvisa A, Pundhir S, Meldgaard Hansen A, Porse BT. The ASXL1-G643W variant accelerates the development of CEBPA mutant acute myeloid leukemia. Haematologica 2021; 106:1000-1007. [PMID: 32381577 PMCID: PMC8017816 DOI: 10.3324/haematol.2019.235150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 01/06/2023] Open
Abstract
ASXL1 is one of the most commonly mutated genes in myeloid malignancies, including myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In order to further our understanding of the role of ASXL1 lesions in malignant hematopoiesis, we generated a novel knockin mouse model carrying the most frequent ASXL1 mutation identified in MDS patients, ASXL1 p.G643WfsX12. Mutant mice neither displayed any major hematopoietic defects nor developed any apparent hematological disease. In AML patients, ASXL1 mutations co-occur with mutations in CEBPA and we therefore generated compound Cebpa and Asxl1 mutated mice. Using a transplantation model, we found that the mutated Asxl1 allele significantly accelerated disease development in a CEBPA mutant context. Importantly, we demonstrated that, similar to the human setting, Asxl1 mutated mice responded poorly to chemotherapy. This model therefore constitutes an excellent experimental system for further studies into the clinically important question of chemotherapy resistance mediated by mutant ASXL1.
Collapse
Affiliation(s)
- Teresa D'Altri
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Anna S Wilhelmson
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Mikkel B Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Anne Wenzel
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Adrija Kalvisa
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Anne Meldgaard Hansen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
6
|
Villa F, Fujisawa R, Ainsworth J, Nishimura K, Lie‐A‐Ling M, Lacaud G, Labib KPM. CUL2 LRR1 , TRAIP and p97 control CMG helicase disassembly in the mammalian cell cycle. EMBO Rep 2021; 22:e52164. [PMID: 33590678 PMCID: PMC7926238 DOI: 10.15252/embr.202052164] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022] Open
Abstract
The eukaryotic replisome is disassembled in each cell cycle, dependent upon ubiquitylation of the CMG helicase. Studies of Saccharomyces cerevisiae, Caenorhabditis elegans and Xenopus laevis have revealed surprising evolutionary diversity in the ubiquitin ligases that control CMG ubiquitylation, but regulated disassembly of the mammalian replisome has yet to be explored. Here, we describe a model system for studying the ubiquitylation and chromatin extraction of the mammalian CMG replisome, based on mouse embryonic stem cells. We show that the ubiquitin ligase CUL2LRR1 is required for ubiquitylation of the CMG-MCM7 subunit during S-phase, leading to disassembly by the p97 ATPase. Moreover, a second pathway of CMG disassembly is activated during mitosis, dependent upon the TRAIP ubiquitin ligase that is mutated in primordial dwarfism and mis-regulated in various cancers. These findings indicate that replisome disassembly in diverse metazoa is regulated by a conserved pair of ubiquitin ligases, distinct from those present in other eukaryotes.
Collapse
Affiliation(s)
- Fabrizio Villa
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Johanna Ainsworth
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Kohei Nishimura
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Michael Lie‐A‐Ling
- Cancer Research U.K. Manchester InstituteThe University of ManchesterAlderley ParkUK
| | - Georges Lacaud
- Cancer Research U.K. Manchester InstituteThe University of ManchesterAlderley ParkUK
| | - Karim PM Labib
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
7
|
Wu RA, Pellman DS, Walter JC. The Ubiquitin Ligase TRAIP: Double-Edged Sword at the Replisome. Trends Cell Biol 2021; 31:75-85. [PMID: 33317933 PMCID: PMC7856240 DOI: 10.1016/j.tcb.2020.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
In preparation for cell division, the genome must be copied with high fidelity. However, replisomes often encounter obstacles, including bulky DNA lesions caused by reactive metabolites and chemotherapeutics, as well as stable nucleoprotein complexes. Here, we discuss recent advances in our understanding of TRAIP, a replisome-associated E3 ubiquitin ligase that is mutated in microcephalic primordial dwarfism. In interphase, TRAIP helps replisomes overcome DNA interstrand crosslinks and DNA-protein crosslinks, whereas in mitosis it triggers disassembly of all replisomes that remain on chromatin. We describe a model to explain how TRAIP performs these disparate functions and how they help maintain genome integrity.
Collapse
Affiliation(s)
- R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - David S Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
| |
Collapse
|
8
|
Silzer TK, Pathak GA, Phillips NR. Mitochondrial tRNA methylation in Alzheimer's disease and progressive supranuclear palsy. BMC Med Genomics 2020; 13:71. [PMID: 32429992 PMCID: PMC7236490 DOI: 10.1186/s12920-020-0727-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methylation of mitochondrial tRNAs (mt-tRNA) at the 9th position ("p9 site") is known to impact translational efficiency and downstream mitochondrial function; however, direct assessment of mt-RNA methylation is challenging. Recent RNA sequence-based methods have been developed to reliably identify post-transcriptional methylation. Though p9 methylation has been studied in healthy human populations and in the context of cancer, it has not yet been analyzed in neurodegenerative disease, where mitochondrial dysfunction is a prominent and early hallmark of disease progression. METHODS Mitochondrial p9 methylation was inferred from multi-allelic calls in RNA-seq data. Gene-based association studies were performed in FUMA. Correlations between nuclear gene expression and p9 methylation were tested using Spearman's rho. Fisher's Exact test was used in PANTHER and IPA to test for overrepresentation and enrichment of biological processes and pathways in the top nuclear genes correlated with p9 methylation. RESULTS Variable methylation was observed at 11 p9 sites in post-mortem cerebellar tissue of elderly subjects who were either healthy or diagnosed with Alzheimer's disease (AD), progressive supranuclear palsy (PSP) or pathological aging (PA). Similarities in degree of methylation were observed between AD and PSP. Certain nuclear encoded genes were identified as significantly associated with p9 methylation. Expression of 5300 nuclear encoded genes was significantly correlated with p9 methylation, with AD and PSP subjects exhibiting similar expression profiles. Overrepresentation and enrichment testing using the top transcripts revealed enrichment for a number of molecular processes, terms and pathways including many of which that were mitochondrial-related. CONCLUSION With mitochondrial dysfunction being an established hallmark of neurodegenerative disease pathophysiology, this work sheds light on the potential molecular underpinnings of this dysfunction. Here we show overlap in cerebellar pathophysiology between common tauopathies such as Alzheimer's disease and progressive supranuclear palsy. Whether p9 hypermethylation is a cause or consequence of pathology remains an area of focus.
Collapse
Affiliation(s)
- Talisa K Silzer
- Department of Microbiology, Immunology and Genetics; Graduate School of Biomedical Science, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, USA
| | - Gita A Pathak
- Department of Microbiology, Immunology and Genetics; Graduate School of Biomedical Science, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, USA
| | - Nicole R Phillips
- Department of Microbiology, Immunology and Genetics; Graduate School of Biomedical Science, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, USA.
| |
Collapse
|
9
|
Guo Z, Zeng Y, Chen Y, Liu M, Chen S, Yao M, Zhang P, Zhong F, Jiang K, He S, Yuan G. TRAIP promotes malignant behaviors and correlates with poor prognosis in liver cancer. Biomed Pharmacother 2020; 124:109857. [PMID: 31972358 DOI: 10.1016/j.biopha.2020.109857] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 10/25/2022] Open
Abstract
TRAF-interacting protein (TRAIP) is a RING-type E3 ubiquitin ligase which has been implicated in various cellular processes, including NF-κB activation, DNA damage response, mitosis, and tumorigenesis. It is considered as a tumor suppressor in basal cell carcinomas and breast cancer in previous studies. However, in our current study, we found that TRAIP exhibited oncogenic properties in liver cancer. In order to determine its effect on tumor biology and the potential mechanism, a variety of advanced experimental technology was used, such as bioinformatic analysis, isobaric tags for relative and absolute quantification (iTRAQ) analysis, tissue microarray detection, and other in vitro cell biology experiments. The results showed that TRAIP was up-regulated in liver cancer and negatively correlated with prognosis. When TRAIP was knocked-down with lentivirus containing specific targeting short hairpin RNAs, the malignant behaviors of Bel7404 cells were significantly inhibited. Meanwhile, overexpression of TRAIP exerted oncogenic effects in SNU449 cells. More importantly, the iTRAQ analysis indicated that TRAIP was significantly related to centriole, centromere, and histone deacetylation, which are critical for mitosis. These findings are in line with previous reports that TRAIP contributes to proper mitosis. Additionally, the iTRAQ analysis also supported that TRAIP may affect G1/S transition by regulating the expression of certain cell cycle related proteins. In summary, our study firstly revealed that TRAIP was up-regulated and negatively correlated with prognosis in liver cancer patients and exhibited oncogenic properties in liver cancer cells, making it a potential target for treatment of liver cancer.
Collapse
Affiliation(s)
- Zhenya Guo
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yonglian Zeng
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yubing Chen
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Mingjiang Liu
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shilian Chen
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Mei Yao
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Peng Zhang
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Fudi Zhong
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Keqing Jiang
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Songqing He
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
10
|
Takayanagi H, Hayase J, Kamakura S, Miyano K, Chishiki K, Yuzawa S, Sumimoto H. Intramolecular interaction in LGN, an adaptor protein that regulates mitotic spindle orientation. J Biol Chem 2019; 294:19655-19666. [PMID: 31732560 DOI: 10.1074/jbc.ra119.011457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/07/2019] [Indexed: 12/11/2022] Open
Abstract
Proper mitotic spindle orientation requires that astral microtubules are connected to the cell cortex by the microtubule-binding protein NuMA, which is recruited from the cytoplasm. Cortical recruitment of NuMA is at least partially mediated via direct binding to the adaptor protein LGN. LGN normally adopts a closed conformation via an intramolecular interaction between its N-terminal NuMA-binding domain and its C-terminal region that contains four GoLoco (GL) motifs, each capable of binding to the membrane-anchored Gαi subunit of heterotrimeric G protein. Here we show that the intramolecular association with the N-terminal domain in LGN involves GL3, GL4, and a region between GL2 and GL3, whereas GL1 and GL2 do not play a major role. This conformation renders GL1 but not the other GL motifs in a state easily accessible to Gαi To interact with full-length LGN in a closed state, NuMA requires the presence of Gαi; both NuMA and Gαi are essential for cortical recruitment of LGN in mitotic cells. In contrast, mInsc, a protein that competes with NuMA for binding to LGN and regulates mitotic spindle orientation in asymmetric cell division, efficiently binds to full-length LGN without Gαi and induces its conformational change, enhancing its association with Gαi In nonpolarized symmetrically dividing HeLa cells, disruption of the LGN-NuMA interaction by ectopic expression of mInsc results in a loss of cortical localization of NuMA during metaphase and anaphase and promotes mitotic spindle misorientation and a delayed anaphase progression. These findings highlight a specific role for LGN-mediated cell cortex recruitment of NuMA.
Collapse
Affiliation(s)
- Hiroki Takayanagi
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Junya Hayase
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Sachiko Kamakura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Kei Miyano
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Kanako Chishiki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Satoru Yuzawa
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| |
Collapse
|
11
|
Chiticariu E, Regamey A, Huber M, Hohl D. CENPV Is a CYLD-Interacting Molecule Regulating Ciliary Acetylated α-Tubulin. J Invest Dermatol 2019; 140:66-74.e4. [PMID: 31260673 DOI: 10.1016/j.jid.2019.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/06/2019] [Accepted: 04/19/2019] [Indexed: 11/30/2022]
Abstract
CYLD is a deubiquitylase with tumor suppressor functions, first identified in patients with familial cylindromatosis. Despite many molecular mechanisms in which a function of CYLD was reported, affected patients only develop skin appendage tumors, and their precise pathogenesis remains enigmatic. To elucidate how CYLD contributes to tumor formation, we aimed to identify molecular partners in keratinocytes. By using yeast two-hybrid, coprecipitation, and proximity ligation experiments, we identified CENPV as a CYLD-interacting partner. CENPV, a constituent of mitotic chromosomes associating with cytoplasmic microtubules, interacts with CYLD through the region between the third cytoskeleton-associated protein-glycine domain and the active site. CENPV is deubiquitylated by CYLD and localizes in interphase to primary cilia where it increases the ciliary levels of acetylated α-tubulin. CENPV is overexpressed in basal cell carcinoma. Our results support the notion that centromeric proteins have functions in ciliogenesis.
Collapse
Affiliation(s)
- Elena Chiticariu
- Service of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland
| | - Alexandre Regamey
- Service of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland
| | - Marcel Huber
- Service of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland
| | - Daniel Hohl
- Service of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
12
|
Chen Y, Li J, Cao F, Lam J, Cheng CC, Yu CH, Huen MS. Nucleolar residence of the seckel syndrome protein TRAIP is coupled to ribosomal DNA transcription. Nucleic Acids Res 2019; 46:10119-10131. [PMID: 30165463 PMCID: PMC6212796 DOI: 10.1093/nar/gky775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022] Open
Abstract
The RING finger protein TRAIP protects genome integrity and its mutation causes Seckel syndrome. TRAIP encodes a nucleolar protein that migrates to UV-induced DNA lesions via a direct interaction with the DNA replication clamp PCNA. Thus far, mechanistically how UV mobilizes TRAIP from the nucleoli remains unknown. We found that PCNA binding is dispensable for the nucleolus-nucleoplasm shuttling of TRAIP following cell exposure to UV irradiation, and that its redistribution did not rely on the master DNA damage kinases ATM and ATR. Interestingly, I-PpoI-induced ribosomal DNA damage led to TRAIP exclusion from the nucleoli, raising the possibility that active ribosomal DNA transcription may underlie TRAIP retention in the nuclear sub-compartments. Accordingly, chemical inhibition of RNA polymerase I activity led to TRAIP diffusion into the nucleoplasm, and was coupled with marked reduction of DNA/RNA hybrids in the nucleoli, suggesting that TRAIP may be sequestered via binding to nucleic acid structures in the nucleoli. Consistently, cell pre-treatment with DNase/RNase effectively released TRAIP from the nucleoli. Taken together, our study defines a bipartite mechanism that drives TRAIP trafficking in response to UV damage, and highlights the nucleolus as a stress sensor that contributes to orchestrating DNA damage responses.
Collapse
Affiliation(s)
- Yangzi Chen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Junshi Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Fakun Cao
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Jason Lam
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Clooney Cy Cheng
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Cheng-Han Yu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Michael Sy Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R.,Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong S.A.R
| |
Collapse
|
13
|
Priego Moreno S, Jones RM, Poovathumkadavil D, Scaramuzza S, Gambus A. Mitotic replisome disassembly depends on TRAIP ubiquitin ligase activity. Life Sci Alliance 2019; 2:2/2/e201900390. [PMID: 30979826 PMCID: PMC6464043 DOI: 10.26508/lsa.201900390] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 01/08/2023] Open
Abstract
Analysis of the mitotic replisome disassembly pathway in X. laevis egg extract shows that any replisomes retained on chromatin past S-phase are unloaded through formation of K6- and K63-linked ubiquitin chains on Mcm7 by TRAIP ubiquitin ligase and p97/VCP activity. We have shown previously that the process of replication machinery (replisome) disassembly at the termination of DNA replication forks in the S-phase is driven through polyubiquitylation of one of the replicative helicase subunits (Mcm7) by Cul2LRR1 ubiquitin ligase. Interestingly, upon inhibition of this pathway in Caenorhabditis elegans embryos, the replisomes retained on chromatin were unloaded in the subsequent mitosis. Here, we show that this mitotic replisome disassembly pathway exists in Xenopus laevis egg extract and we determine the first elements of its regulation. The mitotic disassembly pathway depends on the formation of K6- and K63-linked ubiquitin chains on Mcm7 by TRAIP ubiquitin ligase and the activity of p97/VCP protein segregase. Unlike in lower eukaryotes, however, it does not require SUMO modifications. Importantly, we also show that this process can remove all replisomes from mitotic chromatin, including stalled ones, which indicates a wide application for this pathway over being just a “backup” for terminated replisomes. Finally, we characterise the composition of the replisome retained on chromatin until mitosis.
Collapse
Affiliation(s)
- Sara Priego Moreno
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rebecca M Jones
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Divyasree Poovathumkadavil
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Shaun Scaramuzza
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Agnieszka Gambus
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
14
|
Shi P, Su Y, Li R, Zhang L, Chen C, Zhang L, Faaberg K, Huang J. Dual Regulation of Host TRAIP Post-translation and Nuclear/Plasma Distribution by Porcine Reproductive and Respiratory Syndrome Virus Non-structural Protein 1α Promotes Viral Proliferation. Front Immunol 2018; 9:3023. [PMID: 30619364 PMCID: PMC6305329 DOI: 10.3389/fimmu.2018.03023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, we show that porcine reproductive and respiratory syndrome virus (PRRSV) non-structural protein 1α (nsp1α) facilitates PRRSV escape from innate immune by modulating nuclear to cytoplasmic translocation and distribution ratio of TRAIP to promote virus proliferation. Mechanistically, TRAIP interacts with PRRSV nsp1α via its K205 site, while NSP1α decreases the SUMOylation and K48 ubiquitination independent of the TRAIP interaction K205 site. Modulation of the dual modification of TRAIP by PRRSV nsp1α results in over-enrichment of TRAIP in the cytoplasm. Enrichment of nsp1α-induced cytoplasmic TRAIP in turn leads to excessive K48 ubiquitination and degradation of serine/threonine-protein kinase (TBK1), thereby antagonizing TBK1-IRF3-IFN signaling. This study proposes a novel mechanism by which PRRSV utilizes host proteins to regulate innate immunity. Findings from this study provides novel perspective to advance our understanding in the pathogenesis of PRRSV.
Collapse
Affiliation(s)
- Peidian Shi
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yanxin Su
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Ruiqiao Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Lei Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Chen Chen
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Kay Faaberg
- Agricultural Research Service, USDA, National Animal Disease Center, Ames, IA, United States
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
15
|
In Vitro Inhibitory Mechanism Effect of TRAIP on the Function of TRAF2 Revealed by Characterization of Interaction Domains. Int J Mol Sci 2018; 19:ijms19082457. [PMID: 30127245 PMCID: PMC6121587 DOI: 10.3390/ijms19082457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022] Open
Abstract
TRAF-interacting protein (TRAIP), a negative regulator of TNF-induced-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, inhibits adaptor protein TRAF2 by direct interaction and is critical in apoptosis, cell proliferation, antiviral response, and embryonic development. Although the critical function of TRAIP in NF-κB signaling is well-known, the molecular inhibitory mechanism of TRAIP remains unclear. We found that the TRAIP coiled-coil domain altered its stoichiometry between dimer and trimer in a concentration-dependent manner. Additionally, the TRAIP RING domain induced even higher-ordered assembly, which was necessary for interacting with the TRAF-N domain of TRAF2 but not TRAF1. Characterization of the TRAF-N domains of TRAF1 and TRAF2, the tentative TRAIP-binding region of TRAFs, suggested the molecular basis of the inhibitory effect of TRAIP on TRAF2 in NF-κB signaling.
Collapse
|
16
|
Lee NS, Kim S, Jung YW, Kim H. Eukaryotic DNA damage responses: Homologous recombination factors and ubiquitin modification. Mutat Res 2017; 809:88-98. [PMID: 28552167 DOI: 10.1016/j.mrfmmm.2017.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/17/2017] [Accepted: 04/30/2017] [Indexed: 12/20/2022]
Abstract
To prevent genomic instability disorders, cells have developed a DNA damage response. The response involves various proteins that sense damaged DNA, transduce damage signals, and effect DNA repair. In addition, ubiquitin modifications modulate the signaling pathway depending on cellular context. Among various types of DNA damage, double-stranded breaks are highly toxic to genomic integrity. Homologous recombination (HR) repair is an essential mechanism that fixes DNA damage because of its high level of accuracy. Although factors in the repair pathway are well established, pinpointing the exact mechanisms of repair and devising therapeutic applications requires more studies. Moreover, essential functions of ubiquitin modification in the DNA damage signaling pathway have emerged. In this review, to explore the eukaryotic DNA damage response, we will mention the functions of main factors in the HR repair pathway and ubiquitin modification.
Collapse
Affiliation(s)
- Nam Soo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Soomi Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong 30019, South Korea.
| | - Hongtae Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
17
|
Validation of Synthetic CRISPR Reagents as a Tool for Arrayed Functional Genomic Screening. PLoS One 2016; 11:e0168968. [PMID: 28030641 PMCID: PMC5193459 DOI: 10.1371/journal.pone.0168968] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/10/2016] [Indexed: 12/03/2022] Open
Abstract
To date, lentiviral-based CRISPR-Cas9 screens have largely been conducted in pooled format. However, numerous assays are not amenable to pooled approaches, and lentiviral screening in arrayed format presents many challenges. We sought to examine synthetic CRISPR reagents in the context of arrayed screening. Experiments were performed using aberrant DNA replication as an assay. Using synthetic CRISPR RNAs targeting the known control gene GMNN in HCT-116 cells stably expressing Cas9, we observed statistically significant phenotype among the majority of transfected cells within 72 hours. Additional studies revealed near complete loss of GMNN protein and editing of GMNN DNA. We next conducted a screen of synthetic CRISPR RNAs directed against 640 ubiquitin-related genes. Screening identified known and novel DNA replication regulators that were also supported by siRNA gene knockdown. Notably, CRISPR screening identified more statistically significant hits than corresponding siRNA screens run in parallel. These results highlight the possibility of using synthetic CRISPR reagents as an arrayed screening tool.
Collapse
|
18
|
Yuan YF, Ren YX, Yuan P, Yan LY, Qiao J. TRAIP is involved in chromosome alignment and SAC regulation in mouse oocyte meiosis. Sci Rep 2016; 6:29735. [PMID: 27405720 PMCID: PMC4942609 DOI: 10.1038/srep29735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/22/2016] [Indexed: 12/14/2022] Open
Abstract
Recent whole-exome sequencing (WES) studies demonstrated that TRAIP is associated with primordial dwarfism. Although TRAIP was partially studied in mitosis, its function in oocyte meiosis remained unknown. In this study, we investigated the roles of TRAIP during mouse oocyte meiosis. TRAIP was stably expressed during oocytes meiosis and co-localized with CREST at the centromere region. Knockdown of TRAIP led to DNA damage, as revealed by the appearance of γH2AX. Although oocytes meiotic maturation was not affected, the proportions of misaligned chromosomes and aneuploidy were elevated after TRAIP knockdown, suggesting TRAIP is required for stable kinetochore–microtubule (K-MT) attachment. TRAIP knockdown decreased the accumulation of Mad2 on centromeres, potentially explaining why oocyte maturation was not affected following formation of DNA lesions. Securin, a protein which was prevent from precocious degradation by Mad2, was down-regulated after TRAIP knockdown. Inhibition of TRAIP by microinjection of antibody into pro-metaphase I (pro-MI) stage oocytes resulted in precocious first polar body (PB1) extrusion, and live-cell imaging clearly revealed misaligned chromosomes after TRAIP knockdown. Taken together, these data indicate that TRAIP plays important roles in oocyte meiosis regulation.
Collapse
Affiliation(s)
- Yi-Feng Yuan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Yi-Xin Ren
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Peng Yuan
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Li-Ying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| |
Collapse
|
19
|
Feng W, Guo Y, Huang J, Deng Y, Zang J, Huen MSY. TRAIP regulates replication fork recovery and progression via PCNA. Cell Discov 2016; 2:16016. [PMID: 27462463 PMCID: PMC4923944 DOI: 10.1038/celldisc.2016.16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/23/2016] [Indexed: 12/24/2022] Open
Abstract
PCNA is a central scaffold that coordinately assembles replication and repair machineries at DNA replication forks for faithful genome duplication. Here, we describe TRAIP (RNF206) as a novel PCNA-interacting factor that has important roles during mammalian replicative stress responses. We show that TRAIP encodes a nucleolar protein that migrates to stalled replication forks, and that this is accomplished by its targeting of PCNA via an evolutionarily conserved PIP box on its C terminus. Accordingly, inactivation of TRAIP or its interaction with the PCNA clamp compromised replication fork recovery and progression, and leads to chromosome instability. Together, our findings establish TRAIP as a component of the mammalian replicative stress response network, and implicate the TRAIP-PCNA axis in recovery of stalled replication forks.
Collapse
Affiliation(s)
- Wanjuan Feng
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China; Centre for Cancer Research, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| | - Yingying Guo
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Zhejiang, China
| | - Yiqun Deng
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jianye Zang
- School of Life Sciences, University of Science of Technology of China , Hefei, China
| | - Michael Shing-Yan Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China; Centre for Cancer Research, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| |
Collapse
|
20
|
The TRAF-interacting protein (TRAIP) is a novel E2F target with peak expression in mitosis. Oncotarget 2016; 6:20933-45. [PMID: 26369285 PMCID: PMC4673240 DOI: 10.18632/oncotarget.3055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/08/2014] [Indexed: 12/17/2022] Open
Abstract
The TRAF-interacting protein (TRAIP) is an E3 ubiquitin ligase required for cell proliferation. TRAIP mRNA is downregulated in human keratinocytes after inhibition of the PI3K/AKT/mTOR signaling. Since E2F transcription factors are downstream of PI3K/AKT/mTOR we investigated whether they regulate TRAIP expression. E2F1 expression significantly increased the TRAIP mRNA level in HeLa cells. Reporter assays with the 1400bp 5′-upstream promoter in HeLa cells and human keratinocytes showed that E2F1-, E2F2- and E2F4-induced upregulation of TRAIP expression is mediated by 168bp upstream of the translation start site. Mutating the E2F binding site within this fragment reduced the E2F1- and E2F2-dependent promoter activities and protein-DNA complex formation in gel shift assays. Abundance of TRAIP mRNA and protein was regulated by the cell cycle with a peak in G2/M. Expression of GFP and TRAIP-GFP demonstrated that TRAIP-GFP protein has a lower steady-state concentration than GFP despite similar mRNA levels. Cycloheximide inhibition experiments indicated that the TRAIP protein has a half-life of around four hours. Therefore, the combination of cell cycle-dependent transcription of the TRAIP gene by E2F and rapid protein degradation leads to cell cycle-dependent expression with a maximum in G2/M. These findings suggest that TRAIP has important functions in mitosis and tumorigenesis.
Collapse
|
21
|
Park IS, Han YG, Chung HJ, Jung YW, Kim Y, Kim H. SUMOylation regulates nuclear localization and stability of TRAIP/RNF206. Biochem Biophys Res Commun 2016; 470:881-7. [DOI: 10.1016/j.bbrc.2016.01.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/22/2016] [Indexed: 12/14/2022]
|
22
|
Hoffmann S, Smedegaard S, Nakamura K, Mortuza GB, Räschle M, Ibañez de Opakua A, Oka Y, Feng Y, Blanco FJ, Mann M, Montoya G, Groth A, Bekker-Jensen S, Mailand N. TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress. J Cell Biol 2015; 212:63-75. [PMID: 26711499 PMCID: PMC4700480 DOI: 10.1083/jcb.201506071] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/02/2015] [Indexed: 12/02/2022] Open
Abstract
The E3 ubiquitin ligase TRAIP associates with replication forks through direct interaction with PCNA, promoting checkpoint signaling and genome stability after replication stress. Cellular genomes are highly vulnerable to perturbations to chromosomal DNA replication. Proliferating cell nuclear antigen (PCNA), the processivity factor for DNA replication, plays a central role as a platform for recruitment of genome surveillance and DNA repair factors to replication forks, allowing cells to mitigate the threats to genome stability posed by replication stress. We identify the E3 ubiquitin ligase TRAIP as a new factor at active and stressed replication forks that directly interacts with PCNA via a conserved PCNA-interacting peptide (PIP) box motif. We show that TRAIP promotes ATR-dependent checkpoint signaling in human cells by facilitating the generation of RPA-bound single-stranded DNA regions upon replication stress in a manner that critically requires its E3 ligase activity and is potentiated by the PIP box. Consequently, loss of TRAIP function leads to enhanced chromosomal instability and decreased cell survival after replication stress. These findings establish TRAIP as a PCNA-binding ubiquitin ligase with an important role in protecting genome integrity after obstacles to DNA replication.
Collapse
Affiliation(s)
- Saskia Hoffmann
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stine Smedegaard
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kyosuke Nakamura
- Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Gulnahar B Mortuza
- Macromolecular Crystallography Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Markus Räschle
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Alain Ibañez de Opakua
- Structural Biology Unit, Center for Cooperative Research in Biosciences, 48160 Derio, Bizkaia, Spain
| | - Yasuyoshi Oka
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yunpeng Feng
- Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Francisco J Blanco
- Structural Biology Unit, Center for Cooperative Research in Biosciences, 48160 Derio, Bizkaia, Spain IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Guillermo Montoya
- Macromolecular Crystallography Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anja Groth
- Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Niels Mailand
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
23
|
Dimerization of TRAF-interacting protein (TRAIP) regulates the mitotic progression. Biochem Biophys Res Commun 2015; 463:864-9. [PMID: 26093298 DOI: 10.1016/j.bbrc.2015.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 06/04/2015] [Indexed: 01/07/2023]
Abstract
The homo- or hetero-dimerization of proteins plays critical roles in the mitotic progression. The TRAF-interacting protein (TRAIP) is crucial in early mitotic progression and chromosome alignment defects in the metaphase. The TRAIP is a 469 amino acid protein, including the Really Interesting New Gene (RING), coiled-coil (CC), and leucine zipper (LZ) domain. In general, the CC or LZ domain containing proteins forms homo- or hetero-dimerization to achieve its activity. In this study, a number of TRAIP mutants were used to define the TRAIP molecular domains responsible for its homo-dimerization. A co-immunoprecipitation assay indicated that the TRAIP forms homo-dimerization through the CC domain. The cells, expressing the CC domain-deleted mutant that could not form a homo-dimer, increased the mitotic index and promoted mitotic progression.
Collapse
|