1
|
Jemouai Z, Sverzhinsky A, Sygusch J, Pascal J, Baron C. Inner membrane components of the plasmid pKM101 type IV secretion system TraE and TraD are DNA-binding proteins. Sci Rep 2025; 15:7530. [PMID: 40032854 PMCID: PMC11876611 DOI: 10.1038/s41598-025-85446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/02/2025] [Indexed: 03/05/2025] Open
Abstract
The increase of antimicrobial resistance constitutes a significant threat to human health. One of the mechanisms responsible for the spread of resistance to antimicrobials is the transfer of plasmids between bacteria by conjugation. This process is mediated by type IV secretion systems (T4SS) and previous studies have provided in vivo evidence for interactions between DNA and components of the T4SS. Here, we purified TraD and TraE, two inner membrane proteins from the Escherichia coli pKM101 T4SS. Using electrophoretic mobility shift assays and fluorescence polarization we showed that the purified proteins both bind single-stranded and double-stranded DNA in the nanomolar affinity range. The previously identified conjugation inhibitor BAR-072 inhibits TraE DNA binding in vitro, providing evidence for its mechanism of action. Site-directed mutagenesis identified conserved amino acids that are required for conjugation that may be targets for the development of more potent conjugation inhibitors.
Collapse
Affiliation(s)
- Zakaria Jemouai
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Aleksandr Sverzhinsky
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Jurgen Sygusch
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - John Pascal
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada.
| |
Collapse
|
2
|
Li Y, Ge S, Liu J, Sun D, Xi Y, Chen P. Nuclear Structure, Size Regulation, and Role in Cell Migration. Cells 2024; 13:2130. [PMID: 39768219 PMCID: PMC11675058 DOI: 10.3390/cells13242130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The nucleus serves as a pivotal regulatory and control hub in the cell, governing numerous aspects of cellular functions, including DNA replication, transcription, and RNA processing. Therefore, any deviations in nuclear morphology, structure, or organization can strongly affect cellular activities. In this review, we provide an updated perspective on the structure and function of nuclear components, focusing on the linker of nucleoskeleton and cytoskeleton complex, the nuclear envelope, the nuclear lamina, and chromatin. Additionally, nuclear size should be considered a fundamental parameter for the cellular state. Its regulation is tightly linked to environmental changes, development, and various diseases, including cancer. Hence, we also provide a concise overview of different mechanisms by which nuclear size is determined, the emerging role of the nucleus as a mechanical sensor, and the implications of altered nuclear morphology on the physiology of diseased cells.
Collapse
Affiliation(s)
- Yuhao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Shanghao Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Jiayi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Deseng Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Pan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| |
Collapse
|
3
|
Wesley CC, North DV, Levy DL. Protein kinase C activity modulates nuclear Lamin A/C dynamics in HeLa cells. Sci Rep 2024; 14:6388. [PMID: 38493209 PMCID: PMC10944469 DOI: 10.1038/s41598-024-57043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
The nuclear lamina serves important functions in the nucleus, providing structural support to the nuclear envelope and contributing to chromatin organization. The primary proteins that constitute the lamina are nuclear lamins whose functions are impacted by post-translational modifications, including phosphorylation by protein kinase C (PKC). While PKC-mediated lamin phosphorylation is important for nuclear envelope breakdown during mitosis, less is known about interphase roles for PKC in regulating nuclear structure. Here we show that overexpression of PKC ß, but not PKC α, increases the Lamin A/C mobile fraction in the nuclear envelope in HeLa cells without changing the overall structure of Lamin A/C and Lamin B1 within the nuclear lamina. Conversely, knockdown of PKC ß, but not PKC α, reduces the Lamin A/C mobile fraction. Thus, we demonstrate an isoform-specific role for PKC in regulating interphase Lamin A/C dynamics outside of mitosis.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Dallin V North
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA.
| |
Collapse
|
4
|
Chen P, Mishra S, Prabha H, Sengupta S, Levy DL. Nuclear growth and import can be uncoupled. Mol Biol Cell 2024; 35:ar1. [PMID: 37903226 PMCID: PMC10881164 DOI: 10.1091/mbc.e23-04-0138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
What drives nuclear growth? Studying nuclei assembled in Xenopus egg extract and focusing on importin α/β-mediated nuclear import, we show that, while import is required for nuclear growth, nuclear growth and import can be uncoupled when chromatin structure is manipulated. Nuclei treated with micrococcal nuclease to fragment DNA grew slowly despite exhibiting little to no change in import rates. Nuclei assembled around axolotl chromatin with 20-fold more DNA than Xenopus grew larger but imported more slowly. Treating nuclei with reagents known to alter histone methylation or acetylation caused nuclei to grow less while still importing to a similar extent or to grow larger without significantly increasing import. Nuclear growth but not import was increased in live sea urchin embryos treated with the DNA methylator N-nitrosodimethylamine. These data suggest that nuclear import is not the primary driving force for nuclear growth. Instead, we observed that nuclear blebs expanded preferentially at sites of high chromatin density and lamin addition, whereas small Benzonase-treated nuclei lacking DNA exhibited reduced lamin incorporation into the nuclear envelope. In summary, we report experimental conditions where nuclear import is not sufficient to drive nuclear growth, hypothesizing that this uncoupling is a result of altered chromatin structure.
Collapse
Affiliation(s)
- Pan Chen
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Haritha Prabha
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Sourabh Sengupta
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
5
|
Schibler AC, Jevtic P, Pegoraro G, Levy DL, Misteli T. Identification of epigenetic modulators as determinants of nuclear size and shape. eLife 2023; 12:e80653. [PMID: 37219077 PMCID: PMC10259489 DOI: 10.7554/elife.80653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
The shape and size of the human cell nucleus is highly variable among cell types and tissues. Changes in nuclear morphology are associated with disease, including cancer, as well as with premature and normal aging. Despite the very fundamental nature of nuclear morphology, the cellular factors that determine nuclear shape and size are not well understood. To identify regulators of nuclear architecture in a systematic and unbiased fashion, we performed a high-throughput imaging-based siRNA screen targeting 867 nuclear proteins including chromatin-associated proteins, epigenetic regulators, and nuclear envelope components. Using multiple morphometric parameters, and eliminating cell cycle effectors, we identified a set of novel determinants of nuclear size and shape. Interestingly, most identified factors altered nuclear morphology without affecting the levels of lamin proteins, which are known prominent regulators of nuclear shape. In contrast, a major group of nuclear shape regulators were modifiers of repressive heterochromatin. Biochemical and molecular analysis uncovered a direct physical interaction of histone H3 with lamin A mediated via combinatorial histone modifications. Furthermore, disease-causing lamin A mutations that result in disruption of nuclear shape inhibited lamin A-histone H3 interactions. Oncogenic histone H3.3 mutants defective for H3K27 methylation resulted in nuclear morphology abnormalities. Altogether, our results represent a systematic exploration of cellular factors involved in determining nuclear morphology and they identify the interaction of lamin A with histone H3 as an important contributor to nuclear morphology in human cells.
Collapse
Affiliation(s)
| | - Predrag Jevtic
- Department of Molecular Biology, University of WyomingLaramieUnited States
| | - Gianluca Pegoraro
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIHBethesdaUnited States
| | - Daniel L Levy
- Department of Molecular Biology, University of WyomingLaramieUnited States
| | - Tom Misteli
- National Cancer InstituteBethesdaUnited States
| |
Collapse
|
6
|
Chen P, Mishra S, Levy DL. Nuclear growth and import can be uncoupled. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537556. [PMID: 37131802 PMCID: PMC10153267 DOI: 10.1101/2023.04.19.537556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
What drives nuclear growth? Studying nuclei assembled in Xenopus egg extract and focusing on importin α/β-mediated nuclear import, we show that, while nuclear growth depends on nuclear import, nuclear growth and import can be uncoupled. Nuclei containing fragmented DNA grew slowly despite exhibiting normal import rates, suggesting nuclear import itself is insufficient to drive nuclear growth. Nuclei containing more DNA grew larger but imported more slowly. Altering chromatin modifications caused nuclei to grow less while still importing to the same extent or to grow larger without increasing nuclear import. Increasing heterochromatin in vivo in sea urchin embryos increased nuclear growth but not import. These data suggest that nuclear import is not the primary driving force for nuclear growth. Instead, live imaging showed that nuclear growth preferentially occurred at sites of high chromatin density and lamin addition, whereas small nuclei lacking DNA exhibited less lamin incorporation. Our hypothesized model is that lamin incorporation and nuclear growth are driven by chromatin mechanical properties, which depend on and can be tuned by nuclear import.
Collapse
Affiliation(s)
- Pan Chen
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
7
|
LaJoie D, Turkmen AM, Mackay DR, Jensen CC, Aksenova V, Niwa M, Dasso M, Ullman KS. A role for Nup153 in nuclear assembly reveals differential requirements for targeting of nuclear envelope constituents. Mol Biol Cell 2022; 33:ar117. [PMID: 36044344 PMCID: PMC9634965 DOI: 10.1091/mbc.e22-05-0189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023] Open
Abstract
Assembly of the nucleus following mitosis requires rapid and coordinate recruitment of diverse constituents to the inner nuclear membrane. We have identified an unexpected role for the nucleoporin Nup153 in promoting the continued addition of a subset of nuclear envelope (NE) proteins during initial expansion of nascent nuclei. Specifically, disrupting the function of Nup153 interferes with ongoing addition of B-type lamins, lamin B receptor, and SUN1 early in telophase, after the NE has initially enclosed chromatin. In contrast, effects on lamin A and SUN2 were minimal, pointing to differential requirements for the ongoing targeting of NE proteins. Further, distinct mistargeting phenotypes arose among the proteins that require Nup153 for NE targeting. Thus, disrupting the function of Nup153 in nuclear formation reveals several previously undescribed features important for establishing nuclear architecture: 1) a role for a nuclear basket constituent in ongoing recruitment of nuclear envelope components, 2) two functionally separable phases of NE formation in mammalian cells, and 3) distinct requirements of individual NE residents for continued targeting during the expansion phase of NE reformation.
Collapse
Affiliation(s)
- Dollie LaJoie
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Ayse M. Turkmen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Douglas R. Mackay
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Christopher C. Jensen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Maho Niwa
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Katharine S. Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
8
|
Xuan G, Zhang X, Zhang M, Yu M, Zhou Y, He X, Hu X, Wang X, Liu L. NTF2 Upregulation in HNSCC: a Predictive Marker and Potential Therapeutic Target Associated With Immune Infiltration. Front Oncol 2022; 12:783919. [PMID: 35785175 PMCID: PMC9247207 DOI: 10.3389/fonc.2022.783919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a type of malignant tumor with an increasing incidence worldwide and a meager 5-year survival rate. It is known that nuclear transporter factor 2 (NTF2) transports related proteins into the nucleus physiologically. However, the role of NTF2 in HNSCC remains unclear. Methods In this study, RNA-Seq data of HNSCC samples with corresponding clinical information were obtained from The Cancer Genome Atlas (TCGA) database. In addition, other expression profiling data were downloaded from the Gene Expression Omnibus (GEO) database. The differential expressions of NTF2, along with the overall survival (OS) rates were identified and analyzed. Then, the clinical features and expression levels of NTF2 were utilized to develop a prognostic model. The study also utilized the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) methods to determine the related pathways of NTF2. Furthermore, the Tumor Immune Estimation Resource (TIMER) database was referenced to discover the immune correlation of NTF2. In this research investigation, RT-qPCR, western blotting, Cell Counting Kit-8 (CCK-8) assay, wound-healing assay, and immunohistochemical (IHC) staining methods were adopted to perform experimental verifications. Results This study’s results confirmed that the NTF2 expressions were significantly increased in HNSCC tissue when compared with normal tissue. In addition, the high expression levels of NTF2 were found to be associated with poor prognoses, which was confirmed via the IHC validations of HNSCC samples with survival data. The results of functional enrichment analysis showed that the NTF2 was associated with epithelial cell growth, skin differentiation, keratosis, and estrogen metabolism. Furthermore, the expressions of NTF2 were determined to be negatively involved with immune infiltrations and correlated with immune checkpoint blockade (ICB) responses following various ICB therapy strategies. The results of the CCK-8 assay and wound-healing assay confirmed the NTF2’s promoting effects on the proliferation and migration of tumor cells. Conclusions This study defined a novel prognostic model associated with the expressions of NTF2, which was shown to be independently related to the OS of HNSCC. It was concluded in this study that NTF2 might be a potential diagnostic and prognostic biomarker for HNSCC.
Collapse
Affiliation(s)
- Guangxu Xuan
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xin Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Min Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Minghang Yu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing, China
| | - Yujie Zhou
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing, China
| | - Xiaosong He
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liangfa Liu, ; Xi Wang, ; Xiaopeng Hu,
| | - Xi Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- *Correspondence: Liangfa Liu, ; Xi Wang, ; Xiaopeng Hu,
| | - Liangfa Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liangfa Liu, ; Xi Wang, ; Xiaopeng Hu,
| |
Collapse
|
9
|
Li Y, Huang Y, Ren S, Xiao X, Cao H, He J. A Pan-Cancer Analysis of the Oncogenic Role of Nuclear Transport Factor 2 in Human Cancers. Front Oncol 2022; 12:829389. [PMID: 35155261 PMCID: PMC8831323 DOI: 10.3389/fonc.2022.829389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
Nuclear transport factor 2 (NUTF2) is a GDP-binding protein that participates in the nucleocytoplasmic transport process. The role of NUTF2 in cancer development is largely unknown and lacks systemic assessment across human cancers. In this study, we performed a pan-cancer analysis of NUTF2 in human cancers. Out of 33 types of cancers, 19 types had significantly different expression of NUTF2 between tumor and normal tissues. Meanwhile, survival analysis showed that NUTF2 could be an independent prognostic factor in several tumor types. Further analysis suggested that the expression of NUTF2 expression was correlated with the infiltration of immune cells, such as CD8+ T cells, effector memory CD4+ T cells, and cancer-associated fibroblasts in kidney renal clear cell carcinoma. Moreover, co-expression analysis showed the positive association between NUTF2 and cell proliferation biomarkers (MKI67and PCNA) and epithelial–mesenchymal transition markers (VIM, TWIST1, SNAI1, SNAI2, FN1, and CDH2), suggesting that NUTF2 plays important roles in regulating cancer proliferation and metastasis. This pan-cancer analysis of NUTF2 provides a systemic understanding of its oncogenic role across different types of cancers.
Collapse
Affiliation(s)
- Yu Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yongsheng Huang
- Cellular & Molecular Diagnostics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuwei Ren
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sun Yat-Sen University Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xing Xiao
- Department of Dermatology, Shenzhen Children's Hospital, Shenzhen, China
| | - Haotian Cao
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Juan He
- Department of Rheumatology and Immunology, Peking University Shenzhen Hospital, Shenzhen, China.,Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, China
| |
Collapse
|
10
|
Vuković LD, Chen P, Mishra S, White KH, Gigley JP, Levy DL. Nuclear Transport Factor 2 (NTF2) suppresses WM983B metastatic melanoma by modifying cell migration, metastasis, and gene expression. Sci Rep 2021; 11:23586. [PMID: 34880267 PMCID: PMC8654834 DOI: 10.1038/s41598-021-02803-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
While changes in nuclear structure and organization are frequently observed in cancer cells, relatively little is known about how nuclear architecture impacts cancer progression and pathology. To begin to address this question, we studied Nuclear Transport Factor 2 (NTF2) because its levels decrease during melanoma progression. We show that increasing NTF2 expression in WM983B metastatic melanoma cells reduces cell proliferation and motility while increasing apoptosis. We also demonstrate that increasing NTF2 expression in these cells significantly inhibits metastasis and prolongs survival of mice. NTF2 levels affect the expression and nuclear positioning of a number of genes associated with cell proliferation and migration, and increasing NTF2 expression leads to changes in nuclear size, nuclear lamin A levels, and chromatin organization. Thus, ectopic expression of NTF2 in WM983B metastatic melanoma abrogates phenotypes associated with advanced stage cancer both in vitro and in vivo, concomitantly altering nuclear and chromatin structure and generating a gene expression profile with characteristics of primary melanoma. We propose that NTF2 is a melanoma tumor suppressor and could be a novel therapeutic target to improve health outcomes of melanoma patients.
Collapse
Affiliation(s)
- Lidija D Vuković
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Pan Chen
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Karen H White
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA.
| |
Collapse
|
11
|
Zhang R, Gao Y. Identification of NUTF2 as a Candidate Diagnostic and Prognostic Biomarker Associated with Immune Infiltration in Head and Neck Squamous Cell Carcinoma. Onco Targets Ther 2021; 14:5455-5467. [PMID: 35221694 PMCID: PMC8866992 DOI: 10.2147/ott.s337469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSC) is one of the most common tumors worldwide. Nuclear transport factor 2 (NUTF2) plays a key role in cell death and immune processes. However, few reports have studied correlations between NUTF2 gene expression and the occurrence and development of HNSC. Methods The expression of NUTF2 was analyzed using publicly available databases, including the Cancer Genome Atlas and Human Protein Atlas and Gene Expression Omnibus (GEO) database, which was validated by RT-PCR. We evaluated the functions of NUTF2 with Kaplan–Meier curve, logistic regression were used to study the relationship between clinicopathological features and the expression of NUTF2. Cox regression analyses were used to identify the effects of NUTF2 expression on survival. Gene Ontology and Gene Set Enrichment Analysis were used to explore relevant biological pathways. The relationship between NUTF2 and tumor-infiltrating immune cells was investigated with on-line bioinformatic tools. Results NUTF2 was significantly upregulated in HNSC lesions and is associated with tumor size (P < 0.01). Increased expression of NUTF2 was linked to shorter overall and progress-free survival in HNSC. Cox regression analyses revealed that NUTF2 is an independent prognostic factor in HNSC. GSEA analysis demonstrated that NUTF2 negatively regulates several immune pathways. NUTF2 was correlated with the infiltrating levels of B cells and CD8+ T cells and was negatively correlated with diverse immune marker sets in HNSC. Conclusion NUTF2 is highly expressed in HNSC and correlates with poor prognosis. Correlation with immune functions suggests that NUTF2 may serve as a biomarker and therapeutic target for HNSC.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Orthodontics, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People’s Republic of China
- Correspondence: Rui Zhang Tel +8615035687198 Email
| | - Ying Gao
- Department of Oral Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People’s Republic of China
| |
Collapse
|
12
|
Deolal P, Male G, Mishra K. The challenge of staying in shape: nuclear size matters. Curr Genet 2021; 67:605-612. [PMID: 33779777 DOI: 10.1007/s00294-021-01176-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Cellular organelles have unique morphology and the organelle size to cell size ratio is regulated. Nucleus is one of the most prominent, usually round in shape, organelle of a eukaryotic cell that occupies 8-10% of cellular volume. The shape and size of nucleus is known to undergo remodeling during processes such as cell growth, division and certain stresses. Regulation of protein and lipid distribution at the nuclear envelope is crucial for preserving the nuclear morphology and size. As size and morphology are interlinked, altering one influences the other. In this perspective, we discuss the relationship between size and shape regulation of the nucleus.
Collapse
Affiliation(s)
- Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Gurranna Male
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
13
|
Abstract
As cells grow, the size and number of their internal organelles increase in order to keep up with increased metabolic requirements. Abnormal size of organelles is a hallmark of cancer and an important aspect of diagnosis in cytopathology. Most organelles vary in either size or number, or both, as a function of cell size, but the mechanisms that create this variation remain unclear. In some cases, organelle size appears to scale with cell size through processes of relative growth, but in others the size may be set by either active measurement systems or genetic programs that instruct organelle biosynthetic activities to create organelles of a size appropriate to a given cell type.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA;
| |
Collapse
|
14
|
Mukherjee RN, Sallé J, Dmitrieff S, Nelson KM, Oakey J, Minc N, Levy DL. The Perinuclear ER Scales Nuclear Size Independently of Cell Size in Early Embryos. Dev Cell 2020; 54:395-409.e7. [PMID: 32473090 PMCID: PMC7423768 DOI: 10.1016/j.devcel.2020.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/26/2020] [Accepted: 05/05/2020] [Indexed: 01/15/2023]
Abstract
Nuclear size plays pivotal roles in gene expression, embryo development, and disease. A central hypothesis in organisms ranging from yeast to vertebrates is that nuclear size scales to cell size. This implies that nuclei may reach steady-state sizes set by limiting cytoplasmic pools of size-regulating components. By monitoring nuclear dynamics in early sea urchin embryos, we found that nuclei undergo substantial growth in each interphase, reaching a maximal size prior to mitosis that declined steadily over the course of development. Manipulations of cytoplasmic volume through multiple chemical and physical means ruled out cell size as a major determinant of nuclear size and growth. Rather, our data suggest that the perinuclear endoplasmic reticulum, accumulated through dynein activity, serves as a limiting membrane pool that sets nuclear surface growth rate. Partitioning of this local pool at each cell division modulates nuclear growth kinetics and dictates size scaling throughout early development.
Collapse
Affiliation(s)
| | - Jérémy Sallé
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, F-75006, Paris, France
| | - Serge Dmitrieff
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, F-75006, Paris, France
| | - Katherine M Nelson
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Nicolas Minc
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, F-75006, Paris, France.
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
15
|
Wesley CC, Mishra S, Levy DL. Organelle size scaling over embryonic development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e376. [PMID: 32003549 DOI: 10.1002/wdev.376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
16
|
Chen P, Tomschik M, Nelson KM, Oakey J, Gatlin JC, Levy DL. Nucleoplasmin is a limiting component in the scaling of nuclear size with cytoplasmic volume. J Cell Biol 2019; 218:4063-4078. [PMID: 31636119 PMCID: PMC6891103 DOI: 10.1083/jcb.201902124] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/08/2019] [Accepted: 09/06/2019] [Indexed: 12/27/2022] Open
Abstract
How nuclear size is regulated relative to cell size is a fundamental cell biological question. Reductions in both cell and nuclear sizes during Xenopus laevis embryogenesis provide a robust scaling system to study mechanisms of nuclear size regulation. To test if the volume of embryonic cytoplasm is limiting for nuclear growth, we encapsulated gastrula-stage embryonic cytoplasm and nuclei in droplets of defined volume using microfluidics. Nuclei grew and reached new steady-state sizes as a function of cytoplasmic volume, supporting a limiting component mechanism of nuclear size control. Through biochemical fractionation, we identified the histone chaperone nucleoplasmin (Npm2) as a putative nuclear size effector. Cellular amounts of Npm2 decrease over development, and nuclear size was sensitive to Npm2 levels both in vitro and in vivo, affecting nuclear histone levels and chromatin organization. We propose that reductions in cell volume and the amounts of limiting components, such as Npm2, contribute to developmental nuclear size scaling.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Biology, University of Wyoming, Laramie, WY
| | | | - Katherine M Nelson
- Department of Molecular Biology, University of Wyoming, Laramie, WY
- Department of Chemical Engineering, University of Wyoming, Laramie, WY
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, WY
| | - Jesse C Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY
| |
Collapse
|
17
|
Nuclei deformation reveals pressure distributions in 3D cell clusters. PLoS One 2019; 14:e0221753. [PMID: 31513673 PMCID: PMC6771309 DOI: 10.1371/journal.pone.0221753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
Measuring pressures within complex multi-cellular environments is critical for
studying mechanobiology as these forces trigger diverse biological responses,
however, these studies are difficult as a deeply embedded yet well-calibrated
probe is required. In this manuscript, we use endogenous cell nuclei as pressure
sensors by introducing a fluorescent protein localized to the nucleus and
confocal microscopy to measure the individual nuclear volumes in 3D
multi-cellular aggregates. We calibrate this measurement of nuclear volume to
pressure by quantifying the nuclear volume change as a function of osmotic
pressure in isolated 2D culture. Using this technique, we find that in
multicellular structures, the nuclear compressive mechanical stresses are on the
order of MPa, increase with cell number in the cluster, and that the
distribution of stresses is homogenous in spherical cell clusters, but highly
asymmetric in oblong clusters. This approach may facilitate quantitative
mechanical measurements in complex and extended biological structures both
in vitro and in vivo.
Collapse
|
18
|
Kakebeen A, Wills A. Advancing genetic and genomic technologies deepen the pool for discovery in Xenopus tropicalis. Dev Dyn 2019; 248:620-625. [PMID: 31254427 DOI: 10.1002/dvdy.80] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Xenopus laevis and Xenopus tropicalis have long been used to drive discovery in developmental, cell, and molecular biology. These dual frog species boast experimental strengths for embryology including large egg sizes that develop externally, well-defined fate maps, and cell-intrinsic sources of nutrients that allow explanted tissues to grow in culture. Development of the Xenopus cell extract system has been used to study cell cycle and DNA replication. Xenopus tadpole tail and limb regeneration have provided fundamental insights into the underlying mechanisms of this processes, and the loss of regenerative competency in adults adds a complexity to the system that can be more directly compared to humans. Moreover, Xenopus genetics and especially disease-causing mutations are highly conserved with humans, making them a tractable system to model human disease. In the last several years, genome editing, expanding genomic resources, and intersectional approaches leveraging the distinct characteristics of each species have generated new frontiers in cell biology. While Xenopus have enduringly represented a leading embryological model, new technologies are generating exciting diversity in the range of discoveries being made in areas from genomics and proteomics to regenerative biology, neurobiology, cell scaling, and human disease modeling.
Collapse
Affiliation(s)
- Anneke Kakebeen
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Andrea Wills
- Department of Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
19
|
Abstract
Correlation between nuclear and cell size, the nucleocytoplasmic ratio, is a cellular phenomenon that has been reported throughout eukaryotes for more than a century but the mechanisms that achieve it are not well understood. Here, we review work that has shed light on the cellular processes involved in nuclear size control. These studies have implicated nucleocytoplasmic transport, LINC complexes, RNA processing, regulation of nuclear envelope expansion and partitioning of importin α in nuclear size control, moving us closer to a mechanistic understanding of this phenomenon.
Collapse
|
20
|
Jevtić P, Schibler AC, Wesley CC, Pegoraro G, Misteli T, Levy DL. The nucleoporin ELYS regulates nuclear size by controlling NPC number and nuclear import capacity. EMBO Rep 2019; 20:embr.201847283. [PMID: 31085625 DOI: 10.15252/embr.201847283] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
How intracellular organelles acquire their characteristic sizes is a fundamental question in cell biology. Given stereotypical changes in nuclear size in cancer, it is important to understand the mechanisms that control nuclear size in human cells. Using a high-throughput imaging RNAi screen, we identify and mechanistically characterize ELYS, a nucleoporin required for post-mitotic nuclear pore complex (NPC) assembly, as a determinant of nuclear size in mammalian cells. ELYS knockdown results in small nuclei, reduced nuclear lamin B2 localization, lower NPC density, and decreased nuclear import. Increasing nuclear import by importin α overexpression rescues nuclear size and lamin B2 import, while inhibiting importin α/β-mediated nuclear import decreases nuclear size. Conversely, ELYS overexpression increases nuclear size, enriches nuclear lamin B2 at the nuclear periphery, and elevates NPC density and nuclear import. Consistent with these observations, knockdown or inhibition of exportin 1 increases nuclear size. Thus, we identify ELYS as a novel positive effector of mammalian nuclear size and propose that nuclear size is sensitive to NPC density and nuclear import capacity.
Collapse
Affiliation(s)
- Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | | | - Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Gianluca Pegoraro
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD, USA
| | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
21
|
Jevtić P, Mukherjee RN, Chen P, Levy DL. Altering the levels of nuclear import factors in early Xenopus laevis embryos affects later development. PLoS One 2019; 14:e0215740. [PMID: 31009515 PMCID: PMC6476522 DOI: 10.1371/journal.pone.0215740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/08/2019] [Indexed: 11/19/2022] Open
Abstract
More than just a container for DNA, the nuclear envelope carries out a wide variety of critical and highly regulated cellular functions. One of these functions is nuclear import, and in this study we investigate how altering the levels of nuclear transport factors impacts developmental progression and organismal size. During early Xenopus laevis embryogenesis, the timing of a key developmental event, the midblastula transition (MBT), is sensitive to nuclear import factor levels. How might altering nuclear import factors and MBT timing in the early embryo affect downstream development of the organism? We microinjected X. laevis two-cell embryos with mRNA to increase levels of importin α or NTF2, resulting in differential amounts of nuclear import factors in the two halves of the embryo. Compared to controls, these embryos exhibited delayed gastrulation, curved neural plates, and bent tadpoles with different sized eyes. Furthermore, embryos microinjected with NTF2 developed into smaller froglets compared to control microinjected embryos. We propose that altering nuclear import factors and nuclear size affects MBT timing, cell size, and cell number, subsequently disrupting later development. Thus, altering nuclear import factors early in development can affect function and size at the organismal level.
Collapse
Affiliation(s)
- Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Richik N. Mukherjee
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Pan Chen
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
- * E-mail:
| |
Collapse
|
22
|
Dilsaver MR, Chen P, Thompson TA, Reusser T, Mukherjee RN, Oakey J, Levy DL. Emerin induces nuclear breakage in Xenopus extract and early embryos. Mol Biol Cell 2018; 29:3155-3167. [PMID: 30332321 PMCID: PMC6340207 DOI: 10.1091/mbc.e18-05-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Emerin is an inner nuclear membrane protein often mutated in Emery–Dreifuss muscular dystrophy. Because emerin has diverse roles in nuclear mechanics, cytoskeletal organization, and gene expression, it has been difficult to elucidate its contribution to nuclear structure and disease pathology. In this study, we investigated emerin’s impact on nuclei assembled in Xenopus laevis egg extract, a simplified biochemical system that lacks potentially confounding cellular factors and activities. Notably, these extracts are transcriptionally inert and lack endogenous emerin and filamentous actin. Strikingly, emerin caused rupture of egg extract nuclei, dependent on the application of shear force. In egg extract, emerin localized to nonnuclear cytoplasmic membranes, and nuclear rupture was rescued by targeting emerin to the nucleus, disrupting its membrane association, or assembling nuclei with lamin A. Furthermore, emerin induced breakage of nuclei in early-stage X. laevis embryo extracts, and embryos microinjected with emerin were inviable, with ruptured nuclei. We propose that cytoplasmic membrane localization of emerin leads to rupture of nuclei that are more sensitive to mechanical perturbation, findings that may be relevant to early development and certain laminopathies.
Collapse
Affiliation(s)
- Matthew R Dilsaver
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Pan Chen
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Trey A Thompson
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Traci Reusser
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
| | - Richik N Mukherjee
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
23
|
Walters AD, Amoateng K, Wang R, Chen JH, McDermott G, Larabell CA, Gadal O, Cohen-Fix O. Nuclear envelope expansion in budding yeast is independent of cell growth and does not determine nuclear volume. Mol Biol Cell 2018; 30:131-145. [PMID: 30379612 PMCID: PMC6337908 DOI: 10.1091/mbc.e18-04-0204] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most cells exhibit a constant ratio between nuclear and cell volume. The mechanism dictating this constant ratio and the nuclear component(s) that scale with cell size are not known. To address this, we examined the consequences to the size and shape of the budding yeast nucleus when cell expansion is inhibited by down-regulating components of the secretory pathway. We find that under conditions where cell size increase is restrained, the nucleus becomes bilobed, with the bulk of the DNA in one lobe and the nucleolus in the other. The formation of bilobed nuclei is dependent on fatty acid and phospholipid synthesis, suggesting that it is associated with nuclear membrane expansion. Bilobed nuclei appeared predominantly after spindle pole body separation, suggesting that nuclear envelope expansion follows cell-cycle cues rather than cell size. Importantly, cells with bilobed nuclei had the same nuclear:cell volume ratio as cells with round nuclei. Therefore, the bilobed nucleus could be a consequence of continued NE expansion as cells traverse the cell cycle without an accompanying increase in nuclear volume due to the inhibition of cell growth. Our data suggest that nuclear volume is not determined by nuclear envelope availability but by one or more nucleoplasmic factors.
Collapse
Affiliation(s)
- Alison D Walters
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kwabena Amoateng
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Renjie Wang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Jian-Hua Chen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Gerry McDermott
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Carolyn A Larabell
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Olivier Gadal
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Orna Cohen-Fix
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
24
|
Williams JF, Mochrie SGJ, King MC. A versatile image analysis platform for three-dimensional nuclear reconstruction. Methods 2018; 157:15-27. [PMID: 30359725 DOI: 10.1016/j.ymeth.2018.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022] Open
Abstract
Nuclear morphology is indicative of cellular health in many contexts. In order to robustly and quantitatively measure nuclear size and shape, numerous experimental methods leveraging fluorescence microscopy have been developed. While these methods are useful for quantifying two-dimensional morphology, they often fail to accurately represent the three-dimensional structure of the nucleus, thus omitting important spatial and volumetric information. To address the need for a more accurate image analysis modality, we have developed a software platform that faithfully reconstructs membrane surfaces in three dimensions with sub-pixel resolution. Here, we showcase its broad applicability across species and nuclear scale, as well as provide information on how to employ this platform for diverse experimental systems.
Collapse
Affiliation(s)
- Jessica F Williams
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Simon G J Mochrie
- Department of Physics, Department of Applied Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
25
|
Heald R, Gibeaux R. Subcellular scaling: does size matter for cell division? Curr Opin Cell Biol 2018; 52:88-95. [PMID: 29501026 PMCID: PMC5988940 DOI: 10.1016/j.ceb.2018.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
Among different species or cell types, or during early embryonic cell divisions that occur in the absence of cell growth, the size of subcellular structures, including the nucleus, chromosomes, and mitotic spindle, scale with cell size. Maintaining correct subcellular scales is thought to be important for many cellular processes and, in particular, for mitosis. In this review, we provide an update on nuclear and chromosome scaling mechanisms and their significance in metazoans, with a focus on Caenorhabditis elegans, Xenopus and mammalian systems, for which a common role for the Ran (Ras-related nuclear protein)-dependent nuclear transport system has emerged.
Collapse
Affiliation(s)
- Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Romain Gibeaux
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
26
|
Chen P, Levy DL. Nucleus Assembly and Import in Xenopus laevis Egg Extract. Cold Spring Harb Protoc 2018; 2018:pdb.prot097196. [PMID: 29321282 DOI: 10.1101/pdb.prot097196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Xenopus egg extract represents a powerful cell-free biochemical tool for studying organelle assembly and function. Large quantities of cytoplasm can be isolated, and biochemical manipulation of extract composition and cell cycle state is relatively straightforward. In this protocol, we describe the reconstitution of nuclear assembly by adding a chromatin source to interphasic X. laevis egg extract. Intact nuclei assemble within 30-45 min of initiating the reaction, followed by nuclear growth. We also describe methods for imaging and quantifying nuclear import kinetics. Recombinant proteins or small molecules of interest can be added to the extract before or after nuclear assembly, and immunodepletion allows for removal of specific proteins from the extract. This approach will continue to inform mechanisms of nuclear assembly, nuclear pore complex assembly and function, nucleocytoplasmic transport, DNA replication, nuclear envelope breakdown, and nuclear size and shape regulation.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
27
|
Jevtić P, Milunović-Jevtić A, Dilsaver MR, Gatlin JC, Levy DL. Use of Xenopus cell-free extracts to study size regulation of subcellular structures. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2018; 60:277-288. [PMID: 27759156 DOI: 10.1387/ijdb.160158dl] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Striking size variations are prominent throughout biology, at the organismal, cellular, and subcellular levels. Important fundamental questions concern organelle size regulation and how organelle size is regulated relative to cell size, also known as scaling. Uncovering mechanisms of organelle size regulation will inform the functional significance of size as well as the implications of misregulated size, for instance in the case of nuclear enlargement in cancer. Xenopus egg and embryo extracts are powerful cell-free systems that have been utilized extensively for mechanistic and functional studies of various organelles and subcellular structures. The open biochemical nature of the extract permits facile manipulation of its composition, and in recent years extract approaches have illuminated mechanisms of organelle size regulation. This review largely focuses on in vitro Xenopus studies that have identified regulators of nuclear and spindle size. We also discuss potential relationships between size scaling of the nucleus and spindle, size regulation of other subcellular structures, and extract experiments that have clarified developmental timing mechanisms. We conclude by offering some future prospects, notably the integration of Xenopus extract with microfluidic technology.
Collapse
Affiliation(s)
- Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | | | | | | | | |
Collapse
|
28
|
Mackmull MT, Klaus B, Heinze I, Chokkalingam M, Beyer A, Russell RB, Ori A, Beck M. Landscape of nuclear transport receptor cargo specificity. Mol Syst Biol 2017; 13:962. [PMID: 29254951 PMCID: PMC5740495 DOI: 10.15252/msb.20177608] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo-NTR relationships in situ, we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976.
Collapse
Affiliation(s)
- Marie-Therese Mackmull
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bernd Klaus
- Centre for Statistical Data Analysis, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ivonne Heinze
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Andreas Beyer
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Robert B Russell
- Heidelberg University Biochemistry Centre & Bioquant, Heidelberg, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany .,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
29
|
Abstract
Background. Nuclear size is a tightly regulated cellular feature. Mechanisms that regulate nuclear size and the functional significance of this regulation are largely unknown. Nuclear size and morphology are often altered in many diseases, such as cancer. Therefore, understanding the mechanisms that regulate nuclear size is crucial to provide insight into the role of nuclear size in disease. Scope and Approach. The goal of this review is to summarize the most recent studies about the mechanisms and functional significance of nuclear size control using the Xenopus model system. First, this review describes how Xenopus egg extracts, embryos, and embryo extracts are prepared and used in scientific research. Next, the review focuses on the mechanisms and functional effects of proper nuclear size control that have been learned using the Xenopus system. Key Findings and Conclusions. Xenopus is an excellent in vivo and in vitro experimental platform to study mechanisms of nuclear size control. Given its close evolutionary relationship with mammals and that most cellular processes and pathways are highly conserved between Xenopus and humans, the Xenopus system has been a valuable tool to advance biomedical research. Some of the mechanisms that regulate nuclear size include components of nuclear import such as importin α and NTF2, nuclear lamins, nucleoporins, proteins that regulate the morphology of the endoplasmic reticulum, and cytoskeletal elements.
Collapse
|
30
|
Edens LJ, Dilsaver MR, Levy DL. PKC-mediated phosphorylation of nuclear lamins at a single serine residue regulates interphase nuclear size in Xenopus and mammalian cells. Mol Biol Cell 2017; 28:1389-1399. [PMID: 28356420 PMCID: PMC5426852 DOI: 10.1091/mbc.e16-11-0786] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 01/01/2023] Open
Abstract
How nuclear size is regulated is a fundamental cell-biological question with relevance to cancers, which often exhibit enlarged nuclei. We previously reported that conventional protein kinase C (cPKC) contributes to nuclear size reductions that occur during early Xenopus development. Here we report that PKC-mediated phosphorylation of lamin B3 (LB3) contributes to this mechanism of nuclear size regulation. By mapping PKC phosphorylation sites on LB3 and testing the effects of phosphomutants in Xenopus laevis embryos, we identify the novel site S267 as being an important determinant of nuclear size. Furthermore, FRAP studies demonstrate that phosphorylation at this site increases lamina dynamics, providing a mechanistic explanation for how PKC activity influences nuclear size. We subsequently map this X. laevis LB3 phosphorylation site to a conserved site in mammalian lamin A (LA), S268. Manipulating PKC activity in cultured mammalian cells alters nuclear size, as does expression of LA-S268 phosphomutants. Taken together, these data demonstrate that PKC-mediated lamin phosphorylation is a conserved mechanism of nuclear size regulation.
Collapse
Affiliation(s)
- Lisa J Edens
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Matthew R Dilsaver
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
31
|
Kume K, Cantwell H, Neumann FR, Jones AW, Snijders AP, Nurse P. A systematic genomic screen implicates nucleocytoplasmic transport and membrane growth in nuclear size control. PLoS Genet 2017; 13:e1006767. [PMID: 28545058 PMCID: PMC5436639 DOI: 10.1371/journal.pgen.1006767] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/19/2017] [Indexed: 01/14/2023] Open
Abstract
How cells control the overall size and growth of membrane-bound organelles is an important unanswered question of cell biology. Fission yeast cells maintain a nuclear size proportional to cellular size, resulting in a constant ratio between nuclear and cellular volumes (N/C ratio). We have conducted a genome-wide visual screen of a fission yeast gene deletion collection for viable mutants altered in their N/C ratio, and have found that defects in both nucleocytoplasmic mRNA transport and lipid synthesis alter the N/C ratio. Perturbing nuclear mRNA export results in accumulation of both mRNA and protein within the nucleus, and leads to an increase in the N/C ratio which is dependent on new membrane synthesis. Disruption of lipid synthesis dysregulates nuclear membrane growth and results in an enlarged N/C ratio. We propose that both properly regulated nucleocytoplasmic transport and nuclear membrane growth are central to the control of nuclear growth and size.
Collapse
Affiliation(s)
- Kazunori Kume
- Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Cell Cycle Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Helena Cantwell
- Cell Cycle Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Frank R. Neumann
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, New York, United States of America
| | - Andrew W. Jones
- Cell Cycle Laboratory, The Francis Crick Institute, London, United Kingdom
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Ambrosius P. Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, London, United Kingdom
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, New York, United States of America
| |
Collapse
|