1
|
Lin F, Sun L, Zhang Y, Gao W, Chen Z, Liu Y, Tian K, Han X, Liu R, Li Y, Shen L. Mitochondrial stress response and myogenic differentiation. Front Cell Dev Biol 2024; 12:1381417. [PMID: 38681520 PMCID: PMC11055459 DOI: 10.3389/fcell.2024.1381417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Regeneration and repair are prerequisites for maintaining effective function of skeletal muscle under high energy demands, and myogenic differentiation is one of the key steps in the regeneration and repair process. A striking feature of the process of myogenic differentiation is the alteration of mitochondria in number and function. Mitochondrial dysfunction can activate a number of transcriptional, translational and post-translational programmes and pathways to maintain cellular homeostasis under different types and degrees of stress, either through its own signaling or through constant signaling interactions with the nucleus and cytoplasm, a process known as the mitochondrial stress responses (MSRs). It is now believed that mitochondrial dysfunction is closely associated with a variety of muscle diseases caused by reduced levels of myogenic differentiation, suggesting the possibility that MSRs are involved in messaging during myogenic differentiation. Also, MSRs may be involved in myogenesis by promoting bioenergetic remodeling and assisting myoblast survival during myogenic differentiation. In this review, we will take MSRs as an entry point to explore its concrete regulatory mechanisms during myogenic differentiation, with a perspective to provide a theoretical basis for the treatment and repair of related muscle diseases.
Collapse
Affiliation(s)
- Fu Lin
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yu Zhang
- Experimental Teaching Center of Basic Medicine, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Weinan Gao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zihan Chen
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- Clinical Medical College of Jilin University, The First Hospital of Jilin University, Changchun, China
| | - Yanan Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Kai Tian
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Xuyu Han
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Ruize Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Luyan Shen
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
2
|
Corpuz AD, Ramos JW, Matter ML. PTRH2: an adhesion regulated molecular switch at the nexus of life, death, and differentiation. Cell Death Discov 2020; 6:124. [PMID: 33298880 PMCID: PMC7661711 DOI: 10.1038/s41420-020-00357-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peptidyl-tRNA hydrolase 2 (PTRH2; Bit-1; Bit1) is an underappreciated regulator of adhesion signals and Bcl2 expression. Its key roles in muscle differentiation and integrin-mediated signaling are central to the pathology of a recently identified patient syndrome caused by a cluster of Ptrh2 gene mutations. These loss-of-function mutations were identified in patients presenting with severe deleterious phenotypes of the skeletal muscle, endocrine, and nervous systems resulting in a syndrome called Infantile-onset Multisystem Nervous, Endocrine, and Pancreatic Disease (IMNEPD). In contrast, in cancer PTRH2 is a potential oncogene that promotes malignancy and metastasis. PTRH2 modulates PI3K/AKT and ERK signaling in addition to Bcl2 expression and thereby regulates key cellular processes in response to adhesion including cell survival, growth, and differentiation. In this Review, we discuss the state of the science on this important cell survival, anoikis and differentiation regulator, and opportunities for further investigation and translation. We begin with a brief overview of the structure, regulation, and subcellular localization of PTRH2. We discuss the cluster of gene mutations thus far identified which cause developmental delays and multisystem disease. We then discuss the role of PTRH2 and adhesion in breast, lung, and esophageal cancers focusing on signaling pathways involved in cell survival, cell growth, and cell differentiation.
Collapse
Affiliation(s)
- Austin D Corpuz
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA.,Cell and Molecular Biology Graduate Program, John A. Burns School of Medicine University of Hawaii at Mānoa, Honolulu, HI, 96813, USA
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA
| | - Michelle L Matter
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA.
| |
Collapse
|
3
|
Apoptosome-dependent myotube formation involves activation of caspase-3 in differentiating myoblasts. Cell Death Dis 2020; 11:308. [PMID: 32366831 PMCID: PMC7198528 DOI: 10.1038/s41419-020-2502-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
Caspase-2, -9, and -3 are reported to control myoblast differentiation into myotubes. This had been previously explained by phosphatidylserine exposure on apoptotic myoblasts inducing differentiation in neighboring cells. Here we show for the first time that caspase-3 is activated in the myoblasts undergoing differentiation. Using RNAi, we also demonstrate that differentiation requires both cytochrome c and Apaf-1, and by using a new pharmacological approach, we show that apoptosome formation is required. We also show that Bid, whose cleavage links caspase-2 to the mitochondrial death pathway, was required for differentiation, and that the caspase cleavage product, tBid, was generated during differentiation. Taken together, these data suggest that myoblast differentiation requires caspase-2 activation of the mitochondrial death pathway, and that this occurs in the cells that differentiate. Our data also reveal a hierarchy of caspases in differentiation with caspase-2 upstream of apoptosome activation, and exerting a more profound control of differentiation, while caspases downstream of the apoptosome primarily control cell fusion.
Collapse
|
4
|
Scicchitano BM, Dobrowolny G, Sica G, Musarò A. Molecular Insights into Muscle Homeostasis, Atrophy and Wasting. Curr Genomics 2018; 19:356-369. [PMID: 30065611 PMCID: PMC6030854 DOI: 10.2174/1389202919666180101153911] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Muscle homeostasis is guaranteed by a delicate balance between synthesis and degradation of cell proteins and its alteration leads to muscle wasting and diseases. In this review, we describe the major anabolic pathways that are involved in muscle growth and homeostasis and the proteolytic systems that are over-activated in muscle pathologies. Modulation of these pathways comprises an attractive target for drug intervention.
Collapse
Affiliation(s)
- Bianca Maria Scicchitano
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| | - Gabriella Dobrowolny
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Gigliola Sica
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| | - Antonio Musarò
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
5
|
Lou W, Reynolds CA, Li Y, Liu J, Hüttemann M, Schlame M, Stevenson D, Strathdee D, Greenberg ML. Loss of tafazzin results in decreased myoblast differentiation in C2C12 cells: A myoblast model of Barth syndrome and cardiolipin deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:857-865. [PMID: 29694924 DOI: 10.1016/j.bbalip.2018.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 12/25/2022]
Abstract
Barth syndrome (BTHS) is an X-linked genetic disorder resulting from mutations in the tafazzin gene (TAZ), which encodes the transacylase that remodels the mitochondrial phospholipid cardiolipin (CL). While most BTHS patients exhibit pronounced skeletal myopathy, the mechanisms linking defective CL remodeling and skeletal myopathy have not been determined. In this study, we constructed a CRISPR-generated stable tafazzin knockout (TAZ-KO) C2C12 myoblast cell line. TAZ-KO cells exhibit mitochondrial deficits consistent with other models of BTHS, including accumulation of monolyso-CL (MLCL), decreased mitochondrial respiration, and increased mitochondrial ROS production. Additionally, tafazzin deficiency was associated with impairment of myocyte differentiation. Future studies should determine whether alterations in myogenic determination contribute to the skeletal myopathy observed in BTHS patients. The BTHS myoblast model will enable studies to elucidate mechanisms by which defective CL remodeling interferes with normal myocyte differentiation and skeletal muscle ontogenesis.
Collapse
Affiliation(s)
- Wenjia Lou
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | | | - Yiran Li
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael Schlame
- Department of Anesthesiology and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - David Stevenson
- Transgenic Technology Laboratory, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Douglas Strathdee
- Transgenic Technology Laboratory, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
6
|
Pharmacological targeting of HSP90 with 17-AAG induces apoptosis of myogenic cells through activation of the intrinsic pathway. Mol Cell Biochem 2017; 445:45-58. [DOI: 10.1007/s11010-017-3250-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/08/2017] [Indexed: 01/02/2023]
|
7
|
Sharkia R, Shalev SA, Zalan A, Marom-David M, Watemberg N, Urquhart JE, Daly SB, Bhaskar SS, Williams SG, Newman WG, Spiegel R, Azem A, Elpeleg O, Mahajnah M. Homozygous mutation in PTRH2 gene causes progressive sensorineural deafness and peripheral neuropathy. Am J Med Genet A 2017; 173:1051-1055. [PMID: 28328138 DOI: 10.1002/ajmg.a.38140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 12/03/2016] [Accepted: 12/09/2016] [Indexed: 01/18/2023]
Abstract
PTRH2 is an evolutionarily highly conserved mitochondrial protein that belongs to a family of peptidyl-tRNA hydrolases. Recently, patients from two consanguineous families with mutations in the PTRH2 gene were reported. Global developmental delay associated with microcephaly, growth retardation, progressive ataxia, distal muscle weakness with ankle contractures, demyelinating sensorimotor neuropathy, and sensorineural hearing loss were present in all patients, while facial dysmorphism with widely spaced eyes, exotropia, thin upper lip, proximally placed thumbs, and deformities of the fingers and toes were present in some individuals. Here, we report a new family with three siblings affected by sensorineural hearing loss and peripheral neuropathy. Autozygosity mapping followed by exome sequencing identified a previously reported homozygous missense mutation in PTRH2 (c.254A>C; p.(Gln85Pro)). Sanger sequencing confirmed that the variant segregated with the phenotype. In contrast to the previously reported patient, the affected siblings had normal intelligence, milder microcephaly, delayed puberty, myopia, and moderate insensitivity to pain. Our findings expand the clinical phenotype and further demonstrate the clinical heterogeneity related to PTRH2 variants.
Collapse
Affiliation(s)
- Rajech Sharkia
- The Triangle Regional Research and Development Center, Kfar Qari', Israel.,Beit-Berl Academic College, Beit-Berl, Israel
| | - Stavit A Shalev
- Genetic Institute, Emek Medical Center, Afula, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Abdelnaser Zalan
- The Triangle Regional Research and Development Center, Kfar Qari', Israel
| | - Milit Marom-David
- Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| | - Nathan Watemberg
- Sakler Faculty of Medicine, Child neurology Unit Mier Medical Cener, Tel-Aviv University, Tel-Aviv, Israel
| | - Jill E Urquhart
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK.,Institute of Human Development, Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| | - Sarah B Daly
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK.,Institute of Human Development, Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| | - Sanjeev S Bhaskar
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK
| | - Simon G Williams
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK.,Institute of Human Development, Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| | - William G Newman
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK.,Institute of Human Development, Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| | - Ronen Spiegel
- Genetic Institute, Emek Medical Center, Afula, Israel
| | - Abdussalam Azem
- Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Muhammad Mahajnah
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Child Neurology and Development Center, Hillel-Yaffe Medical Center, Hadera, Israel
| |
Collapse
|
8
|
Doe J, Kaindl AM, Jijiwa M, de la Vega M, Hu H, Griffiths GS, Fontelonga TM, Barraza P, Cruz V, Van Ry P, Ramos JW, Burkin DJ, Matter ML. PTRH2 gene mutation causes progressive congenital skeletal muscle pathology. Hum Mol Genet 2017; 26:1458-1464. [PMID: 28175314 DOI: 10.1093/hmg/ddx048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/03/2017] [Indexed: 11/13/2022] Open
Abstract
Peptidyl-tRNA hydrolase 2 (PTRH2) regulates integrin-mediated pro-survival and apoptotic signaling. PTRH2 is critical in muscle development and regulates myogenic differentiation. In humans a biallelic mutation in the PTRH2 gene causes infantile-onset multisystem disease with progressive muscle weakness. We report here that the Ptrh2 knockout mouse model recapitulates the progressive congenital muscle pathology observed in patients. Ptrh2 null mice demonstrate multiple degenerating and regenerating muscle fibers, increased central nuclei, elevated creatine kinase activity and endomysial fibrosis. This progressive muscle pathology resembles the muscular dystrophy phenotype in humans and mice lacking the α7 integrin. We demonstrate that in normal muscle Ptrh2 associates in a complex with the α7β1 integrin at the sarcolemma and Ptrh2 expression is decreased in α7 integrin null muscle. Furthermore, Ptrh2 expression is altered in skeletal muscle of classical congenital muscular dystrophy mouse models. Ptrh2 levels were up-regulated in dystrophin deficient mdx muscle, which correlates with the elevated levels of the α7β1 integrin observed in mdx muscle and Duchenne muscular dystrophy patients. Similar to the α7 integrin, Ptrh2 expression was decreased in laminin-α2 dyW null gastrocnemius muscle. Our data establishes a PTRH2 mutation as a novel driver of congenital muscle degeneration and identifies a potential novel target to treat muscle myopathies.
Collapse
Affiliation(s)
- Jinger Doe
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Angela M Kaindl
- Institute of Cell Biology and Neurobiology.,Department of Pediatric Neurology, Charité -Universitätsmedizin, 13353 Berlin, Germany
| | - Mayumi Jijiwa
- The University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | | | - Hao Hu
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | - Tatiana M Fontelonga
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Pamela Barraza
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Vivian Cruz
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Pam Van Ry
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Joe W Ramos
- The University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | |
Collapse
|
9
|
Bell RAV, Al-Khalaf M, Megeney LA. The beneficial role of proteolysis in skeletal muscle growth and stress adaptation. Skelet Muscle 2016; 6:16. [PMID: 27054028 PMCID: PMC4822268 DOI: 10.1186/s13395-016-0086-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/17/2016] [Indexed: 12/17/2022] Open
Abstract
Muscle atrophy derived from excessive proteolysis is a hallmark of numerous disease conditions. Accordingly, the negative consequences of skeletal muscle protein breakdown often overshadow the critical nature of proteolytic systems in maintaining normal cellular function. Here, we discuss the major cellular proteolysis machinery-the ubiquitin/proteosome system, the autophagy/lysosomal system, and caspase-mediated protein cleavage-and the critical role of these protein machines in establishing and preserving muscle health. We examine how ordered degradation modifies (1) the spatiotemporal expression of myogenic regulatory factors during myoblast differentiation, (2) membrane fusion during myotube formation, (3) sarcomere remodeling and muscle growth following physical stress, and (4) energy homeostasis during nutrient deprivation. Finally, we review the origin and etiology of a number of myopathies and how these devastating conditions arise from inborn errors in proteolysis.
Collapse
Affiliation(s)
- Ryan A V Bell
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6 Canada ; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada
| | - Mohammad Al-Khalaf
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6 Canada ; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada
| | - Lynn A Megeney
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6 Canada ; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada ; Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
10
|
Griffiths GS, Doe J, Jijiwa M, Van Ry P, Cruz V, de la Vega M, Ramos JW, Burkin DJ, Matter ML. Bit1 is an essential regulator of myogenic differentiation. Development 2015. [DOI: 10.1242/dev.125765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|