1
|
Hanna SM, Tavafoghi B, Chen JS, Howard I, Ren L, Willet AH, Gould KL. New mutations in the core Schizosaccharomyces pombe spindle pole body scaffold Ppc89 reveal separable functions in regulating cell division. G3 (BETHESDA, MD.) 2025; 15:jkae249. [PMID: 39471327 PMCID: PMC11708228 DOI: 10.1093/g3journal/jkae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Centrosomes and spindle pole bodies (SPBs) are important for mitotic spindle formation and also serve as signaling platforms. In the fission yeast Schizosaccharomyces pombe, genetic ablation and high-resolution imaging indicate that the α-helical Ppc89 is central to SPB structure and function. Here, we developed and characterized conditional and truncation mutants of ppc89. Alleles with mutations in 2 predicted α-helices near the C-terminus were specifically defective in anchoring Sid4, the scaffold for the septation initiation network (SIN), and proteins dependent on Sid4 (Cdc11, Dma1, Mto1, and Mto2). Artificial tethering of Sid4 to the SPB fully rescued these ppc89 mutants. Another ppc89 allele had mutations located throughout the coding region. While this mutant was also defective in Sid4 anchoring, it displayed additional defects including fragmented SPBs and forming and constricting a second cytokinetic ring in 1 daughter cell. These defects were shared with a ppc89 allele truncated of the most C-terminal predicted α-helices that is still able to recruit Sid4 and the SIN. We conclude that Ppc89 not only tethers the SIN to the SPB but is also necessary for the integrity of the SPB and faithful coordination of cytokinesis with mitosis.
Collapse
Affiliation(s)
- Sarah M Hanna
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Bita Tavafoghi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Isaac Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Chen JS, Igarashi MG, Ren L, Hanna SM, Turner LA, McDonald NA, Beckley JR, Willet AH, Gould KL. The core spindle pole body scaffold Ppc89 links the pericentrin orthologue Pcp1 to the fission yeast spindle pole body via an evolutionarily conserved interface. Mol Biol Cell 2024; 35:ar112. [PMID: 38985524 PMCID: PMC11321043 DOI: 10.1091/mbc.e24-05-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Centrosomes and spindle pole bodies (SPBs) are important for mitotic spindle formation and serve as cellular signaling platforms. Although centrosomes and SPBs differ in morphology, many mechanistic insights into centrosome function have been gleaned from SPB studies. In the fission yeast Schizosaccharomyces pombe, the α-helical protein Ppc89, identified based on its interaction with the septation initiation network scaffold Sid4, comprises the SPB core. High-resolution imaging has suggested that SPB proteins assemble on the Ppc89 core during SPB duplication, but such interactions are undefined. Here, we define a connection between Ppc89 and the essential pericentrin Pcp1. Specifically, we found that a predicted third helix within Ppc89 binds the Pcp1 pericentrin-AKAP450 centrosomal targeting (PACT) domain complexed with calmodulin. Ppc89 helix 3 contains similarity to present in the N-terminus of Cep57 (PINC) motifs found in the centrosomal proteins fly SAS-6 and human Cep57 and also to the S. cerevisiae SPB protein Spc42. These motifs bind pericentrin-calmodulin complexes and AlphaFold2 models suggest a homologous complex assembles in all four organisms. Mutational analysis of the S. pombe complex supports the importance of Ppc89-Pcp1 binding interface in vivo. Our studies provide insight into the core architecture of the S. pombe SPB and suggest an evolutionarily conserved mechanism of scaffolding pericentrin-calmodulin complexes for mitotic spindle formation.
Collapse
Affiliation(s)
- Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Maya G. Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Sarah M. Hanna
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Lesley A. Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Nathan A. McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Janel R. Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
3
|
Jain I, Tran PT. Prolongation of mitosis is associated with enhanced endogenous DNA damage in fission yeast. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000911. [PMID: 37521138 PMCID: PMC10375284 DOI: 10.17912/micropub.biology.000911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/13/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Mitosis is usually shorter than other phases of the cell cycle and maintains a consistent duration despite variations in cell size and spindle size. This suggests the existence of a compensatory mechanism that ensures a short duration, possibly as a protective measure against irreversible damage, such as DNA damage. To explore the link between prolonged mitosis and DNA damage, we develop a microscopy-based assay utilizing Rad52-GFP as a marker for mitotic DNA damage. Through this assay, we provide evidence that mutants with prolonged mitosis exhibit increased Rad52 puncta, indicating an elevation in endogenous DNA damage.
Collapse
Affiliation(s)
- Ishutesh Jain
- Institut Curie, PSL Université, Sorbonne Université, CNRS UMR 144, Paris 75005, France
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences - TIFR, Bangalore 560065, India
| | - Phong T. Tran
- Institut Curie, PSL Université, Sorbonne Université, CNRS UMR 144, Paris 75005, France
- University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Hinterndorfer K, Laporte MH, Mikus F, Tafur L, Bourgoint C, Prouteau M, Dey G, Loewith R, Guichard P, Hamel V. Ultrastructure expansion microscopy reveals the cellular architecture of budding and fission yeast. J Cell Sci 2022; 135:286062. [PMID: 36524422 PMCID: PMC10112979 DOI: 10.1242/jcs.260240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT
The budding and fission yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have served as invaluable model organisms to study conserved fundamental cellular processes. Although super-resolution microscopy has in recent years paved the way to a better understanding of the spatial organization of molecules in cells, its wide use in yeasts has remained limited due to the specific know-how and instrumentation required, contrasted with the relative ease of endogenous tagging and live-cell fluorescence microscopy. To facilitate super-resolution microscopy in yeasts, we have extended the ultrastructure expansion microscopy (U-ExM) method to both S. cerevisiae and S. pombe, enabling a 4-fold isotropic expansion. We demonstrate that U-ExM allows imaging of the microtubule cytoskeleton and its associated spindle pole body, notably unveiling the Sfi1p–Cdc31p spatial organization on the appendage bridge structure. In S. pombe, we validate the method by monitoring the homeostatic regulation of nuclear pore complex number through the cell cycle. Combined with NHS-ester pan-labelling, which provides a global cellular context, U-ExM reveals the subcellular organization of these two yeast models and provides a powerful new method to augment the already extensive yeast toolbox.
This article has an associated First Person interview with Kerstin Hinterndorfer and Felix Mikus, two of the joint first authors of the paper.
Collapse
Affiliation(s)
- Kerstin Hinterndorfer
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Marine H. Laporte
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Felix Mikus
- European Molecular Biology Laboratory 2 Cell Biology and Biophysics , , Heidelberg , Germany
| | - Lucas Tafur
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Clélia Bourgoint
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Manoel Prouteau
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Gautam Dey
- European Molecular Biology Laboratory 2 Cell Biology and Biophysics , , Heidelberg , Germany
| | - Robbie Loewith
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Paul Guichard
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Virginie Hamel
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| |
Collapse
|
5
|
Laporte MH, Bouhlel IB, Bertiaux E, Morrison CG, Giroud A, Borgers S, Azimzadeh J, Bornens M, Guichard P, Paoletti A, Hamel V. Human SFI1 and Centrin form a complex critical for centriole architecture and ciliogenesis. EMBO J 2022; 41:e112107. [PMID: 36125182 PMCID: PMC9627676 DOI: 10.15252/embj.2022112107] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
Over the course of evolution, the centrosome function has been conserved in most eukaryotes, but its core architecture has evolved differently in some clades, with the presence of centrioles in humans and a spindle pole body (SPB) in yeast. Similarly, the composition of these two core elements has diverged, with the exception of Centrin and SFI1, which form a complex in yeast to initiate SPB duplication. However, it remains unclear whether this complex exists at centrioles and whether its function has been conserved. Here, using expansion microscopy, we demonstrate that human SFI1 is a centriolar protein that associates with a pool of Centrin at the distal end of the centriole. We also find that both proteins are recruited early during procentriole assembly and that depletion of SFI1 results in the loss of the distal pool of Centrin, without altering centriole duplication. Instead, we show that SFI1/Centrin complex is essential for centriolar architecture, CEP164 distribution, and CP110 removal during ciliogenesis. Together, our work reveals a conserved SFI1/Centrin module displaying divergent functions between mammals and yeast.
Collapse
Affiliation(s)
- Marine H Laporte
- Department of Molecular and Cellular BiologyUniversity of GenevaGenevaSwitzerland
| | | | - Eloïse Bertiaux
- Department of Molecular and Cellular BiologyUniversity of GenevaGenevaSwitzerland
| | - Ciaran G Morrison
- Department of Molecular and Cellular BiologyUniversity of GenevaGenevaSwitzerland
- Centre for Chromosome Biology, School of Biological and Chemical SciencesNational University of Ireland GalwayGalwayIreland
| | - Alexia Giroud
- Department of Molecular and Cellular BiologyUniversity of GenevaGenevaSwitzerland
| | - Susanne Borgers
- Department of Molecular and Cellular BiologyUniversity of GenevaGenevaSwitzerland
| | | | | | - Paul Guichard
- Department of Molecular and Cellular BiologyUniversity of GenevaGenevaSwitzerland
| | - Anne Paoletti
- Institut Curie, UMR 144CNRS, PSL UniversityParisFrance
| | - Virginie Hamel
- Department of Molecular and Cellular BiologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
6
|
Sato M, Kakui Y, Toya M. Tell the Difference Between Mitosis and Meiosis: Interplay Between Chromosomes, Cytoskeleton, and Cell Cycle Regulation. Front Cell Dev Biol 2021; 9:660322. [PMID: 33898463 PMCID: PMC8060462 DOI: 10.3389/fcell.2021.660322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 12/04/2022] Open
Abstract
Meiosis is a specialized style of cell division conserved in eukaryotes, particularly designed for the production of gametes. A huge number of studies to date have demonstrated how chromosomes behave and how meiotic events are controlled. Yeast substantially contributed to the understanding of the molecular mechanisms of meiosis in the past decades. Recently, evidence began to accumulate to draw a perspective landscape showing that chromosomes and microtubules are mutually influenced: microtubules regulate chromosomes, whereas chromosomes also regulate microtubule behaviors. Here we focus on lessons from recent advancement in genetical and cytological studies of the fission yeast Schizosaccharomyces pombe, revealing how chromosomes, cytoskeleton, and cell cycle progression are organized and particularly how these are differentiated in mitosis and meiosis. These studies illuminate that meiosis is strategically designed to fulfill two missions: faithful segregation of genetic materials and production of genetic diversity in descendants through elaboration by meiosis-specific factors in collaboration with general factors.
Collapse
Affiliation(s)
- Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Institute for Medical-Oriented Structural Biology, Waseda University, Tokyo, Japan
| | - Yasutaka Kakui
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Mika Toya
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Major in Bioscience, Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
7
|
Rüthnick D, Vitale J, Neuner A, Schiebel E. The N-terminus of Sfi1 and yeast centrin Cdc31 provide the assembly site for a new spindle pole body. J Cell Biol 2021; 220:211743. [PMID: 33523111 PMCID: PMC7852455 DOI: 10.1083/jcb.202004196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/20/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
The spindle pole body (SPB) provides microtubule-organizing functions in yeast and duplicates exactly once per cell cycle. The first step in SPB duplication is the half-bridge to bridge conversion via the antiparallel dimerization of the centrin (Cdc31)-binding protein Sfi1 in anaphase. The bridge, which is anchored to the old SPB on the proximal end, exposes free Sfi1 N-termini (N-Sfi1) at its distal end. These free N-Sfi1 promote in G1 the assembly of the daughter SPB (dSPB) in a yet unclear manner. This study shows that N-Sfi1 including the first three Cdc31 binding sites interacts with the SPB components Spc29 and Spc42, triggering the assembly of the dSPB. Cdc31 binding to N-Sfi1 promotes Spc29 recruitment and is essential for satellite formation. Furthermore, phosphorylation of N-Sfi1 has an inhibitory effect and delays dSPB biogenesis until G1. Taking these data together, we provide an understanding of the initial steps in SPB assembly and describe a new function of Cdc31 in the recruitment of dSPB components.
Collapse
Affiliation(s)
- Diana Rüthnick
- Center for Molecular Biology, University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| | - Jlenia Vitale
- Center for Molecular Biology, University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| | - Annett Neuner
- Center for Molecular Biology, University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| | - Elmar Schiebel
- Center for Molecular Biology, University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| |
Collapse
|
8
|
Gao J, Xu G, Xu P. Comparative transcriptome analysis reveals metabolism transformation in Coilia nasus larvae during the mouth-open period. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100712. [DOI: 10.1016/j.cbd.2020.100712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/23/2023]
|
9
|
Edelmaier C, Lamson AR, Gergely ZR, Ansari S, Blackwell R, McIntosh JR, Glaser MA, Betterton MD. Mechanisms of chromosome biorientation and bipolar spindle assembly analyzed by computational modeling. eLife 2020; 9:48787. [PMID: 32053104 PMCID: PMC7311174 DOI: 10.7554/elife.48787] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
The essential functions required for mitotic spindle assembly and chromosome biorientation and segregation are not fully understood, despite extensive study. To illuminate the combinations of ingredients most important to align and segregate chromosomes and simultaneously assemble a bipolar spindle, we developed a computational model of fission-yeast mitosis. Robust chromosome biorientation requires progressive restriction of attachment geometry, destabilization of misaligned attachments, and attachment force dependence. Large spindle length fluctuations can occur when the kinetochore-microtubule attachment lifetime is long. The primary spindle force generators are kinesin-5 motors and crosslinkers in early mitosis, while interkinetochore stretch becomes important after biorientation. The same mechanisms that contribute to persistent biorientation lead to segregation of chromosomes to the poles after anaphase onset. This model therefore provides a framework to interrogate key requirements for robust chromosome biorientation, spindle length regulation, and force generation in the spindle. Before a cell divides, it must make a copy of its genetic material and then promptly split in two. This process, called mitosis, is coordinated by many different molecular machines. The DNA is copied, then the duplicated chromosomes line up at the middle of the cell. Next, an apparatus called the mitotic spindle latches onto the chromosomes before pulling them apart. The mitotic spindle is a bundle of long, thin filaments called microtubules. It attaches to chromosomes at the kinetochore, the point where two copied chromosomes are cinched together in their middle. Proper cell division is vital for the healthy growth of all organisms, big and small, and yet some parts of the process remain poorly understood despite extensive study. Specifically, there is more to learn about how the mitotic spindle self-assembles, and how microtubules and kinetochores work together to correctly orient and segregate chromosomes into two sister cells. These nanoscale processes are happening a hundred times a minute, so computer simulations are a good way to test what we know. Edelmaier et al. developed a computer model to simulate cell division in fission yeast, a species of yeast often used to study fundamental processes in the cell. The model simulates how the mitotic spindle assembles, how its microtubules attach to the kinetochore and the force required to pull two sister chromosomes apart. Building the simulation involved modelling interactions between the mitotic spindle and kinetochore, their movement and forces applied. To test its accuracy, model simulations were compared to recordings of the mitotic spindle – including its length, structure and position – imaged from dividing yeast cells. Running the simulation, Edelmaier et al. found that several key effects are essential for the proper movement of chromosomes in mitosis. This includes holding chromosomes in the correct orientation as the mitotic spindle assembles and controlling the relative position of microtubules as they attach to the kinetochore. Misaligned attachments must also be readily deconstructed and corrected to prevent any errors. The simulations also showed that kinetochores must begin to exert more force (to separate the chromosomes) once the mitotic spindle is attached correctly. Altogether, these findings improve the current understanding of how the mitotic spindle and its counterparts control cell division. Errors in chromosome segregation are associated with birth defects and cancer in humans, and this new simulation could potentially now be used to help make predictions about how to correct mistakes in the process.
Collapse
Affiliation(s)
| | - Adam R Lamson
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Zachary R Gergely
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Saad Ansari
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Robert Blackwell
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Matthew A Glaser
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Meredith D Betterton
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
10
|
Fong KK, Zelter A, Graczyk B, Hoyt JM, Riffle M, Johnson R, MacCoss MJ, Davis TN. Novel phosphorylation states of the yeast spindle pole body. Biol Open 2018; 7:bio.033647. [PMID: 29903865 PMCID: PMC6215409 DOI: 10.1242/bio.033647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phosphorylation regulates yeast spindle pole body (SPB) duplication and separation and likely regulates microtubule nucleation. We report a phosphoproteomic analysis using tandem mass spectrometry of enriched Saccharomyces cerevisiae SPBs for two cell cycle arrests, G1/S and the mitotic checkpoint, expanding on previously reported phosphoproteomic data sets. We present a novel phosphoproteomic state of SPBs arrested in G1/S by a cdc4-1 temperature-sensitive mutation, with particular focus on phosphorylation events on the γ-tubulin small complex (γ-TuSC). The cdc4-1 arrest is the earliest arrest at which microtubule nucleation has occurred at the newly duplicated SPB. Several novel phosphorylation sites were identified in G1/S and during mitosis on the microtubule nucleating γ-TuSC. These sites were analyzed in vivo by fluorescence microscopy and were shown to be required for proper regulation of spindle length. Additionally, in vivo analysis of two mitotic sites in Spc97 found that phosphorylation of at least one of these sites is required for progression through the cell cycle. This phosphoproteomic data set not only broadens the scope of the phosphoproteome of SPBs, it also identifies several γ-TuSC phosphorylation sites that influence microtubule formation. Summary: A phosphoproteome of yeast spindle pole bodies in G1/S or M phase identifies phosphorylation sites involved in spindle length control and provides direction for future phosphorylation analyses of spindle pole components.
Collapse
Affiliation(s)
- Kimberly K Fong
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Beth Graczyk
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jill M Hoyt
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Bornens M. Cell polarity: having and making sense of direction-on the evolutionary significance of the primary cilium/centrosome organ in Metazoa. Open Biol 2018; 8:180052. [PMID: 30068565 PMCID: PMC6119866 DOI: 10.1098/rsob.180052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
Cell-autonomous polarity in Metazoans is evolutionarily conserved. I assume that permanent polarity in unicellular eukaryotes is required for cell motion and sensory reception, integration of these two activities being an evolutionarily constrained function. Metazoans are unique in making cohesive multicellular organisms through complete cell divisions. They evolved a primary cilium/centrosome (PC/C) organ, ensuring similar functions to the basal body/flagellum of unicellular eukaryotes, but in different cells, or in the same cell at different moments. The possibility that this innovation contributed to the evolution of individuality, in being instrumental in the early specification of the germ line during development, is further discussed. Then, using the example of highly regenerative organisms like planarians, which have lost PC/C organ in dividing cells, I discuss the possibility that part of the remodelling necessary to reach a new higher-level unit of selection in multi-cellular organisms has been triggered by conflicts among individual cell polarities to reach an organismic polarity. Finally, I briefly consider organisms with a sensorimotor organ like the brain that requires exceedingly elongated polarized cells for its activity. I conclude that beyond critical consequences for embryo development, the conservation of cell-autonomous polarity in Metazoans had far-reaching implications for the evolution of individuality.
Collapse
Affiliation(s)
- Michel Bornens
- Institut Curie, PSL Research University, CNRS - UMR 144, 75005 Paris, France
| |
Collapse
|
12
|
Ito D, Bettencourt-Dias M. Centrosome Remodelling in Evolution. Cells 2018; 7:E71. [PMID: 29986477 PMCID: PMC6070874 DOI: 10.3390/cells7070071] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/27/2018] [Accepted: 07/04/2018] [Indexed: 11/16/2022] Open
Abstract
The centrosome is the major microtubule organizing centre (MTOC) in animal cells. The canonical centrosome is composed of two centrioles surrounded by a pericentriolar matrix (PCM). In contrast, yeasts and amoebozoa have lost centrioles and possess acentriolar centrosomes—called the spindle pole body (SPB) and the nucleus-associated body (NAB), respectively. Despite the difference in their structures, centriolar centrosomes and SPBs not only share components but also common biogenesis regulators. In this review, we focus on the SPB and speculate how its structures evolved from the ancestral centrosome. Phylogenetic distribution of molecular components suggests that yeasts gained specific SPB components upon loss of centrioles but maintained PCM components associated with the structure. It is possible that the PCM structure remained even after centrosome remodelling due to its indispensable function to nucleate microtubules. We propose that the yeast SPB has been formed by a step-wise process; (1) an SPB-like precursor structure appeared on the ancestral centriolar centrosome; (2) it interacted with the PCM and the nuclear envelope; and (3) it replaced the roles of centrioles. Acentriolar centrosomes should continue to be a great model to understand how centrosomes evolved and how centrosome biogenesis is regulated.
Collapse
Affiliation(s)
- Daisuke Ito
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | | |
Collapse
|
13
|
Duplication and Nuclear Envelope Insertion of the Yeast Microtubule Organizing Centre, the Spindle Pole Body. Cells 2018; 7:cells7050042. [PMID: 29748517 PMCID: PMC5981266 DOI: 10.3390/cells7050042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022] Open
Abstract
The main microtubule organizing centre in the unicellular model organisms Saccharomyces cerevisiae and Schizosaccharomyces pompe is the spindle pole body (SPB). The SPB is a multilayer structure, which duplicates exactly once per cell cycle. Unlike higher eukaryotic cells, both yeast model organisms undergo mitosis without breakdown of the nuclear envelope (NE), a so-called closed mitosis. Therefore, in order to simultaneously nucleate nuclear and cytoplasmic MTs, it is vital to embed the SPB into the NE at least during mitosis, similarly to the nuclear pore complex (NPC). This review aims to embrace the current knowledge of the SPB duplication cycle with special emphasis on the critical step of the insertion of the new SPB into the NE.
Collapse
|
14
|
Zhang W, Neuner A, Rüthnick D, Sachsenheimer T, Lüchtenborg C, Brügger B, Schiebel E. Brr6 and Brl1 locate to nuclear pore complex assembly sites to promote their biogenesis. J Cell Biol 2018; 217:877-894. [PMID: 29439116 PMCID: PMC5839787 DOI: 10.1083/jcb.201706024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/21/2017] [Accepted: 01/10/2018] [Indexed: 12/30/2022] Open
Abstract
The conserved paralogous Brr6 and Brl1 promote NPC biogenesis in an unclear manner. Here, Zhang et al. show that both transmembrane proteins transiently associate with NPC assembly intermediates and directly promote NPC biogenesis. The paralogous Brr6 and Brl1 are conserved integral membrane proteins of the nuclear envelope (NE) with an unclear role in nuclear pore complex (NPC) biogenesis. Here, we analyzed double-degron mutants of Brr6/Brl1 to understand this function. Depletion of Brr6 and Brl1 caused defects in NPC biogenesis, whereas the already assembled NPCs remained unaffected. This NPC biogenesis defect was not accompanied by a change in lipid composition. However, Brl1 interacted with Ndc1 and Nup188 by immunoprecipitation, and with transmembrane and outer and inner ring NPC components by split yellow fluorescent protein analysis, indicating a direct role in NPC biogenesis. Consistently, we found that Brr6 and Brl1 associated with a subpopulation of NPCs and emerging NPC assembly sites. Moreover, BRL1 overexpression affected NE morphology without a change in lipid composition and completely suppressed the nuclear pore biogenesis defect of nup116Δ and gle2Δ cells. We propose that Brr6 and Brl1 transiently associate with NPC assembly sites where they promote NPC biogenesis.
Collapse
Affiliation(s)
- Wanlu Zhang
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Diana Rüthnick
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | | | | | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| |
Collapse
|
15
|
Abstract
Live cell imaging complements the array of biochemical and molecular genetic approaches to provide a comprehensive insight into functional dependencies and molecular interactions in fission yeast. Fluorescent proteins and vital dyes reveal dynamic changes in the spatial distribution of organelles and the proteome and how each alters in response to changes in environmental and genetic composition. This introduction discusses key issues and basic image analysis for live cell imaging of fission yeast.
Collapse
Affiliation(s)
- Daniel P Mulvihill
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| |
Collapse
|
16
|
Cavanaugh AM, Jaspersen SL. Big Lessons from Little Yeast: Budding and Fission Yeast Centrosome Structure, Duplication, and Function. Annu Rev Genet 2017; 51:361-383. [PMID: 28934593 DOI: 10.1146/annurev-genet-120116-024733] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Centrosomes are a functionally conserved feature of eukaryotic cells that play an important role in cell division. The conserved γ-tubulin complex organizes spindle and astral microtubules, which, in turn, separate replicated chromosomes accurately into daughter cells. Like DNA, centrosomes are duplicated once each cell cycle. Although in some cell types it is possible for cell division to occur in the absence of centrosomes, these divisions typically result in defects in chromosome number and stability. In single-celled organisms such as fungi, centrosomes [known as spindle pole bodies (SPBs)] are essential for cell division. SPBs also must be inserted into the membrane because fungi undergo a closed mitosis in which the nuclear envelope (NE) remains intact. This poorly understood process involves events similar or identical to those needed for de novo nuclear pore complex assembly. Here, we review how analysis of fungal SPBs has advanced our understanding of centrosomes and NE events.
Collapse
Affiliation(s)
- Ann M Cavanaugh
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
17
|
Zhang Y, Gao X, Manck R, Schmid M, Osmani AH, Osmani SA, Takeshita N, Fischer R. Microtubule-organizing centers of Aspergillus nidulans
are anchored at septa by a disordered protein. Mol Microbiol 2017; 106:285-303. [DOI: 10.1111/mmi.13763] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Ying Zhang
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| | - Xiaolei Gao
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| | - Raphael Manck
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| | - Marjorie Schmid
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| | - Aysha H. Osmani
- Department of Molecular Genetics; Ohio State University, 105 Biological Sciences Building, 484 W 12th Ave; Columbus OH 43210 USA
| | - Stephen A. Osmani
- Department of Molecular Genetics; Ohio State University, 105 Biological Sciences Building, 484 W 12th Ave; Columbus OH 43210 USA
| | - Norio Takeshita
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
- School of Life and Environmental Sciences; University of Tsukuba; Ten-Nou-Dai Tsukuba 305-8572 Japan
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| |
Collapse
|
18
|
Bestul AJ, Yu Z, Unruh JR, Jaspersen SL. Molecular model of fission yeast centrosome assembly determined by superresolution imaging. J Cell Biol 2017; 216:2409-2424. [PMID: 28619713 PMCID: PMC5551712 DOI: 10.1083/jcb.201701041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/17/2017] [Accepted: 05/10/2017] [Indexed: 01/06/2023] Open
Abstract
Microtubule-organizing centers (MTOCs), known as centrosomes in animals and spindle pole bodies (SPBs) in fungi, are important for the faithful distribution of chromosomes between daughter cells during mitosis as well as for other cellular functions. The cytoplasmic duplication cycle and regulation of the Schizosaccharomyces pombe SPB is analogous to centrosomes, making it an ideal model to study MTOC assembly. Here, we use superresolution structured illumination microscopy with single-particle averaging to localize 14 S. pombe SPB components and regulators, determining both the relationship of proteins to each other within the SPB and how each protein is assembled into a new structure during SPB duplication. These data enabled us to build the first comprehensive molecular model of the S. pombe SPB, resulting in structural and functional insights not ascertained through investigations of individual subunits, including functional similarities between Ppc89 and the budding yeast SPB scaffold Spc42, distribution of Sad1 to a ring-like structure and multiple modes of Mto1 recruitment.
Collapse
Affiliation(s)
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
19
|
Fox C, Zou J, Rappsilber J, Marston AL. Cdc14 phosphatase directs centrosome re-duplication at the meiosis I to meiosis II transition in budding yeast. Wellcome Open Res 2017. [DOI: 10.12688/wellcomeopenres.10507.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BackgroundGametes are generated through a specialized cell division called meiosis, in which ploidy is reduced by half because two consecutive rounds of chromosome segregation, meiosis I and meiosis II, occur without intervening DNA replication. This contrasts with the mitotic cell cycle where DNA replication and chromosome segregation alternate to maintain the same ploidy. At the end of mitosis, CDKs are inactivated. This low CDK state in late mitosis/G1 allows for critical preparatory events for DNA replication and centrosome/spindle pole body (SPB) duplication. However, their execution is inhibited until S phase, where further preparatory events are also prevented. This “licensing” ensures that both the chromosomes and the centrosomes/SPBs replicate exactly once per cell cycle, thereby maintaining constant ploidy. Crucially, between meiosis I and meiosis II, centrosomes/SPBs must be re-licensed, but DNA re-replication must be avoided. In budding yeast, the Cdc14 protein phosphatase triggers CDK down regulation to promote exit from mitosis. Cdc14 also regulates the meiosis I to meiosis II transition, though its mode of action has remained unclear.MethodsFluorescence and electron microscopy was combined with proteomics to probe SPB duplication in cells with inactive or hyperactive Cdc14.ResultsWe demonstrate that Cdc14 ensures two successive nuclear divisions by re-licensing SPBs at the meiosis I to meiosis II transition. We show that Cdc14 is asymmetrically enriched on a single SPB during anaphase I and provide evidence that this enrichment promotes SPB re-duplication. Cells with impaired Cdc14 activity fail to promote extension of the SPB half-bridge, the initial step in morphogenesis of a new SPB. Conversely, cells with hyper-active Cdc14 duplicate SPBs, but fail to induce their separation.ConclusionOur findings implicate reversal of key CDK-dependent phosphorylations in the differential licensing of cyclical events at the meiosis I to meiosis I transition.
Collapse
|
20
|
Fox C, Zou J, Rappsilber J, Marston AL. Cdc14 phosphatase directs centrosome re-duplication at the meiosis I to meiosis II transition in budding yeast. Wellcome Open Res 2017; 2:2. [PMID: 28133632 PMCID: PMC5266553 DOI: 10.12688/wellcomeopenres.10507.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Gametes are generated through a specialized cell division called meiosis, in which ploidy is reduced by half because two consecutive rounds of chromosome segregation, meiosis I and meiosis II, occur without intervening DNA replication. This contrasts with the mitotic cell cycle where DNA replication and chromosome segregation alternate to maintain the same ploidy. At the end of mitosis, cyclin-dependent kinases (CDKs) are inactivated. This low CDK state in late mitosis/G1 allows for critical preparatory events for DNA replication and centrosome/spindle pole body (SPB) duplication. However, their execution is inhibited until S phase, where further preparatory events are also prevented. This “licensing” ensures that both the chromosomes and the centrosomes/SPBs replicate exactly once per cell cycle, thereby maintaining constant ploidy. Crucially, between meiosis I and meiosis II, centrosomes/SPBs must be re-licensed, but DNA re-replication must be avoided. In budding yeast, the Cdc14 protein phosphatase triggers CDK down regulation to promote exit from mitosis. Cdc14 also regulates the meiosis I to meiosis II transition, though its mode of action has remained unclear. Methods: Fluorescence and electron microscopy was combined with proteomics to probe SPB duplication in cells with inactive or hyperactive Cdc14. Results: We demonstrate that Cdc14 ensures two successive nuclear divisions by re-licensing SPBs at the meiosis I to meiosis II transition. We show that Cdc14 is asymmetrically enriched on a single SPB during anaphase I and provide evidence that this enrichment promotes SPB re-duplication. Cells with impaired Cdc14 activity fail to promote extension of the SPB half-bridge, the initial step in morphogenesis of a new SPB. Conversely, cells with hyper-active Cdc14 duplicate SPBs, but fail to induce their separation. Conclusion: Our findings implicate reversal of key CDK-dependent phosphorylations in the differential licensing of cyclical events at the meiosis I to meiosis II transition.
Collapse
Affiliation(s)
- Colette Fox
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Edinburgh, UK
| | - Juan Zou
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Edinburgh, UK
| | - Juri Rappsilber
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Edinburgh, UK.,Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Adele L Marston
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Edinburgh, UK
| |
Collapse
|
21
|
Abstract
The yeast spindle pole body (SPB) is the functional equivalent of the mammalian centrosome. Centrosomes and SPBs duplicate exactly once per cell cycle by mechanisms that use the mother structure as a platform for the assembly of the daughter. The conserved Sfi1 and centrin proteins are essential components of the SPB duplication process. Sfi1 is an elongated molecule that has, in its center, 20 to 23 binding sites for the Ca(2+)-binding protein centrin. In the yeastSaccharomyces cerevisiae, all Sfi1 N termini are in contact with the mother SPB whereas the free C termini are distal to it. During S phase and early mitosis, cyclin-dependent kinase 1 (Cdk1) phosphorylation of mainly serine residues in the Sfi1 C termini blocks the initiation of SPB duplication ("off" state). Upon anaphase onset, the phosphatase Cdc14 dephosphorylates Sfi1 ("on" state) to promote antiparallel and shifted incorporation of cytoplasmic Sfi1 molecules into the half-bridge layer, which thereby elongates into the bridge. The Sfi1 C termini of the two Sfi1 layers localize in the bridge center, whereas the N termini of the newly assembled Sfi1 molecules are distal to the mother SPB. These free Sfi1 N termini then assemble the new SPB in G1phase. Recruitment of Sfi1 molecules into the anaphase SPB and bridge formation were also observed inSchizosaccharomyces pombe, suggesting that the Sfi1 bridge cycle is conserved between the two organisms. Thus, restricting SPB duplication to one event per cell cycle requires only an oscillation between Cdk1 kinase and Cdc14 phosphatase activities. This clockwork regulates the "on"/"off" state of the Sfi1-centrin receiver.
Collapse
|
22
|
Martinez-Sanz J, Assairi L. New insights into the interaction of centrin with Sfi1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:319-30. [PMID: 26779587 DOI: 10.1016/j.bbapap.2016.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/03/2015] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
Abstract
Centrin binds to Rad4(XPC) and Sfi1 through the hydrophobic motif W(1)xxL(4)xxxL(8) in the opposite orientation. Rad4 has one motif, but Sfi1 has approximately 20 repeats, each of which interacts with a centrin molecule. To investigate the parameters involved in centrin binding, we purified a ScSfi1 domain containing 6 repeats complexed with either yeast centrin Cdc31 or human centrin 1. The present study was performed using mutagenesis of centrin and of Sfi1 residues involved in centrin binding and the stability of the centrin-centrin complexes was assessed using thermal denaturation and CD. Calcium stabilized these complexes, as indicated by the Tm increases measured by circular dichroism. The complexes, which were composed of Sfi1 variants and yeast centrin, were analysed in the presence of EDTA. The replacement of W with F within the repeat region yielded a functional repeat (Tm 45°C). The replacement of W with A in two adjacent Sfi1 repeats reduced the thermal stability of the Sfi1-centrin complexes (40°C). We analysed three HsCen1 variants that were homologous to the yeast mutants and induced cell cycle arrest during the G2/M transition. The HsCen1 variants E105K and F113L reduced the thermal stability (50°C, 50°C) of the ScSfi1-HsCen1 complexes; in contrast, the A109T variant exhibited no change in thermal stability relative to the wild-type (60°C). Conversely to ScCdc31, there were no apparent centrin-centrin interactions with wild-type HsCen1, but they did occur for the S170D mutation that mimics PKA phosphorylation at the S170 residue.
Collapse
Affiliation(s)
- Juan Martinez-Sanz
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U759, F-91405 Orsay Cédex, France
| | - Liliane Assairi
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U759, F-91405 Orsay Cédex, France.
| |
Collapse
|
23
|
Burns S, Avena JS, Unruh JR, Yu Z, Smith SE, Slaughter BD, Winey M, Jaspersen SL. Structured illumination with particle averaging reveals novel roles for yeast centrosome components during duplication. eLife 2015; 4. [PMID: 26371506 PMCID: PMC4564689 DOI: 10.7554/elife.08586] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/11/2015] [Indexed: 01/23/2023] Open
Abstract
Duplication of the yeast centrosome (called the spindle pole body, SPB) is thought to occur through a series of discrete steps that culminate in insertion of the new SPB into the nuclear envelope (NE). To better understand this process, we developed a novel two-color structured illumination microscopy with single-particle averaging (SPA-SIM) approach to study the localization of all 18 SPB components during duplication using endogenously expressed fluorescent protein derivatives. The increased resolution and quantitative intensity information obtained using this method allowed us to demonstrate that SPB duplication begins by formation of an asymmetric Sfi1 filament at mitotic exit followed by Mps1-dependent assembly of a Spc29- and Spc42-dependent complex at its tip. Our observation that proteins involved in membrane insertion, such as Mps2, Bbp1, and Ndc1, also accumulate at the new SPB early in duplication suggests that SPB assembly and NE insertion are coupled events during SPB formation in wild-type cells. DOI:http://dx.doi.org/10.7554/eLife.08586.001 Cells divide to produce two new daughter cells that each contain the same genetic material. First, the DNA of the parent cell is copied, then it must be physically separated into the daughter cells by a structure made of filaments called microtubules. To ensure that the DNA is separated into two equal parts, the microtubules must emerge from two points in the cell, known as spindle poles. Each spindle pole is made of a group (or ‘complex’) of proteins and these have to be copied before the cell can divide. While we understand how DNA is copied, we do not know how cells copy proteins. The spindle pole in yeast—known as the spindle pole body—is an ideal model to study this problem because the proteins that form it have already been identified and it is easy to study yeast in the laboratory. Burns et al. developed a new method to study the spindle pole body using fluorescent protein tags and a sophisticated microscopy technique. The experiments mapped the positions of 18 proteins within the spindle pole body during its duplication. Some of these proteins enable the spindle pole to insert into the membrane that surrounds the cell's nucleus. Unexpectedly, Burns et al. observed that this set of proteins interact with the new spindle pole as it forms, instead of afterwards as was previously believed. Burns et al.'s findings suggest that the spindle pole body assembles into the membrane surrounding the nucleus at the same time as it is copied. The next challenges are to understand the details of how this works and to use the same method to study other large protein complexes in cells. Until now, highly detailed surveys of protein structures have been limited to a handful of proteins and conditions. The method developed by Burns et al. makes it possible to carry out studies that examine the movements of whole protein complexes during cell division. DOI:http://dx.doi.org/10.7554/eLife.08586.002
Collapse
Affiliation(s)
- Shannon Burns
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jennifer S Avena
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, United States
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, United States
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Mark Winey
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, United States
| |
Collapse
|
24
|
Seybold C, Elserafy M, Rüthnick D, Ozboyaci M, Neuner A, Flottmann B, Heilemann M, Wade RC, Schiebel E. Kar1 binding to Sfi1 C-terminal regions anchors the SPB bridge to the nuclear envelope. J Cell Biol 2015; 209:843-61. [PMID: 26076691 PMCID: PMC4477856 DOI: 10.1083/jcb.201412050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/20/2015] [Indexed: 11/22/2022] Open
Abstract
The yeast spindle pole body (SPB) is the functional equivalent of the mammalian centrosome. The half bridge is a SPB substructure on the nuclear envelope (NE), playing a key role in SPB duplication. Its cytoplasmic components are the membrane-anchored Kar1, the yeast centrin Cdc31, and the Cdc31-binding protein Sfi1. In G1, the half bridge expands into the bridge through Sfi1 C-terminal (Sfi1-CT) dimerization, the licensing step for SPB duplication. We exploited photo-activated localization microscopy (PALM) to show that Kar1 localizes in the bridge center. Binding assays revealed direct interaction between Kar1 and C-terminal Sfi1 fragments. kar1Δ cells whose viability was maintained by the dominant CDC31-16 showed an arched bridge, indicating Kar1's function in tethering Sfi1 to the NE. Cdc31-16 enhanced Cdc31-Cdc31 interactions between Sfi1-Cdc31 layers, as suggested by binding free energy calculations. In our model, Kar1 binding is restricted to Sfi1-CT and Sfi1 C-terminal centrin-binding repeats, and centrin and Kar1 provide cross-links, while Sfi1-CT stabilizes the bridge and ensures timely SPB separation.
Collapse
Affiliation(s)
- Christian Seybold
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Menattallah Elserafy
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Diana Rüthnick
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Musa Ozboyaci
- Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Benjamin Flottmann
- Institute for Anatomy and Cell Biology, Functional Neuroanatomy, Heidelberg University, 69120 Heidelberg, Germany Institute for Physical and Theoretical Chemistry, Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Mike Heilemann
- Institute for Anatomy and Cell Biology, Functional Neuroanatomy, Heidelberg University, 69120 Heidelberg, Germany Institute for Physical and Theoretical Chemistry, Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Rebecca C Wade
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| |
Collapse
|