1
|
Sinha P, Turchyna Y, Mitchell SPC, Sadek M, Armagan G, Perrin F, Maesako M, Berezovska O. Glutamate Transporter 1 as a Novel Negative Regulator of Amyloid β. Cells 2024; 13:1600. [PMID: 39404364 PMCID: PMC11475981 DOI: 10.3390/cells13191600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Glutamate transporter-1 (GLT-1) dynamics are implicated in excitotoxicity and Alzheimer's disease (AD) progression. Early stages of AD are often marked by hyperactivity and increased epileptiform activity preceding cognitive decline. Previously, we identified a direct interaction between GLT-1 and Presenilin 1 (PS1) in the brain, highlighting GLT-1 as a promising target in AD research. This study reports the significance of this interaction and uncovers a novel role of GLT-1 in modulating amyloid-beta (Aβ) production. Overexpression of GLT-1 in cells reduces the levels of Aβ40 and Aβ42 by decreasing γ-secretase activity pertinent to APP processing and induces a more "open" PS1 conformation, resulting in decreased Aβ42/40 ratio. Inhibition of the GLT-1/PS1 interaction using cell-permeable peptides produced an opposing effect on Aβ, highlighting the pivotal role of this interaction in regulating Aβ levels. These findings emphasize the potential of targeting the GLT-1/PS1 interaction as a novel therapeutic strategy for AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Oksana Berezovska
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114, 16th Street, Charlestown, MA 02129, USA
| |
Collapse
|
2
|
Sen P, Ghosh SS. The Intricate Notch Signaling Dynamics in Therapeutic Realms of Cancer. ACS Pharmacol Transl Sci 2023; 6:651-670. [PMID: 37200816 PMCID: PMC10186364 DOI: 10.1021/acsptsci.2c00239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 05/20/2023]
Abstract
The Notch pathway is remarkably simple without the interventions of secondary messengers. It possesses a unique receptor-ligand interaction that imparts signaling upon cleavage of the receptor followed by the nuclear localization of its cleaved intracellular domain. It is found that the transcriptional regulator of the Notch pathway lies at the intersection of multiple signaling pathways that enhance the aggressiveness of cancer. The preclinical and clinical evidence supports the pro-oncogenic function of Notch signaling in various tumor subtypes. Owing to its oncogenic role, the Notch signaling pathway assists in enhanced tumorigenesis by facilitating angiogenesis, drug resistance, epithelial to mesenchymal transition, etc., which is also attributed to the poor outcome in patients. Therefore, it is extremely vital to discover a suitable inhibitor to downregulate the signal-transducing ability of Notch. The Notch inhibitory agents, such as receptor decoys, protease (ADAM and γ-secretase) inhibitors, and monoclonal/bispecific antibodies, are being investigated as candidate therapeutic agents. Studies conducted by our group exemplify the promising results in ablating tumorigenic aggressiveness by inhibiting the constituents of the Notch pathway. This review deals with the detailed mechanism of the Notch pathways and their implications in various malignancies. It also bestows us with the recent therapeutic advances concerning Notch signaling in the context of monotherapy and combination therapy.
Collapse
Affiliation(s)
- Plaboni Sen
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Siddhartha Sankar Ghosh
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
3
|
Konstantinidis E, Molisak A, Perrin F, Streubel-Gallasch L, Fayad S, Kim DY, Petri K, Aryee MJ, Aguilar X, György B, Giedraitis V, Joung JK, Pattanayak V, Essand M, Erlandsson A, Berezovska O, Ingelsson M. CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer's disease PSEN 1 M146L mutation. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:450-461. [PMID: 35505961 PMCID: PMC9043867 DOI: 10.1016/j.omtn.2022.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/27/2022] [Indexed: 11/29/2022]
Abstract
Presenilin 1 (PS1) is a central component of γ-secretase, an enzymatic complex involved in the generation of the amyloid-β (Aβ) peptide that deposits as plaques in the Alzheimer's disease (AD) brain. The M146L mutation in the PS1 gene (PSEN1) leads to an autosomal dominant form of early-onset AD by promoting a relative increase in the generation of the more aggregation-prone Aβ42. This change is evident not only in the brain but also in peripheral cells of mutation carriers. In this study we used the CRISPR-Cas9 system from Streptococcus pyogenes to selectively disrupt the PSEN1 M146L allele in human fibroblasts. A disruption of more than 50% of mutant alleles was observed in all CRISPR-Cas9-treated samples, resulting in reduced extracellular Aβ42/40 ratios. Fluorescence resonance energy transfer-based conformation and western blot analyses indicated that CRISPR-Cas9 treatment also affects the overall PS1 conformation and reduces PS1 levels. Moreover, our guide RNA did not lead to any detectable editing at the highest-ranking candidate off-target sites identified by ONE-seq and CIRCLE-seq. Overall, our data support the effectiveness of CRISPR-Cas9 in selectively targeting the PSEN1 M146L allele and counteracting the AD-associated phenotype. We believe that this system could be developed into a therapeutic strategy for patients with this and other dominant mutations leading to early-onset AD.
Collapse
Affiliation(s)
- Evangelos Konstantinidis
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Agnieszka Molisak
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Florian Perrin
- Department of Neurology, Massachusetts General Hospital, Memory Disorders Unit, Harvard Medical School, Charlestown, MA, USA
| | - Linn Streubel-Gallasch
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sarah Fayad
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Daniel Y. Kim
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Karl Petri
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Martin J. Aryee
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ximena Aguilar
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Bence György
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - J. Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Vikram Pattanayak
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Oksana Berezovska
- Department of Neurology, Massachusetts General Hospital, Memory Disorders Unit, Harvard Medical School, Charlestown, MA, USA
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Pace NP, Mintoff D, Borg I. The Genomic Architecture of Hidradenitis Suppurativa-A Systematic Review. Front Genet 2022; 13:861241. [PMID: 35401657 PMCID: PMC8986338 DOI: 10.3389/fgene.2022.861241] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Hidradenitis suppurativa is a chronic, suppurative condition of the pilosebaceous unit manifesting as painful nodules, abscesses, and sinus tracts mostly in, but not limited to, intertriginous skin. Great strides have been made at elucidating the pathophysiology of hidradenitis suppurativa, which appears to be the product of hyperkeratinization and inflammation brought about by environmental factors and a genetic predisposition. The identification of familial hidradenitis suppurativa has sparked research aimed at identifying underlying pathogenic variants in patients who harbor them. The objective of this review is to provide a broad overview of the role of genetics in various aspects of hidradenitis suppurativa, specifically the pathophysiology, diagnosis, and clinical application.
Collapse
Affiliation(s)
- Nikolai Paul Pace
- Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Dillon Mintoff
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of Dermatology, Mater Dei Hospital, Msida, Malta
| | - Isabella Borg
- Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of Pathology, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
5
|
Kedia S, Mandal K, Netrakanti PR, Jose M, Sisodia SS, Nair D. Nanoscale organization of Nicastrin, the substrate receptor of the γ-secretase complex, as independent molecular domains. Mol Brain 2021; 14:158. [PMID: 34645511 PMCID: PMC8515736 DOI: 10.1186/s13041-021-00855-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
Alterations in the canonical processing of Amyloid Precursor Protein generate proteoforms that contribute to the onset of Alzheimer’s Disease. Modified composition of γ-secretase or mutations in its subunits has been directly linked to altered generation of Amyloid beta. Despite biochemical evidence about the role of γ-secretase in the generation of APP, the molecular origin of how spatial heterogeneity in the generation of proteoforms arises is not well understood. Here, we evaluated the localization of Nicastrin, a γ-secretase subunit, at nanometer sized functional zones of the synapse. With the help of super resolution microscopy, we confirm that Nicastrin is organized into nanodomains of high molecular density within an excitatory synapse. A similar nanoorganization was also observed for APP and the catalytic subunit of γ-secretase, Presenilin 1, that were discretely associated with Nicastrin nanodomains. Though Nicastrin is a functional subunit of γ-secretase, the Nicastrin and Presenilin1 nanodomains were either colocalized or localized independent of each other. The Nicastrin and Presenilin domains highlight a potential independent regulation of these molecules different from their canonical secretase function. The collisions between secretases and substrate molecules decide the probability and rate of product formation for transmembrane proteolysis. Our observations of secretase nanodomains indicate a spatial difference in the confinement of substrate and secretases, affecting the local probability of product formation by increasing their molecular availability, resulting in differential generation of proteoforms even within single synapses.
Collapse
Affiliation(s)
- Shekhar Kedia
- Centre for Neuroscience, Indian Institute of Science, 560012, Bangalore, India
| | - Kousik Mandal
- Centre for Neuroscience, Indian Institute of Science, 560012, Bangalore, India
| | | | - Mini Jose
- Centre for Neuroscience, Indian Institute of Science, 560012, Bangalore, India
| | - Sangram S Sisodia
- Centre for Molecular Neurobiology, Department of Neurobiology, The University of Chicago, 60637, Chicago, IL, USA
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, 560012, Bangalore, India.
| |
Collapse
|
6
|
Orzeł U, Jakowiecki J, Młynarczyk K, Filipek S. The Role of Cholesterol in Amyloidogenic Substrate Binding to the γ-Secretase Complex. Biomolecules 2021; 11:biom11070935. [PMID: 34202467 PMCID: PMC8301813 DOI: 10.3390/biom11070935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease is the most common progressive neurodegenerative disorder and is characterized by the presence of amyloid β (Aβ) plaques in the brain. The γ-secretase complex, which produces Aβ, is an intramembrane-cleaving protease consisting of four membrane proteins. In this paper we investigated the amyloidogenic fragments of amyloid precursor protein (substrates Aβ43 and Aβ45, leading to less amyloidogenic Aβ40 and more amyloidogenic Aβ42, respectively) docked to the binding site of presenilin, the catalytic subunit of γ-secretase. In total, we performed 9 μs of all-atom molecular dynamics simulations of the whole γ-secretase complex with both substrates in low (10%) and high (50%) concentrations of cholesterol in the membrane. We found that, at the high cholesterol level, the Aβ45 helix was statistically more flexible in the binding site of presenilin than Aβ43. An increase in the cholesterol concentration was also correlated with a higher flexibility of the Aβ45 helix, which suggests incompatibility between Aβ45 and the binding site of presenilin potentiated by a high cholesterol level. However, at the C-terminal part of Aβ45, the active site of presenilin was more compact in the case of a high cholesterol level, which could promote processing of this substrate. We also performed detailed mapping of the cholesterol binding sites at low and high cholesterol concentrations, which were independent of the typical cholesterol binding motifs.
Collapse
|
7
|
Lechuga GC, Napoleão-Pêgo P, Bottino CCG, Pinho RT, Provance-Jr DW, De-Simone SG. Trypanosoma cruzi Presenilin-Like Transmembrane Aspartyl Protease: Characterization and Cellular Localization. Biomolecules 2020; 10:biom10111564. [PMID: 33212923 PMCID: PMC7698364 DOI: 10.3390/biom10111564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
The increasing detection of infections of Trypanosoma cruzi, the etiological agent of Chagas disease, in non-endemic regions beyond Latin America has risen to be a major public health issue. With an impact in the millions of people, current treatments rely on antiquated drugs that produce severe side effects and are considered nearly ineffective for the chronic phase. The minimal progress in the development of new drugs highlights the need for advances in basic research on crucial biochemical pathways in T. cruzi to identify new targets. Here, we report on the T. cruzi presenilin-like transmembrane aspartyl enzyme, a protease of the aspartic class in a unique phylogenetic subgroup with T. vivax separate from protozoans. Computational analyses suggest it contains nine transmembrane domains and an active site with the characteristic PALP motif of the A22 family. Multiple linear B-cell epitopes were identified by SPOT-synthesis analysis with Chagasic patient sera. Two were chosen to generate rabbit antisera, whose signal was primarily localized to the flagellar pocket, intracellular vesicles, and endoplasmic reticulum in parasites by whole-cell immunofluorescence. The results suggest that the parasitic presenilin-like enzyme could have a role in the secretory pathway and serve as a target for the generation of new therapeutics specific to the T. cruzi.
Collapse
Affiliation(s)
- Guilherme C. Lechuga
- Center for Technological Development in Health/National Institute of Science and Technology for Innovation on Diseases of Neglected Population (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (C.C.G.B.); (D.W.P.-J.)
- Cellular Ultrastructure Laboratory, FIOCRUZ, Oswaldo Cruz Institute, Rio de Janeiro 21040-900, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health/National Institute of Science and Technology for Innovation on Diseases of Neglected Population (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (C.C.G.B.); (D.W.P.-J.)
| | - Carolina C. G. Bottino
- Center for Technological Development in Health/National Institute of Science and Technology for Innovation on Diseases of Neglected Population (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (C.C.G.B.); (D.W.P.-J.)
| | - Rosa T. Pinho
- Clinical Immunology Laboratory, FIOCRUZ, Oswaldo Cruz Institute, Rio de Janeiro 21040-900, Brazil;
| | - David W. Provance-Jr
- Center for Technological Development in Health/National Institute of Science and Technology for Innovation on Diseases of Neglected Population (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (C.C.G.B.); (D.W.P.-J.)
- Interdisciplinary Medical Research Laboratory, FIOCRUZ, Oswaldo Cruz Institute, Rio de Janeiro 21040-900, Brazil
| | - Salvatore G. De-Simone
- Center for Technological Development in Health/National Institute of Science and Technology for Innovation on Diseases of Neglected Population (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (C.C.G.B.); (D.W.P.-J.)
- Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói 24220-008, Brazil
- Correspondence: ; Tel.: +55-21-3865-8183
| |
Collapse
|
8
|
Chen SY, Zacharias M. How Mutations Perturb γ-Secretase Active Site Studied by Free Energy Simulations. ACS Chem Neurosci 2020; 11:3321-3332. [PMID: 32960571 DOI: 10.1021/acschemneuro.0c00440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
γ-Secretase is involved in processing of the amyloid precursor protein (APP) and generation of short Aβ peptides that may play a key role in neurodegenerative diseases such as Alzheimer's disease (AD). Several mutations in γ-secretase influence its activity, resulting in early AD onset (Familial AD or FAD mutations). The molecular details of how mutations, not located close to the active site, can affect enzyme activity is not understood. In molecular dynamics simulations of γ-secretase in the absence of substrate (apo), we identified two active site conformational states characterized by a direct contact between catalytic Asp residues (closed state) and an open water-bridged state. In the presence of substrate, only conformations compatible with the open active site geometry are accessible. Systematic free energy simulations on wild type and FAD mutations indicate a free energy difference between closed and open states that is significantly modulated by FAD mutations and correlates with the corresponding experimental activity. For mutations with reduced activity, an increased penalty for open-state transitions was found. Only for two mutations located at the active site a direct perturbation of the open-state geometry was observed that could directly explain the drop of enzyme activity. The simulations suggest that modulation of the closed/open equilibrium and perturbation of the open (active) catalytic geometry are possible mechanisms of how FAD mutations affect γ-secretase activity. The results also offer an explanation for the experimental finding that FAD mutations, although not located at the interface to the substrate, mainly destabilize the enzyme-substrate complex.
Collapse
Affiliation(s)
- Shu-Yu Chen
- Physik-Department T38,Techniche Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
| | - Martin Zacharias
- Physik-Department T38,Techniche Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
| |
Collapse
|
9
|
Substrate recruitment by γ-secretase. Semin Cell Dev Biol 2020; 105:54-63. [DOI: 10.1016/j.semcdb.2020.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/27/2022]
|
10
|
Hitzenberger M, Götz A, Menig S, Brunschweiger B, Zacharias M, Scharnagl C. The dynamics of γ-secretase and its substrates. Semin Cell Dev Biol 2020; 105:86-101. [DOI: 10.1016/j.semcdb.2020.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022]
|
11
|
Escamilla-Ayala A, Wouters R, Sannerud R, Annaert W. Contribution of the Presenilins in the cell biology, structure and function of γ-secretase. Semin Cell Dev Biol 2020; 105:12-26. [DOI: 10.1016/j.semcdb.2020.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 01/25/2023]
|
12
|
Dehury B, Kepp KP. Membrane dynamics of γ-secretase with the anterior pharynx-defective 1B subunit. J Cell Biochem 2020; 122:69-85. [PMID: 32830360 DOI: 10.1002/jcb.29832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/13/2020] [Indexed: 01/12/2023]
Abstract
The four-subunit protease complex γ-secretase cleaves many single-pass transmembrane (TM) substrates, including Notch and β-amyloid precursor protein to generate amyloid-β (Aβ), central to Alzheimer's disease. Two of the subunits anterior pharynx-defective 1 (APH-1) and presenilin (PS) exist in two homologous forms APH1-A and APH1-B, and PS1 and PS2. The consequences of these variations are poorly understood and could affect Aβ production and γ-secretase medicine. Here, we developed the first complete structural model of the APH-1B subunit using the published cryo-electron microscopy (cryo-EM) structures of APH1-A (Protein Data Bank: 5FN2, 5A63, and 6IYC). We then performed all-atom molecular dynamics simulations at 303 K in a realistic bilayer system to understand both APH-1B alone and in γ-secretase without and with substrate C83-bound. We show that APH-1B adopts a 7TM topology with a water channel topology similar to APH-1A. We demonstrate direct transport of water through this channel, mainly via Glu84, Arg87, His170, and His196. The apo and holo states closely resemble the experimental cryo-EM structures with APH-1A, however with subtle differences: The substrate-bound APH-1B γ-secretase was quite stable, but some TM helices of PS1 and APH-1B rearranged in the membrane consistent with the disorder seen in the cryo-EM data. This produces different accessibility of water molecules for the catalytic aspartates of PS1, critical for Aβ production. In particular, we find that the typical distance between the catalytic aspartates of PS1 and the C83 cleavage sites are shorter in APH-1B, that is, it represents a more closed state, due to interactions with the C-terminal fragment of PS1. Our structural-dynamic model of APH-1B alone and in γ-secretase suggests generally similar topology but some notable differences in water accessibility which may be relevant to the protein's existence in two forms and their specific function and location.
Collapse
Affiliation(s)
- Budheswar Dehury
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
13
|
Dehury B, Tang N, Mehra R, Blundell TL, Kepp KP. Side-by-side comparison of Notch- and C83 binding to γ-secretase in a complete membrane model at physiological temperature. RSC Adv 2020; 10:31215-31232. [PMID: 35520661 PMCID: PMC9056423 DOI: 10.1039/d0ra04683c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/15/2020] [Indexed: 12/29/2022] Open
Abstract
γ-Secretase cleaves the C99 fragment of the amyloid precursor protein, leading to formation of aggregated β-amyloid peptide central to Alzheimer's disease, and Notch, essential for cell regulation. Recent cryogenic electron microscopy (cryo-EM) structures indicate major changes upon substrate binding, a β-sheet recognition motif, and a possible helix unwinding to expose peptide bonds towards nucleophilic attack. Here we report side-by-side comparison of the 303 K dynamics of the two proteins in realistic membranes using molecular dynamics simulations. Our ensembles agree with the cryo-EM data (full-protein Cα-RMSD = 1.62–2.19 Å) but reveal distinct presenilin helix conformation states and thermal β-strand to coil transitions of C83 and Notch100. We identify distinct 303 K hydrogen bond dynamics and water accessibility of the catalytic sites. The RKRR motif (1758–1761) contributes significantly to Notch binding and serves as a “membrane anchor” that prevents Notch displacement. Water that transiently hydrogen bonds to G1753 and V1754 probably represents the catalytic nucleophile. At 303 K, Notch and C83 binding induce different conformation states, with Notch mostly present in a closed state with shorter Asp–Asp distance. This may explain the different outcome of Notch and C99 cleavage, as the latter is more imprecise with many products. Our identified conformation states may aid efforts to develop conformation-selective drugs that target C99 and Notch cleavage differently, e.g. Notch-sparing γ-secretase modulators. Distinct membrane dynamics and conformations of C83- and Notch-bound γ-secretase may aid the development of Notch-sparing treatments of Alzheimer's disease.![]()
Collapse
Affiliation(s)
- Budheswar Dehury
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409.,Department of Biochemistry, University of Cambridge Tennis Court Road CB2 1GA UK
| | - Ning Tang
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| | - Rukmankesh Mehra
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge Tennis Court Road CB2 1GA UK
| | - Kasper P Kepp
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| |
Collapse
|
14
|
Escamilla-Ayala AA, Sannerud R, Mondin M, Poersch K, Vermeire W, Paparelli L, Berlage C, Koenig M, Chavez-Gutierrez L, Ulbrich MH, Munck S, Mizuno H, Annaert W. Super-resolution microscopy reveals majorly mono- and dimeric presenilin1/γ-secretase at the cell surface. eLife 2020; 9:56679. [PMID: 32631487 PMCID: PMC7340497 DOI: 10.7554/elife.56679] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
γ-Secretase is a multi-subunit enzyme whose aberrant activity is associated with Alzheimer’s disease and cancer. While its structure is atomically resolved, γ-secretase localization in the membrane in situ relies mostly on biochemical data. Here, we combined fluorescent tagging of γ-secretase subunits with super-resolution microscopy in fibroblasts. Structured illumination microscopy revealed single γ-secretase complexes with a monodisperse distribution and in a 1:1 stoichiometry of PSEN1 and nicastrin subunits. In living cells, sptPALM revealed PSEN1/γ-secretase mainly with directed motility and frequenting ‘hotspots’ or high track-density areas that are sensitive to γ-secretase inhibitors. We visualized γ-secretase association with substrates like amyloid precursor protein and N-cadherin, but not with its sheddases ADAM10 or BACE1 at the cell surface, arguing against pre-formed megadalton complexes. Nonetheless, in living cells PSEN1/γ-secretase transiently visits ADAM10 hotspots. Our results highlight the power of super-resolution microscopy for the study of γ-secretase distribution and dynamics in the membrane.
Collapse
Affiliation(s)
- Abril Angélica Escamilla-Ayala
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Magali Mondin
- Bordeaux Imaging Center, UMS 3420, CNRS-University of Bordeaux, US4 INSERM, Bordeaux, France
| | - Karin Poersch
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wendy Vermeire
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Laura Paparelli
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB Bio Imaging Core, Leuven, Belgium
| | - Caroline Berlage
- Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Lucia Chavez-Gutierrez
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Laboratory of Proteolytic Mechanisms in Neurodegeneration, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Maximilian H Ulbrich
- Institute of Internal Medicine IV, Medical Center of the University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Sebastian Munck
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB Bio Imaging Core, Leuven, Belgium
| | - Hideaki Mizuno
- Laboratory of Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, KU Leuven, Heverlee, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Cai T, Tomita T. Structure-activity relationship of presenilin in γ-secretase-mediated intramembrane cleavage. Semin Cell Dev Biol 2020; 105:102-109. [PMID: 32171519 DOI: 10.1016/j.semcdb.2020.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/12/2023]
Abstract
Genetic research on familial cases of Alzheimer disease have identified presenilin (PS) as an important membrane protein in the pathomechanism of this disease. PS is the catalytic subunit of γ-secretase, which is responsible for the generation of amyloid-β peptide deposited in the brains of Alzheimer disease patients. γ-Secretase is an atypical protease composed of four membrane proteins (i.e., presenilin, nicastrin, anterior pharynx defective-1 (Aph-1), and presenilin enhancer-2 (Pen-2)) and mediates intramembrane proteolysis. Numerous investigations have been conducted toward understanding the structural features of γ-secretase components as well as the cleavage mechanism of γ-secretase. In this review, we summarize our current understanding of the structure and activity relationship of the γ-secretase complex.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
16
|
Cai T, Morishima K, Takagi-Niidome S, Tominaga A, Tomita T. Conformational Dynamics of Transmembrane Domain 3 of Presenilin 1 Is Associated with the Trimming Activity of γ-Secretase. J Neurosci 2019; 39:8600-8610. [PMID: 31527118 PMCID: PMC6807281 DOI: 10.1523/jneurosci.0838-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/16/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
γ-Secretase is an intramembrane-cleaving protease that generates the toxic species of the amyloid-β peptide (Aβ) that is responsible for the pathology of Alzheimer disease. The catalytic subunit of γ-secretase is presenilin 1 (PS1), which is a polytopic membrane protein with a hydrophilic catalytic pore. The length of the C terminus of Aβ is proteolytically determined by its processive trimming by γ-secretase, although the precise mechanism still remains largely unknown. Here, we identified that transmembrane domain (TMD) 3 of human PS1 is involved in the formation of the intramembranous hydrophilic pore. Notably, the water accessibility of TMD3 was greatly altered by point mutations and compounds, which modify γ-secretase activity. The changes in the water accessibility of TMD3 was also correlated with Aβ42 production. Moreover, crosslinking between TMD3 and TMD7 resulted in a loss of sensitivity to a γ-secretase modulator that reduces Aβ42 production. Therefore, our findings indicate that the conformational dynamics of TMD3 is a prerequisite for regulation of the Aβ trimming activity of γ-secretase.SIGNIFICANCE STATEMENT Modulation of γ-secretase activity to reduce the level of toxic amyloid-β species is thought to be a therapeutic strategy for Alzheimer disease. However, the detailed mechanism of the regulation of amyloid-β production, as well as the structure-and-activity relationship of γ-secretase remains unclear. Here we identified that the water accessibility around transmembrane domain 3 in presenilin 1 was increased along with a reduction in toxic amyloid-β production. Our findings demonstrate how the structure of presenilin 1 dynamically changes during amyloid-β production, and provides insights toward the development of treatments against Alzheimer disease.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| | - Kanan Morishima
- Laboratory of Neuropathology and Neuroscience, Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shizuka Takagi-Niidome
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| | - Aya Tominaga
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| |
Collapse
|
17
|
Dehury B, Tang N, Blundell TL, Kepp KP. Structure and dynamics of γ-secretase with presenilin 2 compared to presenilin 1. RSC Adv 2019; 9:20901-20916. [PMID: 35515530 PMCID: PMC9065803 DOI: 10.1039/c9ra02623a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
Severe early-onset familial Alzheimer's disease (FAD) is caused by more than 200 different mutations in the genes coding for presenilin, the catalytic subunit of the 4-subunit protease complex γ-secretase, which cleaves the C99 fragment of the amyloid precursor protein (APP) to produce Aβ peptides. γ-Secretase exists with either of two homologues, PS1 and PS2. All cryo-electron microscopic structures and computational work has so far focused on γ-secretase with PS1, yet PS2 mutations also cause FAD. A central question is thus whether there are structural and dynamic differences between PS1 and PS2. To address this question, we use the cryo-electron microscopic data for PS1 to develop the first structural and dynamic model of PS2-γ-secretase in the catalytically relevant mature membrane-bound state at ambient temperature, equilibrated by three independent 500 ns molecular dynamics simulations. We find that the characteristic nicastrin extra-cellular domain breathing mode and major movements in the cytosolic loop between TM6 and TM7 occur in both PS2- and PS1-γ-secretase. The overall structures and conformational states are similar, suggesting similar catalytic activities. However, at the sequence level, charge-controlled membrane-anchoring is extracellular for PS1 and intracellular for PS2, which suggests different subcellular locations. The tilt angles of the TM2, TM6, TM7 and TM9 helices differ in the two forms of γ-secretase, suggesting that the two proteins have somewhat different substrate processing and channel sizes. Our MD simulations consistently indicated that PS2 retains several water molecules near the catalytic site at the bilayer, as required for catalysis. The possible reasons for the differences of PS1 and PS2 are discussed in relation to their location and function.
Collapse
Affiliation(s)
- Budheswar Dehury
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +045 45252409
| | - Ning Tang
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +045 45252409
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge Cambridge CB2 1GA UK
| | - Kasper P Kepp
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +045 45252409
| |
Collapse
|
18
|
Abstract
γ-Secretase is a membrane-embedded protease complex, with presenilin as the catalytic component containing two transmembrane aspartates in the active site. With more than 90 known substrates, the γ-secretase complex is considered "the proteasome of the membrane", with central roles in biology and medicine. The protease carries out hydrolysis within the lipid bilayer to cleave the transmembrane domain of the substrate multiple times before releasing secreted products. For many years, elucidation of γ-secretase structure and function largely relied on small-molecule probes and mutagenesis. Recently, however, advances in cryo-electron microscopy have led to the first detailed structures of the protease complex. Two new reports of structures of γ-secretase bound to membrane protein substrates provide great insight into the nature of substrate recognition and how Alzheimer's disease-causing mutations in presenilin might alter substrate binding and processing. These new structures offer a powerful platform for elucidating enzyme mechanisms, deciphering effects of disease-causing mutations, and advancing Alzheimer's disease drug discovery.
Collapse
Affiliation(s)
- Michael S Wolfe
- Department of Medicinal Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| |
Collapse
|
19
|
Molecular dynamics of C99-bound γ-secretase reveal two binding modes with distinct compactness, stability, and active-site retention: implications for Aβ production. Biochem J 2019; 476:1173-1189. [PMID: 30910800 DOI: 10.1042/bcj20190023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022]
Abstract
The membrane protease γ-secretase cleaves the C99 fragment of the amyloid precursor protein, thus producing the Aβ peptides central to Alzheimer's disease. Cryo-electron microscopy has provided the topology but misses the membrane and loop parts that contribute to substrate binding. We report here an essentially complete atomic model of C99 within wild-type γ-secretase that respects all the experimental constraints and additionally describes loop, helix, and C99 substrate dynamics in a realistic all-atom membrane. Our model represents the matured auto-cleaved state required for catalysis. From two independent 500-ns molecular dynamic simulations, we identify two conformation states of C99 in equilibrium, a compact and a loose state. Our simulations provide a basis for C99 processing and Aβ formation and explain the production of longer and shorter Aβ, as the compact state retains C99 for longer and thus probably trims to shorter Aβ peptides. We expect pathogenic presenilin mutations to stabilize the loose over the compact state. The simulations detail the role of the Lys53-Lys54-Lys55 anchor for C99 binding, a loss of helicity of bound C99, and positioning of Thr48 and Leu49 leading to alternative trimming pathways on opposite sides of the C99 helix in three amino acid steps. The C99 binding topology resembles that of C83-bound γ-secretase without membrane but lacks a presenilin 1-C99 β-sheet, which could be induced by C83's stronger binding. The loose state should be selectively disfavored by γ-secretase modulators to increase C99 trimming and reduce the formation of longer Aβ, a strategy that is currently much explored but has lacked a structural basis.
Collapse
|
20
|
Hitzenberger M, Zacharias M. γ-Secretase Studied by Atomistic Molecular Dynamics Simulations: Global Dynamics, Enzyme Activation, Water Distribution and Lipid Binding. Front Chem 2019; 6:640. [PMID: 30662893 PMCID: PMC6328467 DOI: 10.3389/fchem.2018.00640] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/07/2018] [Indexed: 11/14/2022] Open
Abstract
γ-secretase, an intramembrane-cleaving aspartyl protease is involved in the cleavage of a large number of intramembrane proteins. The most prominent substrate is the amyloid precursor protein, whose proteolytic processing leads to the production of different amyloid Aβ peptides. These peptides are known to form toxic aggregates and may play a key role in Alzheimer's disease (AD). Recently, the three-dimensional structure of γ-secretase has been determined via Cryo-EM, elucidating the spatial geometry of this enzyme complex in different functional states. We have used molecular dynamics (MD) simulations to study the global dynamics and conformational transitions of γ-secretase, as well as the water and lipid distributions in and around the transmembrane domains in atomic detail. Simulations were performed on the full enzyme complex and on the membrane embedded parts alone. The simulations revealed global motions compatible with the experimental enzyme structures and indicated little dependence of the dynamics of the transmembrane domains on the soluble extracellular subunits. During the simulation on the membrane spanning part a transition between an inactive conformation (with catalytic residues far apart) toward a putatively active form (with catalytic residues in close proximity) has been observed. This conformational change is associated with a distinct rearrangement of transmembrane helices, a global compaction of the catalytically active presenilin subunit a change in the water structure near the active site and a rigidification of the protein fold. The observed conformational rearrangement allows the interpretation of the effect of several mutations on the activity of γ-secretase. A number of long-lived lipid binding sites could be identified on the membrane spanning surface of γ-secretase which may coincide with association regions of hydrophobic membrane helices to form putative substrate binding exosites.
Collapse
Affiliation(s)
| | - Martin Zacharias
- Physics Department T38, Technical University of Munich, Garching, Germany
| |
Collapse
|
21
|
Aguayo-Ortiz R, Straub JE, Dominguez L. Influence of membrane lipid composition on the structure and activity of γ-secretase. Phys Chem Chem Phys 2018; 20:27294-27304. [PMID: 30357233 PMCID: PMC11260083 DOI: 10.1039/c8cp04138e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
γ-Secretase (GS) is a multi-subunit membrane-embedded aspartyl protease that cleaves more than 80 integral membrane proteins, including the amyloid precursor protein (APP) to produce the amyloid-β (Aβ) peptide. Oligomerization and aggregation of the 42-amino acid length Aβ isoform in the brain has been associated with the development and progression of Alzheimer's disease (AD). Based on recent experimental structural studies and using multiscale computational modeling approaches, the conformational states and protein-membrane interactions of the GS complex embedded in six homogeneous and six heterogeneous lipid bilayers were characterized. In order to identify potential lipid and cholesterol binding sites, GS regions with high lipid/cholesterol occupancy values were analyzed using atomistic and coarse-grained simulations. Long lipid residence times were observed to be correlated with a large number of hydrogen bonds between the charged headgroups and key GS amino acids. This observation provides a plausible explanation for the inhibition of GS by charged lipids observed in previous experimental studies. Computed lateral pressure profiles suggest that higher transmembrane pressures favor active state conformations of the catalytic subunit. A probable mechanism for the regulation of the local stress response in cholesterol-rich multicomponent lipid bilayers is identified. Finally, it is demonstrated that interactions between the nicastrin extracellular domain and lipid headgroups leads to a compact structural conformation of the GS complex. Overall, this study provides valuable insight into the effect of bilayer lipid composition on the GS structural ensemble and its function.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | | | | |
Collapse
|
22
|
Steiner H, Fukumori A, Tagami S, Okochi M. Making the final cut: pathogenic amyloid-β peptide generation by γ-secretase. Cell Stress 2018; 2:292-310. [PMID: 31225454 PMCID: PMC6551803 DOI: 10.15698/cst2018.11.162] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer´s disease (AD) is a devastating neurodegenerative disease of the elderly population. Genetic evidence strongly suggests that aberrant generation and/or clearance of the neurotoxic amyloid-β peptide (Aβ) is triggering the disease. Aβ is generated from the amyloid precursor protein (APP) by the sequential cleavages of β- and γ-secretase. The latter cleavage by γ-secretase, a unique and fascinating four-component protease complex, occurs in the APP transmembrane domain thereby releasing Aβ species of 37-43 amino acids in length including the longer, highly pathogenic peptides Aβ42 and Aβ43. The lack of a precise understanding of Aβ generation as well as of the functions of other γ-secretase substrates has been one factor underlying the disappointing failure of γ-secretase inhibitors in clinical trials, but on the other side also been a major driving force for structural and in depth mechanistic studies on this key AD drug target in the past few years. Here we review recent breakthroughs in our understanding of how the γ-secretase complex recognizes substrates, of how it binds and processes β-secretase cleaved APP into different Aβ species, as well as the progress made on a question of outstanding interest, namely how clinical AD mutations in the catalytic subunit presenilin and the γ-secretase cleavage region of APP lead to relative increases of Aβ42/43. Finally, we discuss how the knowledge emerging from these studies could be used to therapeutically target this enzyme in a safe way.
Collapse
Affiliation(s)
- Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Akio Fukumori
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu & Department of Mental Health Promotion, Osaka University Graduate School of Medicine, Toyonaka, Japan
| | - Shinji Tagami
- Neuropsychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masayasu Okochi
- Neuropsychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
23
|
Khan I, Krishnaswamy S, Sabale M, Groth D, Wijaya L, Morici M, Berger I, Schaffitzel C, Fraser PE, Martins RN, Verdile G. Efficient production of a mature and functional gamma secretase protease. Sci Rep 2018; 8:12834. [PMID: 30150752 PMCID: PMC6110731 DOI: 10.1038/s41598-018-30788-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022] Open
Abstract
Baculoviral protein expression in insect cells has been previously used to generate large quantities of a protein of interest for subsequent use in biochemical and structural analyses. The MultiBac baculovirus protein expression system has enabled, the use of a single baculovirus to reconstitute a protein complex of interest, resulting in a larger protein yield. Using this system, we aimed to reconstruct the gamma (γ)-secretase complex, a multiprotein enzyme complex essential for the production of amyloid-β (Aβ) protein. A MultiBac vector containing all components of the γ-secretase complex was generated and expression was observed for all components. The complex was active in processing APP and Notch derived γ-secretase substrates and proteolysis could be inhibited with γ-secretase inhibitors, confirming specificity of the recombinant γ-secretase enzyme. Finally, affinity purification was used to purify an active recombinant γ-secretase complex. In this study we demonstrated that the MultiBac protein expression system can be used to generate an active γ-secretase complex and provides a new tool to study γ-secretase enzyme and its variants.
Collapse
Affiliation(s)
- Imran Khan
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia. .,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia. .,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
| | - Sudarsan Krishnaswamy
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Miheer Sabale
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - David Groth
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Linda Wijaya
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Psychology and Exercise Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Michael Morici
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Imre Berger
- European Molecular Biology Laboratories, Grenoble, France.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Christiane Schaffitzel
- European Molecular Biology Laboratories, Grenoble, France.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, Krembil Discovery Tower, University of Toronto, Toronto, Ontario, Canada
| | - Ralph N Martins
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Giuseppe Verdile
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia. .,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia. .,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
| |
Collapse
|
24
|
Götz A, Scharnagl C. Dissecting conformational changes in APP's transmembrane domain linked to ε-efficiency in familial Alzheimer's disease. PLoS One 2018; 13:e0200077. [PMID: 29966005 PMCID: PMC6028146 DOI: 10.1371/journal.pone.0200077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 02/02/2023] Open
Abstract
The mechanism by which familial Alzheimer's disease (FAD) mutations within the transmembrane domain (TMD) of the Amyloid Precursor Protein (APP) affect ε-endoproteolysis is only poorly understood. Thereby, mutations in the cleavage domain reduce ε-efficiency of γ-secretase cleavage and some even shift entry into production lines. Since cleavage occurs within the TMD, a relationship between processing and TMD structure and dynamics seems obvious. Using molecular dynamic simulations, we dissect the dynamic features of wild-type and seven FAD-mutants into local and global components. Mutations consistently enhance hydrogen-bond fluctuations upstream of the ε-cleavage sites but maintain strong helicity there. Dynamic perturbation-response scanning reveals that FAD-mutants target backbone motions utilized in the bound state. Those motions, obscured by large-scale motions in the pre-bound state, provide (i) a dynamic mechanism underlying the proposed coupling between binding and ε-cleavage, (ii) key sites consistent with experimentally determined docking sites, and (iii) the distinction between mutants and wild-type.
Collapse
Affiliation(s)
- Alexander Götz
- Technical University of Munich, Chair of Physics of Synthetic Biological Systems, Freising, Germany
| | - Christina Scharnagl
- Technical University of Munich, Chair of Physics of Synthetic Biological Systems, Freising, Germany
| |
Collapse
|
25
|
Aguayo-Ortiz R, Dominguez L. Simulating the γ-secretase enzyme: Recent advances and future directions. Biochimie 2018; 147:130-135. [DOI: 10.1016/j.biochi.2018.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/27/2018] [Indexed: 11/17/2022]
|
26
|
Abstract
Despite the central role of Nuclear Pore Complexes (NPCs) as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm, their large size and dynamic nature have impeded a full structural and functional elucidation. Here, we have determined a subnanometer precision structure for the entire 552-protein yeast NPC by satisfying diverse data including stoichiometry, a cryo-electron tomography map, and chemical cross-links. The structure reveals the NPC’s functional elements in unprecedented detail. The NPC is built of sturdy diagonal columns to which are attached connector cables, imbuing both strength and flexibility, while tying together all other elements of the NPC, including membrane-interacting regions and RNA processing platforms. Inwardly-directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized in distinct functional units. Taken together, this integrative structure allows us to rationalize the architecture, transport mechanism, and evolutionary origins of the NPC.
Collapse
|
27
|
Voytyuk I, De Strooper B, Chávez-Gutiérrez L. Modulation of γ- and β-Secretases as Early Prevention Against Alzheimer's Disease. Biol Psychiatry 2018; 83:320-327. [PMID: 28918941 DOI: 10.1016/j.biopsych.2017.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 01/18/2023]
Abstract
The genetic evidence implicating amyloid-β in the initial stage of Alzheimer's disease is unequivocal. However, the long biochemical and cellular prodromal phases of the disease suggest that dementia is the result of a series of molecular and cellular cascades whose nature and connections remain unknown. Therefore, it is unlikely that treatments directed at amyloid-β will have major clinical effects in the later stages of the disease. We discuss the two major candidate therapeutic targets to lower amyloid-β in a preventive mode, i.e., γ- and β-secretase; the rationale behind these two targets; and the current state of the field.
Collapse
Affiliation(s)
- Iryna Voytyuk
- KU Leuven Department for Neurosciences, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Bart De Strooper
- KU Leuven Department for Neurosciences, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; UK Dementia Research Institute, University College, London, United Kingdom.
| | - Lucía Chávez-Gutiérrez
- KU Leuven Department for Neurosciences, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
28
|
Allosteric Modulation of Intact γ-Secretase Structural Dynamics. Biophys J 2018; 113:2634-2649. [PMID: 29262358 DOI: 10.1016/j.bpj.2017.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022] Open
Abstract
As a protease complex involved in the cleavage of amyloid precursor proteins that lead to the formation of amyloid β fibrils implicated in Alzheimer's disease, γ-secretase is an important target for developing therapeutics against Alzheimer's disease. γ-secretase is composed of four subunits: nicastrin (NCT) in the extracellular (EC) domain, presenilin-1 (PS1), anterior pharynx defective 1, and presenilin enhancer 2 in the transmembrane (TM) domain. NCT and PS1 play important roles in binding amyloid β precursor proteins and modulating PS1 catalytic activity. Yet, the molecular mechanisms of coupling between substrate/modulator binding and catalytic activity remain to be elucidated. Recent determination of intact human γ-secretase cryo-electron microscopy structure has opened the way for a detailed investigation of the structural dynamics of this complex. Our analysis, based on a membrane-coupled anisotropic network model, reveals two types of NCT motions, bending and twisting, with respect to PS1. These underlie the fluctuations between the "open" and "closed" states of the lid-like NCT with respect to a hydrophilic loop 1 (HL1) on PS1, thus allowing or blocking access of the substrate peptide (EC portion) to HL1 and to the neighboring helix TM2. In addition to this alternating access mechanism, fluctuations in the volume of the PS1 central cavity facilitate the exposure of the catalytic site for substrate cleavage. Druggability simulations show that γ-secretase presents several hot spots for either orthosteric or allosteric inhibition of catalytic activity, consistent with experimental data. In particular, a hinge region at the interface between the EC and TM domains, near the interlobe groove of NCT, emerges as an allo-targeting site that would impact the coupling between HL1/TM2 and the catalytic pocket, opening, to our knowledge, new avenues for structure-based design of novel allosteric modulators of γ-secretase protease activity.
Collapse
|
29
|
Yang G, Yu K, Kubicek J, Labahn J. Expression, purification, and preliminary characterization of human presenilin-2. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Yang G, Yu K, Kaitatzi CS, Singh A, Labahn J. Influence of solubilization and AD-mutations on stability and structure of human presenilins. Sci Rep 2017; 7:17970. [PMID: 29269939 PMCID: PMC5740079 DOI: 10.1038/s41598-017-18313-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/08/2017] [Indexed: 12/23/2022] Open
Abstract
Presenilin (PS1 or PS2) functions as the catalytic subunit of γ-secretase, which produces the toxic amyloid beta peptides in Alzheimer’s disease (AD). The dependence of folding and structural stability of PSs on the lipophilic environment and mutation were investigated by far UV CD spectroscopy. The secondary structure content and stability of PS2 depended on the lipophilic environment. PS2 undergoes a temperature-dependent structural transition from α-helical to β-structure at 331 K. The restructured protein formed structures which tested positive in spectroscopic amyloid fibrils assays. The AD mutant PS1L266F, PS1L424V and PS1ΔE9 displayed reduced stability which supports a proposed ‘loss of function’ mechanism of AD based on protein instability. The exon 9 coded sequence in the inhibitory loop of the zymogen was found to be required for the modulation of the thermal stability of PS1 by the lipophilic environment.
Collapse
Affiliation(s)
- Ge Yang
- Centre for Structural Systems Biology (CSSB), CSSB-FZJ, Notkestr. 85, 22607, Hamburg, Germany.,Institute of Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425, Jülich, Germany
| | - Kun Yu
- Centre for Structural Systems Biology (CSSB), CSSB-FZJ, Notkestr. 85, 22607, Hamburg, Germany.,Institute of Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425, Jülich, Germany
| | - Christina-Symina Kaitatzi
- Centre for Structural Systems Biology (CSSB), CSSB-FZJ, Notkestr. 85, 22607, Hamburg, Germany.,Physics Department, University of Patras, University Campus, 26504, Rio Achaia, Greece
| | - Abhilasha Singh
- Centre for Structural Systems Biology (CSSB), CSSB-FZJ, Notkestr. 85, 22607, Hamburg, Germany.,Institute of Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425, Jülich, Germany
| | - Jörg Labahn
- Centre for Structural Systems Biology (CSSB), CSSB-FZJ, Notkestr. 85, 22607, Hamburg, Germany. .,Institute of Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425, Jülich, Germany. .,Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
31
|
Johnson DS, Li YM, Pettersson M, St George-Hyslop PH. Structural and Chemical Biology of Presenilin Complexes. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024067. [PMID: 28320827 PMCID: PMC5710098 DOI: 10.1101/cshperspect.a024067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The presenilin proteins are the catalytic subunits of a tetrameric complex containing presenilin 1 or 2, anterior pharynx defective 1 (APH1), nicastrin, and PEN-2. Other components such as TMP21 may exist in a subset of specialized complexes. The presenilin complex is the founding member of a unique class of aspartyl proteases that catalyze the γ, ɛ, ζ site cleavage of the transmembrane domains of Type I membrane proteins including amyloid precursor protein (APP) and Notch. Here, we detail the structural and chemical biology of this unusual enzyme. Taken together, these studies suggest that the complex exists in several conformations, and subtle long-range (allosteric) shifts in the conformation of the complex underpin substrate access to the catalytic site and the mechanism of action for allosteric inhibitors and modulators. Understanding the mechanics of these shifts will facilitate the design of γ-secretase modulator (GSM) compounds that modulate the relative efficiency of γ, ɛ, ζ site cleavage and/or substrate specificity.
Collapse
Affiliation(s)
- Douglas S. Johnson
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Martin Pettersson
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139
| | - Peter H. St George-Hyslop
- Cambridge Institute for Medical Research, Wellcome Trust MRC Building, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom,Tanz Centre for Research in Neurodegenerative Diseases and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| |
Collapse
|
32
|
Somavarapu AK, Kepp KP. Membrane Dynamics of γ-Secretase Provides a Molecular Basis for β-Amyloid Binding and Processing. ACS Chem Neurosci 2017; 8:2424-2436. [PMID: 28841371 DOI: 10.1021/acschemneuro.7b00208] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
γ-Secretase produces β-amyloid (Aβ) within its presenilin (PS1) subunit, mutations in which cause Alzheimer's disease, and current therapies thus seek to modulate its activity. While the general structure is known from recent electron microscopy studies, direct loop and membrane interactions and explicit dynamics relevant to substrate processing remain unknown. We report a modeled structure utilizing the optimal multitemplate information available, including loops and missing side chains, account of maturation cleavage, and explicit all-atom molecular dynamics in the membrane. We observe three distinct conformations of γ-secretase (open, semiopen, and closed) that remarkably differ by tilting of helices 2 and 3 of PS1, directly controlling active site availability. The large hydrophilic loop of PS1 where maturation occurs reveals a new helix segment that parallels the likely helix character of other substrates. The semiopen conformation consistently shows the best fit of Aβ peptides, that is, longer residence before release and by inference more trimming. In contrast, the closed, hydrophobic conformation is largely inactive and the open conformation is active but provides fewer optimal interactions and induces shorter residence time and by inference releases Aβ peptides of longer lengths. Our simulations thus provide a molecular basis for substrate processing and changes in the Aβ42/Aβ40 ratio. Accordingly, selective binding to protect the semiopen "innocent" conformation provides a molecular recipe for effective γ-secretase modulators; we provide the full atomic structures for these states that may play a key role in developing selective γ-secretase modulators for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Kasper P. Kepp
- Technical University of Denmark, DTU Chemistry, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
33
|
Langosch D, Steiner H. Substrate processing in intramembrane proteolysis by γ-secretase - the role of protein dynamics. Biol Chem 2017; 398:441-453. [PMID: 27845877 DOI: 10.1515/hsz-2016-0269] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/08/2016] [Indexed: 01/31/2023]
Abstract
Intramembrane proteases comprise a number of different membrane proteins with different types of catalytic sites. Their common denominator is cleavage within the plane of the membrane, which usually results in peptide bond scission within the transmembrane helices of their substrates. Despite recent progress in the determination of high-resolution structures, as illustrated here for the γ-secretase complex and its substrate C99, it is still unknown how these enzymes function and how they distinguish between substrates and non-substrates. In principle, substrate/non-substrate discrimination could occur at the level of substrate binding and/or cleavage. Focusing on the γ-secretase/C99 pair, we will discuss recent observations suggesting that global motions within a substrate transmembrane helix may be much more important for defining a substrate than local unraveling at cleavage sites.
Collapse
|
34
|
Aguayo-Ortiz R, Chávez-García C, Straub JE, Dominguez L. Characterizing the structural ensemble of γ-secretase using a multiscale molecular dynamics approach. Chem Sci 2017; 8:5576-5584. [PMID: 28970936 PMCID: PMC5618787 DOI: 10.1039/c7sc00980a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/05/2017] [Indexed: 11/21/2022] Open
Abstract
γ-Secretase is an intramembrane-cleaving aspartyl protease that plays an essential role in the processing of a variety of integral membrane proteins. Its role in the ultimate cleavage step in the processing of amyloid precursor protein to form amyloid-β (Aβ) peptide makes it an important therapeutic target in Alzheimer's disease research. Significant recent advances have been made in structural studies of this critical membrane protein complex. However, details of the mechanism of activation of the enzyme complex remain unclear. Using a multiscale computational modeling approach, combining multiple coarse-grained microsecond dynamic trajectories with all-atom models, the structure and two conformational states of the γ-secretase complex were evaluated. The transition between enzymatic state 1 and state 2 is shown to critically depend on the protonation states of the key catalytic residues Asp257 and Asp385 in the active site domain. The active site formation, related to our γ-secretase state 2, is observed to involve a concerted movement of four transmembrane helices from the catalytic subunit, resulting in the required localization of the catalytic residues. Global analysis of the structural ensemble of the enzyme complex was used to identify collective fluctuations important to the mechanism of substrate recognition and demonstrate that the corresponding fluctuations observed were uncorrelated with structural changes associated with enzyme activation. Overall, this computational study provides essential insight into the role of structure and dynamics in the activation and function of γ-secretase.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Departamento de Fisicoquímica , Facultad de Química , Universidad Nacional Autónoma de México , Mexico City , 04510 , Mexico .
| | - Cecilia Chávez-García
- Departamento de Fisicoquímica , Facultad de Química , Universidad Nacional Autónoma de México , Mexico City , 04510 , Mexico .
| | - John E Straub
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , USA
| | - Laura Dominguez
- Departamento de Fisicoquímica , Facultad de Química , Universidad Nacional Autónoma de México , Mexico City , 04510 , Mexico .
| |
Collapse
|
35
|
Cao Z, Hutchison JM, Sanders CR, Bowie JU. Backbone Hydrogen Bond Strengths Can Vary Widely in Transmembrane Helices. J Am Chem Soc 2017; 139:10742-10749. [PMID: 28692798 PMCID: PMC5560243 DOI: 10.1021/jacs.7b04819] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Although
backbone hydrogen bonds in transmembrane (TM) helices
have the potential to be very strong due to the low dielectric and
low water environment of the membrane, their strength has never been
assessed experimentally. Moreover, variations in hydrogen bond strength
might be necessary to facilitate the TM helix breaking and bending
that is often needed to satisfy functional imperatives. Here we employed
equilibrium hydrogen/deuterium fractionation factors to measure backbone
hydrogen bond strengths in the TM helix of the amyloid precursor protein
(APP). We find an enormous range of hydrogen bond free energies, with
some weaker than water–water hydrogen bonds and some over 6
kcal/mol stronger than water–water hydrogen bonds. We find
that weak hydrogen bonds are at or near preferred γ-secretase
cleavage sites, suggesting that the sequence of APP and possibly other
cleaved TM helices may be designed, in part, to make their backbones
accessible for cleavage. The finding that hydrogen bond strengths
in a TM helix can vary widely has implications for membrane protein
function, dynamics, evolution, and design.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| | - James M Hutchison
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240, United States
| | - Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240, United States
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
36
|
Abstract
γ-secretase, a membrane-embedded aspartate protease, catalyzes peptide bond hydrolysis of a large variety of type I integral membrane proteins exemplified by amyloid precursor protein (APP). Cleavage of APP leads to formation of β-amyloid plaque, which is a hallmark of Alzheimer's disease (AD). Over 200 AD-associated mutations are mapped to presenilin 1 (PS1), the catalytic component of γ-secretase. In the past three years, several cryo-electron microscopy (cryo-EM) structures of human γ-secretase have been determined at near atomic resolutions. Here we summarize the methods involved and discuss structural features of γ-secretase and the associated functional insights.
Collapse
Affiliation(s)
- Guanghui Yang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Rui Zhou
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
37
|
Alzheimer’s-Causing Mutations Shift Aβ Length by Destabilizing γ-Secretase-Aβn Interactions. Cell 2017; 170:443-456.e14. [DOI: 10.1016/j.cell.2017.07.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/06/2017] [Accepted: 07/06/2017] [Indexed: 11/20/2022]
|
38
|
Li S, Zhang W, Han W. Initial Substrate Binding of γ-Secretase: The Role of Substrate Flexibility. ACS Chem Neurosci 2017; 8:1279-1290. [PMID: 28165225 DOI: 10.1021/acschemneuro.6b00425] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
γ-Secretase cleaves transmembrane domains (TMD) of amyloid precursor protein (APP), producing pathologically relevant amyloid-β proteins. Initial substrate binding represents a key step of the γ-secretase cleavage whose mechanism remains elusive. Through long time scale coarse-grained and atomic simulations, we have found that the APP TMD can bind to the catalytic subunit presenilin 1 (PS1) on an extended surface covering PS1's TMD2/6/9 and PAL motif that are all known to be essential for enzymatic activity. This initial substrate binding could lead to reduction in the vertical gap between APP's ε-cleavage sites and γ-secretase's active center, enhanced flexibility and hydration levels around the ε-sites, and the presentation of these sites to the enzyme. There are heterogeneous substrate binding poses in which the substrate is found to bind to either the N- or C-terminal parts of PS1, or both. Moreover, we also find that the stability of the binding poses can be modulated by the flexibility of substrate TMD. Especially, the APP substrate, when deprived of bending fluctuation, does not bind to TMD9 at PS1's C-terminus. Our simulations have revealed further that another substrate of γ-secretase, namely, notch receptors, though bearing a rigid TMD, can still bind to PS1 TMD9, but by a different mechanism, suggesting that the influence of substrate flexibility is context-dependent. Together, these findings shed light on the mechanism of initial substrate docking of γ-secretase and the role of substrate flexibility in this process.
Collapse
Affiliation(s)
- Shu Li
- Key Laboratory of Chemical Genomics, School
of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wan Zhang
- Key Laboratory of Chemical Genomics, School
of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wei Han
- Key Laboratory of Chemical Genomics, School
of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
39
|
Dynamic Nature of presenilin1/γ-Secretase: Implication for Alzheimer's Disease Pathogenesis. Mol Neurobiol 2017; 55:2275-2284. [PMID: 28332150 DOI: 10.1007/s12035-017-0487-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/12/2017] [Indexed: 12/27/2022]
Abstract
Presenilin 1 (PS1) is a catalytic component of the γ-secretase complex, responsible for the intramembraneous cleavage of more than 90 type I transmembrane proteins, including Alzheimer's disease (AD)-related amyloid precursor protein (APP). The γ-secretase-mediated cleavage of the APP C-terminal membrane stub leads to the production of various amyloid β (Aβ) species. The assembly of Aβ into neurotoxic oligomers, which causes synaptic dysfunction and neurodegeneration, is influenced by the relative ratio of the longer (Aβ42/43) to shorter Aβ (Aβ40) peptides. The ratio of Aβ42 to Aβ40 depends on the conformation and activity of the PS1/γ-secretase enzymatic complex. The latter exists in a dynamic equilibrium of the so called "closed" and "open" conformational states, as determined by the Förster resonance energy transfer (FRET)-based PS1 conformation assay. Here we review several factors that can allosterically influence conformational status of the enzyme, and hence the production of Aβ peptides. These include genetic variations in PS1, APP and other γ-secretase components, environmental stressors implicated in AD pathogenesis and pharmacological agents. Since "closed" PS1 conformation is the common outcome of many AD-related insults, the novel assays monitoring PS1 conformation in live/intact cells in vivo and in vitro might be utilized for diagnostic purposes and for validation of the potential therapeutic approaches.
Collapse
|
40
|
High-efficient production and biophysical characterisation of nicastrin and its interaction with APPC100. Sci Rep 2017; 7:44297. [PMID: 28276527 PMCID: PMC5343570 DOI: 10.1038/srep44297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
Nicastrin, the largest member among the four components of the γ-secretase complex, has been identified to be the substrate recognizer for the proteolytic activity of the complex. Here we report that full-length human nicastrin (hNCT) can be obtained by heterologous expression in E. coli. Milligram quantities of the target protein are purified in a two-step purification protocol using affinity chromatography followed by SEC. The FOS-choline 14 purified tetrameric hNCT exhibits a proper folding with 31% α-helix and 23% β-sheet content. Thermal stability studies reveal stable secondary and tertiary structure of the detergent purified hNCT. A physical interaction between nicastrin and the γ-secretase substrate APPC100 confirmed the functionality of hNCT as a substrate recognizer.
Collapse
|
41
|
Probing the Structure and Function Relationships of Presenilin by Substituted-Cysteine Accessibility Method. Methods Enzymol 2017; 584:185-205. [DOI: 10.1016/bs.mie.2016.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
42
|
Veugelen S, Dewilde M, De Strooper B, Chávez-Gutiérrez L. Screening and Characterization Strategies for Nanobodies Targeting Membrane Proteins. Methods Enzymol 2016; 584:59-97. [PMID: 28065273 DOI: 10.1016/bs.mie.2016.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The study of membrane protein function and structure requires their successful detection, expression, solubilization, and/or reconstitution, which poses a challenging task and relies on the availability of suitable tools. Several research groups have successfully applied Nanobodies in the purification, as well as the functional and structural characterization of membrane proteins. Nanobodies are small, single-chain antibody fragments originating from camelids presenting on average a longer CDR3 which enables them to bind in cavities and clefts (such as active and allosteric sites). Notably, Nanobodies generally bind conformational epitopes making them very interesting tools to stabilize, dissect, and characterize specific protein conformations. In the clinic, several Nanobodies are under evaluation either as potential drug candidates or as diagnostic tools. In recent years, we have successfully generated high-affinity, conformation-sensitive anti-γ-secretase Nanobodies. γ-Secretase is a multimeric membrane protease involved in processing of the amyloid precursor protein with high clinical relevance as mutations in its catalytic subunit (Presenilin) cause early-onset Alzheimer's disease. Advancing our knowledge on the mechanisms governing γ-secretase intramembrane proteolysis through various strategies may lead to novel therapeutic avenues for Alzheimer's disease. In this chapter, we present the strategies we have developed and applied for the screening and characterization of anti-γ-secretase Nanobodies. These protocols could be of help in the generation of Nanobodies targeting other membrane proteins.
Collapse
Affiliation(s)
- S Veugelen
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium
| | - M Dewilde
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium
| | - B De Strooper
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium; UCL Institute of Neurology, London, United Kingdom
| | - L Chávez-Gutiérrez
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium.
| |
Collapse
|
43
|
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| | - Laura Dominguez
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| |
Collapse
|
44
|
Zoltowska KM, Maesako M, Berezovska O. Interrelationship between Changes in the Amyloid β 42/40 Ratio and Presenilin 1 Conformation. Mol Med 2016; 22:329-337. [PMID: 27391800 DOI: 10.2119/molmed.2016.00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/05/2016] [Indexed: 11/06/2022] Open
Abstract
The ratio of the longer (i.e., Aβ42/Aβ43) to shorter (i.e. Aβ40) species is a critical factor determining amyloid fibril formation, neurotoxicity and progression of the amyloid pathology in Alzheimer's disease. The relative levels of the different Aβ species are affected by activity and conformation of the γ-secretase complex catalytic component - presenilin 1 (PS1). The enzyme exists in a dynamic equilibrium of the conformational states, with so-called "close" conformation associated with the shift of the γ-secretase cleavage towards the production of longer, neurotoxic Aβ species. In the current study, fluorescence lifetime imaging microscopy, spectral Förster resonance energy transfer, calcium imaging and cytotoxicity assays were utilized to explore reciprocal link between the Aβ42 and Aβ40 peptides present at various ratios and PS1 conformation in primary neurons. We report that exposure to Aβ peptides at a relatively high ratio of Aβ42/40 causes conformational change within the PS1 subdomain architecture towards the pathogenic "closed" state. Mechanistically, the Aβ42/40 peptides present at the relatively high ratio increase intracellular calcium levels, which were shown to trigger pathogenic PS1 conformation. This indicates that there is a reciprocal crosstalk between the extracellular Aβ peptides and PS1 conformation within a neuron, with Aβ40 showing some protective effect. The pathogenic shift within the PS1 domain architecture may further shift the production of Aβ peptides towards the longer, neurotoxic Aβ species. These findings link elevated calcium, Aβ42 and PS1/γ-secretase conformation, and offer possible mechanistic explanation of the impending exacerbation of the amyloid pathology.
Collapse
Affiliation(s)
- Katarzyna Marta Zoltowska
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Charlestown, Massachusetts, United States of America
| | - Masato Maesako
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Charlestown, Massachusetts, United States of America
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Charlestown, Massachusetts, United States of America
| |
Collapse
|
45
|
Chávez-Gutiérrez L, De Strooper B. Probing γ-secretase-substrate interactions at the single amino acid residue level. EMBO J 2016; 35:1597-9. [PMID: 27370209 DOI: 10.15252/embj.201694978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Lucía Chávez-Gutiérrez
- VIB Center for the Biology of Disease, VIB-Leuven, Leuven, Belgium Center for Human Genetics, Universitaire Ziekenhuizen and LIND, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for the Biology of Disease, VIB-Leuven, Leuven, Belgium Center for Human Genetics, Universitaire Ziekenhuizen and LIND, KU Leuven, Leuven, Belgium Institute of Neurology, University College London, London, UK
| |
Collapse
|
46
|
Conformational Changes in Transmembrane Domain 4 of Presenilin 1 Are Associated with Altered Amyloid-β 42 Production. J Neurosci 2016; 36:1362-72. [PMID: 26818522 DOI: 10.1523/jneurosci.5090-14.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED γ-Secretase is an intramembrane-cleaving protease that produces amyloid-β peptide 42 (Aβ42), which is the toxic and aggregation-prone species of Aβ that causes Alzheimer's disease. Here, we used the substituted cysteine accessibility method to analyze the structure of transmembrane domains (TMDs) 4 and 5 of human presenilin 1 (PS1), a catalytic subunit of γ-secretase. We revealed that TMD4 and TMD5 face the intramembranous hydrophilic milieu together with TMD1, TMD6, TMD7, and TMD9 of PS1 to form the catalytic pore structure. Notably, we found a correlation in the distance between the cytosolic sides of TMD4/TMD7 and Aβ42 production levels, suggesting that allosteric conformational changes of the cytosolic side of TMD4 affect Aβ42-generating γ-secretase activity. Our results provide new insights into the relationship between the structure and activity of human PS1. SIGNIFICANCE STATEMENT Modulation of γ-secretase activity to reduce toxic amyloid-β peptide species is one plausible therapeutic approaches for Alzheimer's disease. However, precise mechanistic information of γ-secretase still remains unclear. Here we identified the conformational changes in transmembrane domains of presenilin 1 that affect the proteolytic activity of the γ-secretase. Our results highlight the importance of understanding the structural dynamics of presenilin 1 in drug development against Alzheimer's disease.
Collapse
|
47
|
Fukumori A, Steiner H. Substrate recruitment of γ-secretase and mechanism of clinical presenilin mutations revealed by photoaffinity mapping. EMBO J 2016; 35:1628-43. [PMID: 27220847 DOI: 10.15252/embj.201694151] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/26/2016] [Indexed: 12/27/2022] Open
Abstract
Intramembrane proteases execute fundamental biological processes ranging from crucial signaling events to general membrane proteostasis. Despite the availability of structural information on these proteases, it remains unclear how these enzymes bind and recruit substrates, particularly for the Alzheimer's disease-associated γ-secretase. Systematically scanning amyloid precursor protein substrates containing a genetically inserted photocrosslinkable amino acid for binding to γ-secretase allowed us to identify residues contacting the protease. These were primarily found in the transmembrane cleavage domain of the substrate and were also present in the extramembranous domains. The N-terminal fragment of the catalytic subunit presenilin was determined as principal substrate-binding site. Clinical presenilin mutations altered substrate binding in the active site region, implying a pathogenic mechanism for familial Alzheimer's disease. Remarkably, PEN-2 was identified besides nicastrin as additional substrate-binding subunit. Probing proteolysis of crosslinked substrates revealed a mechanistic model of how these subunits interact to mediate a stepwise transfer of bound substrate to the catalytic site. We propose that sequential binding steps might be common for intramembrane proteases to sample and select cognate substrates for catalysis.
Collapse
Affiliation(s)
- Akio Fukumori
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
48
|
Carroll CM, Li YM. Physiological and pathological roles of the γ-secretase complex. Brain Res Bull 2016; 126:199-206. [PMID: 27133790 DOI: 10.1016/j.brainresbull.2016.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 12/27/2022]
Abstract
Gamma-secretase (GS) is an enzyme complex that cleaves numerous substrates, and it is best known for cleaving amyloid precursor protein (APP) to form amyloid-beta (Aβ) peptides. Aberrant cleavage of APP can lead to Alzheimer's disease, so much research has been done to better understand GS structure and function in hopes of developing therapeutics for Alzheimer's. Therefore, most of the attention in this field has been focused on developing modulators that reduce pathogenic forms of Aβ while leaving Notch and other GS substrates intact, but GS provides multiple avenues of modulation that could improve AD pathology. GS has complex regulation, through its essential subunits and other associated proteins, providing other targets for AD drugs. Therapeutics can also alter GS trafficking and thereby improve cognition, or move beyond Aβ entirely, effecting Notch and neural stem cells. GS also cleaves substrates that affect synaptic morphology and function, presenting another window by which GS modulation could improve AD pathology. Taken together, GS presents a unique cross road for neural processes and an ideal target for AD therapeutics.
Collapse
Affiliation(s)
- Courtney M Carroll
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, NY, United States; Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, NY, United States.
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, NY, United States; Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, NY, United States; Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, NY, United States
| |
Collapse
|
49
|
Abstract
Dysfunction of the intramembrane protease γ-secretase is thought to cause Alzheimer's disease, with most mutations derived from Alzheimer's disease mapping to the catalytic subunit presenilin 1 (PS1). Here we report an atomic structure of human γ-secretase at 3.4 Å resolution, determined by single-particle cryo-electron microscopy. Mutations derived from Alzheimer's disease affect residues at two hotspots in PS1, each located at the centre of a distinct four transmembrane segment (TM) bundle. TM2 and, to a lesser extent, TM6 exhibit considerable flexibility, yielding a plastic active site and adaptable surrounding elements. The active site of PS1 is accessible from the convex side of the TM horseshoe, suggesting considerable conformational changes in nicastrin extracellular domain after substrate recruitment. Component protein APH-1 serves as a scaffold, anchoring the lone transmembrane helix from nicastrin and supporting the flexible conformation of PS1. Ordered phospholipids stabilize the complex inside the membrane. Our structure serves as a molecular basis for mechanistic understanding of γ-secretase function.
Collapse
|
50
|
Langosch D, Scharnagl C, Steiner H, Lemberg MK. Understanding intramembrane proteolysis: from protein dynamics to reaction kinetics. Trends Biochem Sci 2015; 40:318-27. [PMID: 25941170 DOI: 10.1016/j.tibs.2015.04.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/12/2022]
Abstract
Intramembrane proteolysis - cleavage of proteins within the plane of a membrane - is a widespread phenomenon that can contribute to the functional activation of substrates and is involved in several diseases. Although different families of intramembrane proteases have been discovered and characterized, we currently do not know how these enzymes discriminate between substrates and non-substrates, how site-specific cleavage is achieved, or which factors determine the rate of proteolysis. Focusing on γ-secretase and rhomboid proteases, we argue that answers to these questions may emerge from connecting experimental readouts, such as reaction kinetics and the determination of cleavage sites, to the structures and the conformational dynamics of substrates and enzymes.
Collapse
Affiliation(s)
- D Langosch
- Technische Universität München, Lehrstuhl Chemie der Biopolymere, Weihenstephaner Berg 3, 85354 Freising, and Munich Center for Integrated Protein Science (CIMPS(M)), Germany.
| | - C Scharnagl
- Fakultät für Physik E14, Technische Universität München, Maximus-von-Imhof-Forum 4, 85354 Freising, Germany
| | - H Steiner
- Ludwig-Maximilians-University Munich, Metabolic Biochemistry and DZNE (German Center for Neurodegenerative Diseases), Munich, Germany
| | - M K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|