1
|
Oda H, Nishiguchi S, Song C, Murata K, Uchihashi T, Suzuki Y. Nanoscale Visualization of Drosophila E-cadherin Ectodomain Fragments and Their Interactions Using DNA Origami Nanoblocks. J Mol Biol 2025; 437:168875. [PMID: 39581222 DOI: 10.1016/j.jmb.2024.168875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The adhesive function of cell surface proteins can be visually assessed through direct observation; however, the underlying structures that mediate adhesion typically remain invisible at the nanoscale level. This hinders knowledge on the diversity of molecular architectures responsible for cell-cell adhesion. Drosophila E-cadherin (DE-cadherin), a classical cadherin with a unique domain structure, demonstrates adhesive function; however, it lacks a structural model that explains its adhesion mechanism. Here, we present a novel application of DNA origami technology to create a cell-free, flat environment in which full DE-cadherin ectodomains are anchored using SNAP-tags and biotin-streptavidin interactions. DNA origami was assembled into a 120 nm long block, bearing 5 or 14 biotin:streptavidin sites that were evenly spaced on one lateral face. DE-cadherin ectodomain fragments were attached via biotinylated SNAP-tags. These decorated DNA origami nanoblocks were subjected to transmission electron and high-speed atomic force microscopy, which revealed a hinge-like site that separated the membrane-distal and -proximal portions of the DE-cadherin ectodomain, suggesting a role in mechanical flexibility. We also observed interactions between DE-cadherin ectodomains via their membrane-distal portions on single DNA origami nanoblocks. We reconstituted an adhesion-like process via pairing DNA origami nanoblocks using DE-cadherin ectodomain interactions. Homophilic associations of functional DE-cadherin ectodomains between the paired DNA origami nanoblocks were visualized at the nanoscale, displaying strand-like molecular configurations, likely representing the extracellular cadherin repeats without regular arrays of structural elements. This study introduces a DNA origami-based platform for reconstituting and visualizing cadherin ectodomain interactions, with potential applications for a broader range of adhesion molecules.
Collapse
Affiliation(s)
- Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Shigetaka Nishiguchi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Chihong Song
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yuki Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| |
Collapse
|
2
|
Gonzalez-Vazquez MC, Vela-Sanchez RA, Rojas-Ruiz NE, Carabarin-Lima A. Importance of Cry Proteins in Biotechnology: Initially a Bioinsecticide, Now a Vaccine Adjuvant. Life (Basel) 2021; 11:999. [PMID: 34685371 PMCID: PMC8541582 DOI: 10.3390/life11100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 11/21/2022] Open
Abstract
A hallmark of Bacillus thuringiensis bacteria is the formation of one or more parasporal crystal (Cry) proteins during sporulation. The toxicity of these proteins is highly specific to insect larvae, exerting lethal effects in different insect species but not in humans or other mammals. The aim of this review is to summarize previous findings on Bacillus thuringiensis, including the characteristics of the bacterium, its subsequent contribution to biotechnology as a bioinsecticide due to the presence of Cry proteins, and its potential application as an adjuvant. In several studies, Cry proteins have been administered together with specific antigens to immunize experimental animal models. The results have shown that these proteins can enhance immunogenicity by generating an adequate immune response capable of protecting the model against an experimental infectious challenge, whereas protection is decreased when the specific antigen is administered without the Cry protein. Therefore, based on previous results and the structural homology between Cry proteins, these molecules have arisen as potential adjuvants in the development of vaccines for both animals and humans. Finally, a model of the interaction of Cry proteins with different components of the immune response is proposed.
Collapse
Affiliation(s)
- Maria Cristina Gonzalez-Vazquez
- Centro de Investigaciones en Ciencias Microbiologicas, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico; (M.C.G.-V.); (N.E.R.-R.)
| | - Ruth Abril Vela-Sanchez
- Licenciatura en Biotecnología, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico;
| | - Norma Elena Rojas-Ruiz
- Centro de Investigaciones en Ciencias Microbiologicas, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico; (M.C.G.-V.); (N.E.R.-R.)
- Licenciatura en Biotecnología, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico;
| | - Alejandro Carabarin-Lima
- Centro de Investigaciones en Ciencias Microbiologicas, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico; (M.C.G.-V.); (N.E.R.-R.)
- Licenciatura en Biotecnología, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico;
| |
Collapse
|
3
|
Nishiguchi S, Oda H. Structural variability and dynamics in the ectodomain of an ancestral-type classical cadherin revealed by AFM imaging. J Cell Sci 2021; 134:269231. [PMID: 34152409 PMCID: PMC8325961 DOI: 10.1242/jcs.258388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/15/2021] [Indexed: 01/13/2023] Open
Abstract
Type III cadherin represents the ancestral form of classical cadherin in bilaterian metazoans. Drosophila possesses type III and type IVa cadherins, known as DN- and DE-cadherins, respectively. Mature DN- and DE-cadherins have 15 and 7 extracellular cadherin domain (EC) repeats, respectively, with DN-cadherin EC6–EC11 homologous to DE-cadherin EC1–EC6. These EC repeats contain predicted complete or partial Ca2+-free inter-EC linkers that potentially contribute to adhesion. Comparative structure–function studies of DN- and DE-cadherins may help us understand the ancestral and derived states of classical cadherin-mediated adhesion mechanisms. Here, using bead aggregation assays, we found that DN-cadherin EC1–EC11 and DE-cadherin EC1–EC6 exhibit Ca2+-dependent adhesive properties. Using high-speed atomic force microscopy (HS-AFM) imaging in solution, we show that both DN- and DE-cadherin ectodomains share a common morphological framework consisting of a strand-like and a globule-like portion. Furthermore, the DN-cadherin EC repeats are highly variable, flexible in morphology and have at least three bendable sites, one of which is located in EC6–EC11 and can act as a flexible hinge. Our findings provide insights into diversification of classical cadherin-mediated adhesion mechanisms. This article has an associated First Person interview with the first author of the paper. Summary: Atomic force microscopy imaging reveals that the ectodomain of an ancestral-type classical cadherin has a flexibly bendable strand-like portion responsible for homophilic adhesion.
Collapse
Affiliation(s)
- Shigetaka Nishiguchi
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.,R&D Group, Olympus Corporation, 2-3 Kuboyama-cho, Hachioji-shi, Tokyo 192-8512, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
4
|
Ramirez Moreno M, Stempor PA, Bulgakova NA. Interactions and Feedbacks in E-Cadherin Transcriptional Regulation. Front Cell Dev Biol 2021; 9:701175. [PMID: 34262912 PMCID: PMC8273600 DOI: 10.3389/fcell.2021.701175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 01/07/2023] Open
Abstract
Epithelial tissues rely on the adhesion between participating cells to retain their integrity. The transmembrane protein E-cadherin is the major protein that mediates homophilic adhesion between neighbouring cells and is, therefore, one of the critical components for epithelial integrity. E-cadherin downregulation has been described extensively as a prerequisite for epithelial-to-mesenchymal transition and is a hallmark in many types of cancer. Due to this clinical importance, research has been mostly focused on understanding the mechanisms leading to transcriptional repression of this adhesion molecule. However, in recent years it has become apparent that re-expression of E-cadherin is a major step in the progression of many cancers during metastasis. Here, we review the currently known molecular mechanisms of E-cadherin transcriptional activation and inhibition and highlight complex interactions between individual mechanisms. We then propose an additional mechanism, whereby the competition between adhesion complexes and heterochromatin protein-1 for binding to STAT92E fine-tunes the levels of E-cadherin expression in Drosophila but also regulates other genes promoting epithelial robustness. We base our hypothesis on both existing literature and our experimental evidence and suggest that such feedback between the cell surface and the nucleus presents a powerful paradigm for epithelial resilience.
Collapse
Affiliation(s)
- Miguel Ramirez Moreno
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, England
| | | | - Natalia A Bulgakova
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, England
| |
Collapse
|
5
|
Kong D, Großhans J. Planar Cell Polarity and E-Cadherin in Tissue-Scale Shape Changes in Drosophila Embryos. Front Cell Dev Biol 2020; 8:619958. [PMID: 33425927 PMCID: PMC7785826 DOI: 10.3389/fcell.2020.619958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/07/2020] [Indexed: 12/04/2022] Open
Abstract
Planar cell polarity and anisotropic cell behavior play critical roles in large-scale epithelial morphogenesis, homeostasis, wound repair, and regeneration. Cell-Cell communication and mechano-transduction in the second to minute scale mediated by E-cadherin complexes play a central role in the coordination and self-organization of cellular activities, such as junction dynamics, cell shape changes, and cell rearrangement. Here we review the current understanding in the interplay of cell polarity and cell dynamics during body axis elongation and dorsal closure in Drosophila embryos with a focus on E-cadherin dynamics in linking cell and tissue polarization and tissue-scale shape changes.
Collapse
Affiliation(s)
- Deqing Kong
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | | |
Collapse
|
6
|
Tan J, Zhang X, Xiao W, Liu X, Li C, Guo Y, Xiong W, Li Y. N3ICD with the transmembrane domain can effectively inhibit EMT by correcting the position of tight/adherens junctions. Cell Adh Migr 2019; 13:203-218. [PMID: 31096822 PMCID: PMC6550553 DOI: 10.1080/19336918.2019.1619958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/22/2019] [Accepted: 05/10/2019] [Indexed: 02/05/2023] Open
Abstract
EMT allows a polarized epithelium to lose epithelial integrity and acquire mesenchymal characteristics. Previously, we found that overexpression of the intracellular domain of Notch3 (N3ICD) can inhibit EMT in breast cancer cells. In this study, we aimed to elucidate the influence of N3ICD or N3ICD combined with the transmembrane domain (TD+N3ICD) on the expression and distribution of TJs/AJs and polar molecules. We found that although N3ICD can upregulate the expression levels of the above-mentioned molecules, TD+N3ICD can inhibit EMT more effectively than N3ICD alone. TD+N3ICD overexpression upregulated the expression of endogenous full-length Notch3 and contributed to correcting the position of TJs/AJs molecules and better acinar structures formation. Co-immunoprecipitation results showed that the upregulated endogenous full-length Notch3 could physically interact with E-ca in MDA-MB-231/pCMV-(TD+N3ICD) cells. Collectively, our data indicate that overexpression of TD+N3ICD can effectively inhibit EMT, resulting in better positioning of TJs/AJs molecules and cell-cell adhesion in breast cancer cells. Abbreviations: EMT: Epithelial-mesenchymal transition; TJs: Tight junctions; AJs: Adherens junctions; aPKC: Atypical protein kinase C; Crb: Crumbs; Lgl: Lethal (2) giant larvae; LLGL2: lethal giant larvae homolog 2; PAR: Partitioning defective; PATJ: Pals1-associated TJ protein.
Collapse
Affiliation(s)
- Junyu Tan
- The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xixun Zhang
- The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Wenjun Xiao
- The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiong Liu
- The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Chun Li
- The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yuxian Guo
- The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Wei Xiong
- The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yaochen Li
- The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
- CONTACT Yaochen Li The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
7
|
Tiwari P, Mrigwani A, Kaur H, Kaila P, Kumar R, Guptasarma P. Structural-Mechanical and Biochemical Functions of Classical Cadherins at Cellular Junctions: A Review and Some Hypotheses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1112:107-138. [DOI: 10.1007/978-981-13-3065-0_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Abstract
Background Classical cadherins are a metazoan-specific family of homophilic cell-cell adhesion molecules that regulate morphogenesis. Type I and type IV cadherins in this family function at adherens junctions in the major epithelial tissues of vertebrates and insects, respectively, but they have distinct, relatively simple domain organizations that are thought to have evolved by independent reductive changes from an ancestral type III cadherin, which is larger than derived paralogs and has a complicated domain organization. Although both type III and type IV cadherins have been identified in hexapods and branchiopods, the process by which the type IV cadherin evolved is still largely unclear. Results Through an analysis of arthropod genome sequences, we found that the only classical cadherin encoded in chelicerate genomes was the type III cadherin and that the two type III cadherin genes found in the spider Parasteatoda tepidariorum genome exhibited a complex yet ancestral exon-intron organization in arthropods. Genomic and transcriptomic data from branchiopod, copepod, isopod, amphipod, and decapod crustaceans led us to redefine the type IV cadherin category, which we separated into type IVa and type IVb, which displayed a similar domain organization, except type IVb cadherins have a larger number of extracellular cadherin (EC) domains than do type IVa cadherins (nine versus seven). We also showed that type IVa cadherin genes occurred in the hexapod, branchiopod, and copepod genomes whereas only type IVb cadherin genes were present in malacostracans. Furthermore, comparative characterization of the type IVb cadherins suggested that the presence of two extra EC domains in their N-terminal regions represented primitive characteristics. In addition, we identified an evolutionary loss of two highly conserved cysteine residues among the type IVa cadherins of insects. Conclusions We provide a genomic perspective of the evolution of classical cadherins among bilaterians, with a focus on the Arthropoda, and suggest that following the divergence of early arthropods, the precursor of the insect type IV cadherin evolved through stepwise reductive changes from the ancestral type III state. In addition, the complementary distributions of polarized genomic characters related to type IVa/IVb cadherins may have implications for our interpretations of pancrustacean phylogeny. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0991-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mizuki Sasaki
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, 569-1125, Osaka, Japan.,Current address: Department of Parasitology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-higashi, Asahikawa, 078-8510, Hokkaido, Japan
| | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, 569-1125, Osaka, Japan.,Department of Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, 569-1125, Osaka, Japan. .,Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
| |
Collapse
|