1
|
Roboti P, Lawless C, High S. Mitochondrial antiviral-signalling protein is a client of the BAG6 protein quality control complex. J Cell Sci 2022; 135:275354. [PMID: 35543156 PMCID: PMC9264363 DOI: 10.1242/jcs.259596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
The heterotrimeric BAG6 complex coordinates the direct handover of newly synthesised tail-anchored (TA) membrane proteins from an SGTA-bound preloading complex to the endoplasmic reticulum (ER) delivery component TRC40. In contrast, defective precursors, including aberrant TA proteins, form a stable complex with this cytosolic protein quality control factor, enabling such clients to be either productively re-routed or selectively degraded. We identify the mitochondrial antiviral-signalling protein (MAVS) as an endogenous TA client of both SGTA and the BAG6 complex. Our data suggest that the BAG6 complex binds to a cytosolic pool of MAVS before its misinsertion into the ER membrane, from where it can subsequently be removed via ATP13A1-mediated dislocation. This BAG6-associated fraction of MAVS is dynamic and responds to the activation of an innate immune response, suggesting that BAG6 may modulate the pool of MAVS that is available for coordinating the cellular response to viral infection. Summary: Mitochondrial antiviral-signalling protein (MAVS) is a favoured client of the cytosolic BAG6 complex. We discuss how this dynamic interaction may modulate MAVS biogenesis at signalling membranes.
Collapse
Affiliation(s)
- Peristera Roboti
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Stephen High
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
2
|
Chirality and asymmetry increase the potency of candidate ADRM1/RPN13 inhibitors. PLoS One 2021; 16:e0256937. [PMID: 34506530 PMCID: PMC8432795 DOI: 10.1371/journal.pone.0256937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022] Open
Abstract
Bortezomib and the other licensed 20S proteasome inhibitors show robust activity against liquid tumors like multiple myeloma, but have disappointed against solid tumors including ovarian cancer. Consequently, interest is mounting in alternative non-peptide based drugs targeting the proteasome’s 19S regulatory particle subunit, including its ubiquitin receptor RPN13. RA183 and RA375 are more potent analogs of the prototypic inhibitor of RPN13 (iRPN13) called RA190, and they show promise for the treatment of ovarian cancer. Here we demonstrate that rendering these candidate RPN13 inhibitors chiral and asymmetric through the addition of a single methyl to the core piperidone moiety increases their potency against cancer cell lines, with the S-isomer being more active than the R-isomer. The enhanced cancer cell cytotoxicities of these compounds are associated with improved binding to RPN13 in cell lysates, ATP depletion by inhibition of glycolysis and mitochondrial electron chain transport, mitochondrial depolarization and perinuclear clustering, oxidative stress and glutathione depletion, and rapid accumulation of high molecular weight polyubiquitinated proteins with a consequent unresolved ubiquitin proteasome system (UPS) stress response. Cytotoxicity was associated with an early biomarker of apoptosis, increased surface annexin V binding. As for cisplatin, BRCA2 and ATM deficiency conferred increased sensitivity to these iRPN13s. Ubiquitination plays an important role in coordinating DNA damage repair and the iRPN13s may compromise this process by depletion of monomeric ubiquitin following its sequestration in high molecular weight polyubiquitinated protein aggregates. Indeed, a synergistic cytotoxic response was evident upon treatment of several ovarian cancer cell lines with either cisplatin or doxorubicin and our new candidate iRPN13s, suggesting that such a combination approach warrants further exploration for the treatment of ovarian cancer.
Collapse
|
3
|
Fry MY, Saladi SM, Clemons WM. The STI1-domain is a flexible alpha-helical fold with a hydrophobic groove. Protein Sci 2021; 30:882-898. [PMID: 33620121 PMCID: PMC7980504 DOI: 10.1002/pro.4049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/05/2023]
Abstract
STI1-domains are present in a variety of co-chaperone proteins and are required for the transfer of hydrophobic clients in various cellular processes. The domains were first identified in the yeast Sti1 protein where they were referred to as DP1 and DP2. Based on hidden Markov model searches, this domain had previously been found in other proteins including the mammalian co-chaperone SGTA, the DNA damage response protein Rad23, and the chloroplast import protein Tic40. Here, we refine the domain definition and carry out structure-based sequence alignment of STI1-domains showing conservation of five amphipathic helices. Upon examinations of these identified domains, we identify a preceding helix 0 and unifying sequence properties, determine new molecular models, and recognize that STI1-domains nearly always occur in pairs. The similarity at the sequence, structure, and molecular levels likely supports a unified functional role.
Collapse
Affiliation(s)
- Michelle Y. Fry
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Shyam M. Saladi
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - William M. Clemons
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| |
Collapse
|
4
|
SGTA associates with intracellular aggregates in neurodegenerative diseases. Mol Brain 2021; 14:59. [PMID: 33757575 PMCID: PMC7986274 DOI: 10.1186/s13041-021-00770-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
Intracellular aggregates are a common pathological hallmark of neurodegenerative diseases such as polyglutamine (polyQ) diseases, amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and multiple system atrophy (MSA). Aggregates are mainly formed by aberrant disease-specific proteins and are accompanied by accumulation of other aggregate-interacting proteins. Although aggregate-interacting proteins have been considered to modulate the formation of aggregates and to be involved in molecular mechanisms of disease progression, the components of aggregate-interacting proteins remain unknown. In this study, we showed that small glutamine-rich tetratricopeptide repeat-containing protein alfa (SGTA) is an aggregate-interacting protein in neurodegenerative diseases. Immunohistochemistry showed that SGTA interacted with intracellular aggregates in Huntington disease (HD) cell models and neurons of HD model mice. We also revealed that SGTA colocalized with intracellular aggregates in postmortem brains of patients with polyQ diseases including spinocerebellar ataxia (SCA)1, SCA2, SCA3, and dentatorubral–pallidoluysian atrophy. In addition, SGTA colocalized with glial cytoplasmic inclusions in the brains of MSA patients, whereas no accumulation of SGTA was observed in neurons of PD and ALS patients. In vitro study showed that SGTA bound to polyQ aggregates through its C-terminal domain and SGTA overexpression reduced intracellular aggregates. These results suggest that SGTA may play a role in the formation of aggregates and may act as potential modifier of molecular pathological mechanisms of polyQ diseases and MSA.
Collapse
|
5
|
Lin KF, Fry MY, Saladi SM, Clemons WM. Molecular basis of tail-anchored integral membrane protein recognition by the cochaperone Sgt2. J Biol Chem 2021; 296:100441. [PMID: 33610544 PMCID: PMC8010706 DOI: 10.1016/j.jbc.2021.100441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023] Open
Abstract
The targeting and insertion of tail-anchored (TA) integral membrane proteins (IMPs) into the correct membrane is critical for cellular homeostasis. The fungal protein Sgt2, and its human homolog SGTA, is the entry point for clients to the guided entry of tail-anchored protein (GET) pathway, which targets endoplasmic reticulum-bound TA IMPs. Consisting of three structurally independent domains, the C terminus of Sgt2 binds to the hydrophobic transmembrane domain (TMD) of clients. However, the exact binding interface within Sgt2 and molecular details that underlie its binding mechanism and client preference are not known. Here, we reveal the mechanism of Sgt2 binding to hydrophobic clients, including TA IMPs. Through sequence analysis, biophysical characterization, and a series of capture assays, we establish that the Sgt2 C-terminal domain is flexible but conserved and sufficient for client binding. A molecular model for this domain reveals a helical hand forming a hydrophobic groove approximately 15 Å long that is consistent with our observed higher affinity for client TMDs with a hydrophobic face and a minimal length of 11 residues. This work places Sgt2 into a broader family of TPR-containing cochaperone proteins, demonstrating structural and sequence-based similarities to the DP domains in the yeast Hsp90 and Hsp70 coordinating protein, Sti1.
Collapse
Affiliation(s)
- Ku-Feng Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Michelle Y Fry
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Shyam M Saladi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
6
|
Strous GJ, Almeida ADS, Putters J, Schantl J, Sedek M, Slotman JA, Nespital T, Hassink GC, Mol JA. Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Front Endocrinol (Lausanne) 2020; 11:597573. [PMID: 33312162 PMCID: PMC7708378 DOI: 10.3389/fendo.2020.597573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, βTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exemplified by increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site. Insight in their roles in GHR signaling can be applied for cancer and other therapeutic strategies.
Collapse
Affiliation(s)
- Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
- BIMINI Biotech B.V., Leiden, Netherlands
| | - Ana Da Silva Almeida
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joyce Putters
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Julia Schantl
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Magdalena Sedek
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Johan A. Slotman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tobias Nespital
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gerco C. Hassink
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
Abildgaard AB, Gersing SK, Larsen-Ledet S, Nielsen SV, Stein A, Lindorff-Larsen K, Hartmann-Petersen R. Co-Chaperones in Targeting and Delivery of Misfolded Proteins to the 26S Proteasome. Biomolecules 2020; 10:E1141. [PMID: 32759676 PMCID: PMC7463752 DOI: 10.3390/biom10081141] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) is essential for the cell and is maintained by a highly conserved protein quality control (PQC) system, which triages newly synthesized, mislocalized and misfolded proteins. The ubiquitin-proteasome system (UPS), molecular chaperones, and co-chaperones are vital PQC elements that work together to facilitate degradation of misfolded and toxic protein species through the 26S proteasome. However, the underlying mechanisms are complex and remain partly unclear. Here, we provide an overview of the current knowledge on the co-chaperones that directly take part in targeting and delivery of PQC substrates for degradation. While J-domain proteins (JDPs) target substrates for the heat shock protein 70 (HSP70) chaperones, nucleotide-exchange factors (NEFs) deliver HSP70-bound substrates to the proteasome. So far, three NEFs have been established in proteasomal delivery: HSP110 and the ubiquitin-like (UBL) domain proteins BAG-1 and BAG-6, the latter acting as a chaperone itself and carrying its substrates directly to the proteasome. A better understanding of the individual delivery pathways will improve our ability to regulate the triage, and thus regulate the fate of aberrant proteins involved in cell stress and disease, examples of which are given throughout the review.
Collapse
Affiliation(s)
- Amanda B. Abildgaard
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sarah K. Gersing
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sven Larsen-Ledet
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sofie V. Nielsen
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Amelie Stein
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Kresten Lindorff-Larsen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Rasmus Hartmann-Petersen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| |
Collapse
|
8
|
Leznicki P, High S. SGTA associates with nascent membrane protein precursors. EMBO Rep 2020; 21:e48835. [PMID: 32216016 PMCID: PMC7202230 DOI: 10.15252/embr.201948835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 01/15/2023] Open
Abstract
The endoplasmic reticulum (ER) is a major site for membrane protein synthesis in eukaryotes. The majority of integral membrane proteins are delivered to the ER membrane via the co‐translational, signal recognition particle (SRP)‐dependent route. However, tail‐anchored proteins employ an alternative, post‐translational route(s) that relies on distinct factors such as a cytosolic protein quality control component, SGTA. We now show that SGTA is selectively recruited to ribosomes synthesising a diverse range of membrane proteins, suggesting that its biosynthetic client base also includes precursors on the co‐translational ER delivery pathway. Strikingly, SGTA is recruited to nascent membrane proteins before their transmembrane domain emerges from the ribosome. Hence, SGTA is ideally placed to capture these aggregation prone regions shortly after their synthesis. For nascent membrane proteins on the co‐translational pathway, SGTA complements the role of SRP by reducing the co‐translational ubiquitination of clients with multiple hydrophobic signal sequences. On this basis, we propose that SGTA acts to mask specific transmembrane domains located in complex membrane proteins until they can engage the ER translocon and become membrane inserted.
Collapse
Affiliation(s)
- Pawel Leznicki
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Graham JB, Canniff NP, Hebert DN. TPR-containing proteins control protein organization and homeostasis for the endoplasmic reticulum. Crit Rev Biochem Mol Biol 2019; 54:103-118. [PMID: 31023093 DOI: 10.1080/10409238.2019.1590305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The endoplasmic reticulum (ER) is a complex, multifunctional organelle comprised of a continuous membrane and lumen that is organized into a number of functional regions. It plays various roles including protein translocation, folding, quality control, secretion, calcium signaling, and lipid biogenesis. Cellular protein homeostasis is maintained by a complicated chaperone network, and the largest functional family within this network consists of proteins containing tetratricopeptide repeats (TPRs). TPRs are well-studied structural motifs that mediate intermolecular protein-protein interactions, supporting interactions with a wide range of ligands or substrates. Seven TPR-containing proteins have thus far been shown to localize to the ER and control protein organization and homeostasis within this multifunctional organelle. Here, we discuss the roles of these proteins in controlling ER processes and organization. The crucial roles that TPR-containing proteins play in the ER are highlighted by diseases or defects associated with their mutation or disruption.
Collapse
Affiliation(s)
- Jill B Graham
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| | - Nathan P Canniff
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| | - Daniel N Hebert
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| |
Collapse
|
10
|
Benarroch R, Austin JM, Ahmed F, Isaacson RL. The roles of cytosolic quality control proteins, SGTA and the BAG6 complex, in disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 114:265-313. [PMID: 30635083 PMCID: PMC7102839 DOI: 10.1016/bs.apcsb.2018.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SGTA is a co-chaperone that, in collaboration with the complex of BAG6/UBL4A/TRC35, facilitates the biogenesis and quality control of hydrophobic proteins, protecting them from the aqueous cytosolic environment. This work includes targeting tail-anchored proteins to their resident membranes, sorting of membrane and secretory proteins that mislocalize to the cytoplasm and endoplasmic reticulum-associated degradation of misfolded proteins. Since these functions are all vital for the cell's continued proteostasis, their disruption poses a threat to the cell, with a particular risk of protein aggregation, a phenomenon that underpins many diseases. Although the specific disease implications of machinery involved in quality control of hydrophobic substrates are poorly understood, here we summarize much of the available information on this topic.
Collapse
Affiliation(s)
- Rashi Benarroch
- Department of Chemistry, King's College London, London, United Kingdom
| | - Jennifer M Austin
- Department of Chemistry, King's College London, London, United Kingdom
| | - Fahmeda Ahmed
- Department of Chemistry, King's College London, London, United Kingdom
| | - Rivka L Isaacson
- Department of Chemistry, King's College London, London, United Kingdom.
| |
Collapse
|
11
|
Martínez-Lumbreras S, Krysztofinska EM, Thapaliya A, Spilotros A, Matak-Vinkovic D, Salvadori E, Roboti P, Nyathi Y, Muench JH, Roessler MM, Svergun DI, High S, Isaacson RL. Structural complexity of the co-chaperone SGTA: a conserved C-terminal region is implicated in dimerization and substrate quality control. BMC Biol 2018; 16:76. [PMID: 29996828 PMCID: PMC6042327 DOI: 10.1186/s12915-018-0542-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/20/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Protein quality control mechanisms are essential for cell health and involve delivery of proteins to specific cellular compartments for recycling or degradation. In particular, stray hydrophobic proteins are captured in the aqueous cytosol by a co-chaperone, the small glutamine-rich, tetratricopeptide repeat-containing protein alpha (SGTA), which facilitates the correct targeting of tail-anchored membrane proteins, as well as the sorting of membrane and secretory proteins that mislocalize to the cytosol and endoplasmic reticulum-associated degradation. Full-length SGTA has an unusual elongated dimeric structure that has, until now, evaded detailed structural analysis. The C-terminal region of SGTA plays a key role in binding a broad range of hydrophobic substrates, yet in contrast to the well-characterized N-terminal and TPR domains, there is a lack of structural information on the C-terminal domain. In this study, we present new insights into the conformation and organization of distinct domains of SGTA and show that the C-terminal domain possesses a conserved region essential for substrate processing in vivo. RESULTS We show that the C-terminal domain region is characterized by α-helical propensity and an intrinsic ability to dimerize independently of the N-terminal domain. Based on the properties of different regions of SGTA that are revealed using cell biology, NMR, SAXS, Native MS, and EPR, we observe that its C-terminal domain can dimerize in the full-length protein and propose that this reflects a closed conformation of the substrate-binding domain. CONCLUSION Our results provide novel insights into the structural complexity of SGTA and provide a new basis for mechanistic studies of substrate binding and release at the C-terminal region.
Collapse
Affiliation(s)
| | - Ewelina M Krysztofinska
- Department of Chemistry, King's College London, Britannia House, Trinity Street, London, SE1 1DB, UK
| | - Arjun Thapaliya
- Department of Chemistry, King's College London, Britannia House, Trinity Street, London, SE1 1DB, UK
| | - Alessandro Spilotros
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22603, Hamburg, Germany
| | - Dijana Matak-Vinkovic
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Enrico Salvadori
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK
| | - Peristera Roboti
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Yvonne Nyathi
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
- Present Address: School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, LN6 7DL, UK
| | - Janina H Muench
- Department of Chemistry, King's College London, Britannia House, Trinity Street, London, SE1 1DB, UK
| | - Maxie M Roessler
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22603, Hamburg, Germany
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Rivka L Isaacson
- Department of Chemistry, King's College London, Britannia House, Trinity Street, London, SE1 1DB, UK.
| |
Collapse
|
12
|
Abstract
Proper localization of membrane proteins is essential for the function of biological membranes and for the establishment of organelle identity within a cell. Molecular machineries that mediate membrane protein biogenesis need to not only achieve a high degree of efficiency and accuracy, but also prevent off-pathway aggregation events that can be detrimental to cells. The posttranslational targeting of tail-anchored proteins (TAs) provides tractable model systems to probe these fundamental issues. Recent advances in understanding TA-targeting pathways reveal sophisticated molecular machineries that drive and regulate these processes. These findings also suggest how an interconnected network of targeting factors, cochaperones, and quality control machineries together ensures robust membrane protein biogenesis.
Collapse
Affiliation(s)
- Un Seng Chio
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| | - Hyunju Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| |
Collapse
|
13
|
Jiang TX, Zhao M, Qiu XB. Substrate receptors of proteasomes. Biol Rev Camb Philos Soc 2018; 93:1765-1777. [DOI: 10.1111/brv.12419] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Tian-Xia Jiang
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences; Beijing Normal University, 19 Xinjiekouwai Avenue; Beijing 100875 China
| | - Mei Zhao
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences; Beijing Normal University, 19 Xinjiekouwai Avenue; Beijing 100875 China
| | - Xiao-Bo Qiu
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences; Beijing Normal University, 19 Xinjiekouwai Avenue; Beijing 100875 China
| |
Collapse
|
14
|
Speziali G, Liesinger L, Gindlhuber J, Leopold C, Pucher B, Brandi J, Castagna A, Tomin T, Krenn P, Thallinger GG, Olivieri O, Martinelli N, Kratky D, Schittmayer M, Birner-Gruenberger R, Cecconi D. Myristic acid induces proteomic and secretomic changes associated with steatosis, cytoskeleton remodeling, endoplasmic reticulum stress, protein turnover and exosome release in HepG2 cells. J Proteomics 2018; 181:118-130. [PMID: 29654920 DOI: 10.1016/j.jprot.2018.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/19/2018] [Accepted: 04/09/2018] [Indexed: 01/08/2023]
Abstract
Myristic acid, the 14-carbon saturated fatty acid (C14:0), is associated to an increased cardiovascular disease risk. Since it is found in low concentration in cells, its specific properties have not been fully analyzed. The aim of this study was to explore the cell response to this fatty acid to help explaining clinical findings on the relationship between C14:0 and cardiovascular disease. The human liver HepG2 cell line was used to investigate the hepatic response to C14:0 in a combined proteomic and secretomic approach. A total of 47 intracellular and 32 secreted proteins were deregulated after treatments with different concentrations of C14:0. Data are available via ProteomeXchange (PXD007902). In addition, C14:0 treatment of primary murine hepatocytes confirmed that C14:0 induces lipid droplet accumulation and elevates perilipin-2 levels. Functional enrichment analysis revealed that C14:0 modulates lipid droplet formation and cytoskeleton organization, induce ER stress, changes in exosome and extracellular miRNA sorting in HepG2cells. Our data provide for the first time a proteomic profiling of the effects of C14:0 in human hepatoma cells and contribute to the elucidation of molecular mechanisms through which this fatty acid may cause adverse health effects. BIOLOGICAL SIGNIFICANCE Myristic acid is correlated with an increase in plasma cholesterol and mortality due to cardiovascular diseases. This study is the first example of an integration of proteomic and secretomic analysis of HepG2 cells to investigate the specific properties and functional roles of myristic acid on hepatic cells. Our analyses will lead to a better understanding of the myristic acid induced effects and can elicit new diagnostic and treatment strategies based on altered proteins.
Collapse
Affiliation(s)
- Giulia Speziali
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, Verona, Italy
| | - Laura Liesinger
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Juergen Gindlhuber
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Christina Leopold
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Bettina Pucher
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
| | - Jessica Brandi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, Verona, Italy
| | - Annalisa Castagna
- Department of Medicine, Unit of Internal Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy
| | - Tamara Tomin
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Petra Krenn
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Gerhard G Thallinger
- Omics Center Graz, BioTechMed-Graz, Graz, Austria; Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
| | - Oliviero Olivieri
- Department of Medicine, Unit of Internal Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy
| | - Nicola Martinelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Matthias Schittmayer
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Daniela Cecconi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, Verona, Italy.
| |
Collapse
|
15
|
Shao S, Rodrigo-Brenni MC, Kivlen MH, Hegde RS. Mechanistic basis for a molecular triage reaction. Science 2017; 355:298-302. [PMID: 28104892 DOI: 10.1126/science.aah6130] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/22/2016] [Indexed: 01/24/2023]
Abstract
Newly synthesized proteins are triaged between biosynthesis and degradation to maintain cellular homeostasis, but the decision-making mechanisms are unclear. We reconstituted the core reactions for membrane targeting and ubiquitination of nascent tail-anchored membrane proteins to understand how their fate is determined. The central six-component triage system is divided into an uncommitted client-SGTA complex, a self-sufficient targeting module, and an embedded but self-sufficient quality control module. Client-SGTA engagement of the targeting module induces rapid, private, and committed client transfer to TRC40 for successful biosynthesis. Commitment to ubiquitination is dictated primarily by comparatively slower client dissociation from SGTA and nonprivate capture by the BAG6 subunit of the quality control module. Our results provide a paradigm for how priority and time are encoded within a multichaperone triage system.
Collapse
Affiliation(s)
- Sichen Shao
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Monica C Rodrigo-Brenni
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Maryann H Kivlen
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
16
|
Krysztofinska EM, Evans NJ, Thapaliya A, Murray JW, Morgan RML, Martinez-Lumbreras S, Isaacson RL. Structure and Interactions of the TPR Domain of Sgt2 with Yeast Chaperones and Ybr137wp. Front Mol Biosci 2017; 4:68. [PMID: 29075633 PMCID: PMC5641545 DOI: 10.3389/fmolb.2017.00068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Small glutamine-rich tetratricopeptide repeat-containing protein 2 (Sgt2) is a multi-module co-chaperone involved in several protein quality control pathways. The TPR domain of Sgt2 and several other proteins, including SGTA, Hop, and CHIP, is a highly conserved motif known to form transient complexes with molecular chaperones such as Hsp70 and Hsp90. In this work, we present the first high resolution crystal structures of Sgt2_TPR alone and in complex with a C-terminal peptide PTVEEVD from heat shock protein, Ssa1. Using nuclear magnetic resonance spectroscopy and isothermal titration calorimetry, we demonstrate that Sgt2_TPR interacts with peptides corresponding to the C-termini of Ssa1, Hsc82, and Ybr137wp with similar binding modes and affinities.
Collapse
Affiliation(s)
| | - Nicola J Evans
- Department of Chemistry, King's College London, London, United Kingdom
| | - Arjun Thapaliya
- Department of Chemistry, King's College London, London, United Kingdom
| | - James W Murray
- Department of Life Sciences, Imperial College London, South Kensington, United Kingdom
| | - Rhodri M L Morgan
- Department of Life Sciences, Imperial College London, South Kensington, United Kingdom
| | | | - Rivka L Isaacson
- Department of Chemistry, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Thapaliya A, Nyathi Y, Martínez-Lumbreras S, Krysztofinska EM, Evans NJ, Terry IL, High S, Isaacson RL. SGTA interacts with the proteasomal ubiquitin receptor Rpn13 via a carboxylate clamp mechanism. Sci Rep 2016; 6:36622. [PMID: 27827410 PMCID: PMC5101480 DOI: 10.1038/srep36622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/18/2016] [Indexed: 11/17/2022] Open
Abstract
The fate of secretory and membrane proteins that mislocalize to the cytosol is decided by a collaboration between cochaperone SGTA (small, glutamine-rich, tetratricopeptide repeat protein alpha) and the BAG6 complex, whose operation relies on multiple transient and subtly discriminated interactions with diverse binding partners. These include chaperones, membrane-targeting proteins and ubiquitination enzymes. Recently a direct interaction was discovered between SGTA and the proteasome, mediated by the intrinsic proteasomal ubiquitin receptor Rpn13. Here, we structurally and biophysically characterize this binding and identify a region of the Rpn13 C-terminal domain that is necessary and sufficient to facilitate it. We show that the contact occurs through a carboxylate clamp-mediated molecular recognition event with the TPR domain of SGTA, and provide evidence that the interaction can mediate the association of Rpn13 and SGTA in a cellular context.
Collapse
Affiliation(s)
- Arjun Thapaliya
- Department of Chemistry, King’s College London, Britannia House, Trinity Street, London, SE1 1DB, U.K
| | - Yvonne Nyathi
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, U.K
| | | | - Ewelina M. Krysztofinska
- Department of Chemistry, King’s College London, Britannia House, Trinity Street, London, SE1 1DB, U.K
| | - Nicola J. Evans
- Department of Chemistry, King’s College London, Britannia House, Trinity Street, London, SE1 1DB, U.K
| | - Isabelle L. Terry
- Department of Chemistry, King’s College London, Britannia House, Trinity Street, London, SE1 1DB, U.K
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, U.K
| | - Rivka L. Isaacson
- Department of Chemistry, King’s College London, Britannia House, Trinity Street, London, SE1 1DB, U.K
| |
Collapse
|
18
|
On the road to nowhere: cross-talk between post-translational protein targeting and cytosolic quality control. Biochem Soc Trans 2016; 44:796-801. [DOI: 10.1042/bst20160045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 02/06/2023]
Abstract
A well-defined co-translational pathway couples the synthesis and translocation of nascent polypeptides into and across the membrane of the endoplasmic reticulum (ER), thereby minimizing the possibility of the hydrophobic signals and transmembrane domains that such proteins contain from being exposed to the cytosol. Nevertheless, a proportion of these co-translational substrates may fail to reach the ER, and therefore mislocalize to the cytosol where their intrinsic hydrophobicity makes them aggregation-prone. A range of hydrophobic precursor proteins that employ alternative, post-translational, routes for ER translocation also contribute to the cytosolic pool of mislocalized proteins (MLPs). In this review, we detail how mammalian cells can efficiently deal with these MLPs by selectively targeting them for proteasomal degradation. Strikingly, this pathway for MLP degradation is regulated by cytosolic components that also facilitate the TRC40-dependent, post-translational, delivery of tail-anchored membrane proteins (TA proteins) to the ER. Among these components are small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA) and Bcl-2-associated athanogene 6 (BAG6), which appear to play a decisive role in enforcing quality control over hydrophobic precursor proteins that have mislocalized to the cytosol, directing them to either productive membrane insertion or selective ubiquitination and proteasomal degradation.
Collapse
|
19
|
The Vpu-interacting Protein SGTA Regulates Expression of a Non-glycosylated Tetherin Species. Sci Rep 2016; 6:24934. [PMID: 27103333 PMCID: PMC4840321 DOI: 10.1038/srep24934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/07/2016] [Indexed: 01/02/2023] Open
Abstract
The HIV-1 accessory protein Vpu enhances virus release by counteracting the host restriction factor tetherin. To further understand the role of host cell proteins in Vpu function, we carried out yeast two-hybrid screening and identified a previously reported Vpu-interacting host factor, small glutamine-rich tetratricopeptide repeat-containing protein (SGTA). While RNAi-mediated depletion of SGTA did not significantly affect levels of tetherin or virus release efficiency, we observed that overexpression of SGTA inhibited HIV-1 release in a Vpu- and tetherin-independent manner. Overexpression of SGTA in the presence of Vpu, but not in its absence, resulted in a marked stabilization and cytosolic relocalization of a 23-kDa, non-glycosylated tetherin species. Coimmunoprecipitation studies indicated that non-glycosylated tetherin is stabilized through the formation of a ternary SGTA/Vpu/tetherin complex. This accumulation of non-glycosylated tetherin is due to inhibition of its degradation, independent of the ER-associated degradation (ERAD) pathway. Because the SGTA-stabilized tetherin species is partially localized to the cytosol, we propose that overexpression of SGTA in the presence of Vpu blocks the translocation of tetherin across the ER membrane, resulting in cytosolic accumulation of a non-glycosylated tetherin species. Although our results do not provide support for a physiological function of SGTA in HIV-1 replication, they demonstrate that SGTA overexpression regulates tetherin expression and stability, thus providing insights into the function of SGTA in ER translocation and protein degradation.
Collapse
|
20
|
Roberts JD, Thapaliya A, Martínez-Lumbreras S, Krysztofinska EM, Isaacson RL. Structural and Functional Insights into Small, Glutamine-Rich, Tetratricopeptide Repeat Protein Alpha. Front Mol Biosci 2015; 2:71. [PMID: 26734616 PMCID: PMC4683186 DOI: 10.3389/fmolb.2015.00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/29/2015] [Indexed: 11/21/2022] Open
Abstract
The small glutamine-rich, tetratricopeptide repeat-containing protein alpha (SGTA) is an emerging player in the quality control of secretory and membrane proteins mislocalized to the cytosol, with established roles in tail-anchored (TA) membrane protein biogenesis. SGTA consists of three structural domains with individual functions, an N-terminal dimerization domain that assists protein sorting pathways, a central tetratricopeptide repeat (TPR) domain that mediates interactions with heat-shock proteins, proteasomal, and hormonal receptors, and viral proteins, and a C-terminal glutamine rich region that binds hydrophobic substrates. SGTA has been linked to viral lifecycles and hormone receptor signaling, with implications in the pathogenesis of various disease states. Thus far, a range of biophysical techniques have been employed to characterize SGTA structure in some detail, and to investigate its interactions with binding partners in different biological contexts. A complete description of SGTA structure, together with further investigation into its function as a co-chaperone involved quality control, could provide us with useful insights into its role in maintaining cellular proteostasis, and broaden our understanding of mechanisms underlying associated pathologies. This review describes how some structural features of SGTA have been elucidated, and what this has uncovered about its cellular functions. A brief background on the structure and function of SGTA is given, highlighting its importance to biomedicine and related fields. The current level of knowledge and what remains to be understood about the structure and function of SGTA is summarized, discussing the potential direction of future research.
Collapse
|