1
|
Le TK, Hirano Y, Asakawa H, Okamoto K, Fukagawa T, Haraguchi T, Hiraoka Y. A ubiquitin-proteasome pathway degrades the inner nuclear membrane protein Bqt4 to maintain nuclear membrane homeostasis. J Cell Sci 2023; 136:jcs260930. [PMID: 37694715 DOI: 10.1242/jcs.260930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Aberrant accumulation of inner nuclear membrane (INM) proteins is associated with deformed nuclear morphology and mammalian diseases. However, the mechanisms underlying the maintenance of INM homeostasis remain poorly understood. In this study, we explored the degradation mechanisms of the INM protein Bqt4 in the fission yeast Schizosaccharomyces pombe. We have previously shown that Bqt4 interacts with the transmembrane protein Bqt3 at the INM and is degraded in the absence of Bqt3. Here, we reveal that excess Bqt4, unassociated with Bqt3, is targeted for degradation by the ubiquitin-proteasome system localized in the nucleus and Bqt3 antagonizes this process. The degradation process involves the Doa10 E3 ligase complex at the INM. Bqt4 is a tail-anchored protein and the Cdc48 complex is required for its degradation. The C-terminal transmembrane domain of Bqt4 was necessary and sufficient for proteasome-dependent protein degradation. Accumulation of Bqt4 at the INM impaired cell viability with nuclear envelope deformation, suggesting that quantity control of Bqt4 plays an important role in nuclear membrane homeostasis.
Collapse
Affiliation(s)
- Toan Khanh Le
- Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Yasuhiro Hirano
- Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Haruhiko Asakawa
- Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Tokuko Haraguchi
- Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Yasushi Hiraoka
- Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
2
|
Mannino PJ, Lusk CP. Quality control mechanisms that protect nuclear envelope identity and function. J Biophys Biochem Cytol 2022; 221:213424. [PMID: 36036741 PMCID: PMC9442147 DOI: 10.1083/jcb.202205123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
The nuclear envelope (NE) is a specialization of the endoplasmic reticulum with distinct biochemistry that defines inner and outer membranes connected at a pore membrane that houses nuclear pore complexes (NPCs). Quality control mechanisms that maintain the physical integrity and biochemical identity of these membranes are critical to ensure that the NE acts as a selective barrier that also contributes to genome stability and metabolism. As the proteome of the NE is highly integrated, it is challenging to turn over by conventional ubiquitin-proteasome and autophagy mechanisms. Further, removal of entire sections of the NE requires elaborate membrane remodeling that is poorly understood. Nonetheless, recent work has made inroads into discovering specializations of cellular degradative machineries tailored to meeting the unique challenges imposed by the NE. In addition, cells have evolved mechanisms to surveil and repair the NE barrier to protect against the deleterious effects of a breach in NE integrity, in the form of either a ruptured NE or a dysfunctional NPC. Here, we synthesize the most recent work exploring NE quality control mechanisms across eukaryotes.
Collapse
|
3
|
Flagg MP, Wangeline MA, Holland SR, Duttke SH, Benner C, Neal S, Hampton RY. Inner-nuclear-membrane-associated degradation employs Dfm1-independent retrotranslocation and alleviates misfolded transmembrane-protein toxicity. Mol Biol Cell 2021; 32:521-537. [PMID: 33566711 PMCID: PMC8101470 DOI: 10.1091/mbc.e20-11-0720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 11/11/2022] Open
Abstract
Before their delivery to and degradation by the 26S proteasome, misfolded transmembrane proteins of the endoplasmic reticulum (ER) and inner-nuclear membrane (INM) must be extracted from lipid bilayers. This extraction process, known as retrotranslocation, requires both quality-control E3 ubiquitin ligases and dislocation factors that diminish the energetic cost of dislodging the transmembrane segments of a protein. Recently, we showed that retrotranslocation of all ER transmembrane proteins requires the Dfm1 rhomboid pseudoprotease. However, we did not investigate whether Dfm1 also mediated retrotranslocation of transmembrane substrates in the INM, which is contiguous with the ER but functionally separated from it by nucleoporins. Here, we show that canonical retrotranslocation occurs during INM-associated degradation (INMAD) but proceeds independently of Dfm1. Despite this independence, ER-associated degradation (ERAD)-M and INMAD cooperate to mitigate proteotoxicity. We show a novel misfolded-transmembrane-protein toxicity that elicits genetic suppression, demonstrating the cell's ability to tolerate a toxic burden of misfolded transmembrane proteins without functional INMAD or ERAD-M. This strikingly contrasted the suppression of the dfm1Δ null, which leads to the resumption of ERAD-M through HRD-complex remodeling. Thus, we conclude that INM retrotranslocation proceeds through a novel, private channel that can be studied by virtue of its role in alleviating membrane-associated proteotoxicity.
Collapse
Affiliation(s)
- Matthew P. Flagg
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Margaret A. Wangeline
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Sarah R. Holland
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Sascha H. Duttke
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Sonya Neal
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Randolph Y. Hampton
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
4
|
Nuclear Ubiquitin-Proteasome Pathways in Proteostasis Maintenance. Biomolecules 2021; 11:biom11010054. [PMID: 33406777 PMCID: PMC7824755 DOI: 10.3390/biom11010054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Protein homeostasis, or proteostasis, is crucial for the functioning of a cell, as proteins that are mislocalized, present in excessive amounts, or aberrant due to misfolding or other type of damage can be harmful. Proteostasis includes attaining the correct protein structure, localization, and the formation of higher order complexes, and well as the appropriate protein concentrations. Consequences of proteostasis imbalance are evident in a range of neurodegenerative diseases characterized by protein misfolding and aggregation, such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. To protect the cell from the accumulation of aberrant proteins, a network of protein quality control (PQC) pathways identifies the substrates and direct them towards refolding or elimination via regulated protein degradation. The main pathway for degradation of misfolded proteins is the ubiquitin-proteasome system. PQC pathways have been first described in the cytoplasm and the endoplasmic reticulum, however, accumulating evidence indicates that the nucleus is an important PQC compartment for ubiquitination and proteasomal degradation of not only nuclear, but also cytoplasmic proteins. In this review, we summarize the nuclear ubiquitin-proteasome pathways involved in proteostasis maintenance in yeast, focusing on inner nuclear membrane-associated degradation (INMAD) and San1-mediated protein quality control.
Collapse
|
5
|
Mathew V, Kumar A, Jiang YK, West K, Tam AS, Stirling PC. Cdc48 regulates intranuclear quality control sequestration of the Hsh155 splicing factor in budding yeast. J Cell Sci 2020; 133:jcs.252551. [PMID: 33172985 DOI: 10.1242/jcs.252551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
Cdc48 (known as VCP in mammals) is a highly conserved ATPase chaperone that plays an essential role in the assembly and disassembly of protein-DNA complexes and in degradation of misfolded proteins. We find that in Saccharomyces cerevisiae budding yeast, Cdc48 accumulates during cellular stress at intranuclear protein quality control sites (INQ). We show that Cdc48 function is required to suppress INQ formation under non-stress conditions and to promote recovery following genotoxic stress. Cdc48 physically associates with the INQ substrate and splicing factor Hsh155, and regulates its assembly with partner proteins. Accordingly, cdc48 mutants have defects in splicing and show spontaneous distribution of Hsh155 to INQ aggregates, where it is stabilized. Overall, this study shows that Cdc48 regulates deposition of proteins at INQ and suggests a previously unknown role for Cdc48 in the regulation or stabilization of splicing subcomplexes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Veena Mathew
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver V5Z 1L3, Canada
| | - Arun Kumar
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver V6H 3N1, Canada
| | - Yangyang K Jiang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver V5Z 1L3, Canada
| | - Kyra West
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver V5Z 1L3, Canada
| | - Annie S Tam
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver V6H 3N1, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver V5Z 1L3, Canada .,Department of Medical Genetics, University of British Columbia, Vancouver V6H 3N1, Canada
| |
Collapse
|
6
|
Marek A, Opalek M, Kałdon A, Mickowska B, Wloch-Salamon D. Hypersensitive SSY1 mutations negatively influence transition to quiescence in yeast Saccharomyces cerevisiae. Yeast 2020; 38:102-116. [PMID: 33179371 DOI: 10.1002/yea.3536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 01/20/2023] Open
Abstract
Most cells spend the majority of their life in the non-proliferating, quiescent state. Transition to this state is crucial for microorganisms to survive long starvation periods and restart divisions afterwards. Experimental evolution allowed us to identify several mutation in genes that are presumably important for such transition in yeast cells. Most of these candidate genes belong to the SPS amino acid sensing pathway or to the SIR complex. We assembled these mutations on the ancestral strain background. Analysis of the quiescent/non-quiescent cell ratio of the starved yeast populations confirmed the crucial role of SSY1, the primary receptor component of the SPS sensor, in transition to the Q state. The evolved SSY1 mutations increased yeast sensitivity to amino acid presence in the environment. This resulted in decreased quiescent cell fraction and a 5.14% increase of the total amino acid content in the starved populations. We discuss external amino acid sensing via the SPS pathway as one of the mechanisms influencing transition to quiescence.
Collapse
Affiliation(s)
- Agnieszka Marek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Monika Opalek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Kałdon
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Barbara Mickowska
- Faculty of Food Technology, Malopolska Centre of Food Monitoring, University of Agriculture in Krakow, Krakow, Poland
| | - Dominika Wloch-Salamon
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
Huang A, Tang Y, Shi X, Jia M, Zhu J, Yan X, Chen H, Gu Y. Proximity labeling proteomics reveals critical regulators for inner nuclear membrane protein degradation in plants. Nat Commun 2020; 11:3284. [PMID: 32601292 PMCID: PMC7324386 DOI: 10.1038/s41467-020-16744-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/20/2020] [Indexed: 11/08/2022] Open
Abstract
The inner nuclear membrane (INM) selectively accumulates proteins that are essential for nuclear functions; however, overaccumulation of INM proteins results in a range of rare genetic disorders. So far, little is known about how defective, mislocalized, or abnormally accumulated membrane proteins are actively removed from the INM, especially in plants and animals. Here, via analysis of a proximity-labeling proteomic profile of INM-associated proteins in Arabidopsis, we identify critical components for an INM protein degradation pathway. We show that this pathway relies on the CDC48 complex for INM protein extraction and 26S proteasome for subsequent protein degradation. Moreover, we show that CDC48 at the INM may be regulated by a subgroup of PUX proteins, which determine the substrate specificity or affect the ATPase activity of CDC48. These PUX proteins specifically associate with the nucleoskeleton underneath the INM and physically interact with CDC48 proteins to negatively regulate INM protein degradation in plants.
Collapse
Affiliation(s)
- Aobo Huang
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yu Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Xuetao Shi
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Min Jia
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jinheng Zhu
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohan Yan
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huiqin Chen
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
8
|
Abstract
The nucleus is enclosed by a double-membrane structure, the nuclear envelope, which separates the nucleoplasm from the cytoplasm. The outer nuclear membrane is continuous with the endoplasmic reticulum (ER), whereas the inner nuclear membrane (INM) is a specialized compartment with a unique proteome. In order to ensure compartmental homeostasis, INM-associated degradation (INMAD) is required for both protein quality control and regulated proteolysis of INM proteins. INMAD shares similarities with ER-associated degradation (ERAD). The mechanism of ERAD is well characterized, whereas the INMAD pathway requires further definition. Here we review the three different branches of INMAD, mediated by their respective E3 ubiquitin ligases: Doa10, Asi1-3, and APC/C. We clarify the distinction between ERAD and INMAD, their substrate recognition signals, and the subsequent processing by their respective degradation machineries. We also discuss the significance of cell-cycle and developmental regulation of protein clearance at the INM, and its relationship to human disease.
Collapse
Affiliation(s)
- Bailey Koch
- a Department of Biological Science, The Florida State University , Tallahassee , FL , USA
| | - Hong-Guo Yu
- a Department of Biological Science, The Florida State University , Tallahassee , FL , USA
| |
Collapse
|
9
|
Patrolling the nucleus: inner nuclear membrane-associated degradation. Curr Genet 2019; 65:1099-1106. [PMID: 31020383 PMCID: PMC6744382 DOI: 10.1007/s00294-019-00971-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Protein quality control and transport are important for the integrity of organelles such as the endoplasmic reticulum, but it is largely unknown how protein homeostasis is regulated at the nuclear envelope (NE) despite the connection between NE protein function and human disease. Elucidating mechanisms that regulate the NE proteome is key to understanding nuclear processes such as gene expression, DNA replication and repair as NE components, particularly proteins at the inner nuclear membrane (INM), are involved in the maintenance of nuclear structure, nuclear positioning and chromosome organization. Nuclear pore complexes control the entry and exit of proteins in and out of the nucleus, restricting movement across the nuclear membrane based on protein size, or the size of the extraluminal-facing domain of a transmembrane protein, providing one level of INM proteome regulation. Research in budding yeast has identified a protein quality control system that targets mislocalized and misfolded proteins at the INM. Here, we review what is known about INM-associated degradation, including recent evidence suggesting that it not only targets mislocalized or misfolded proteins, but also contributes to homeostasis of resident INM proteins.
Collapse
|
10
|
Brody MJ, Vanhoutte D, Bakshi CV, Liu R, Correll RN, Sargent MA, Molkentin JD. Disruption of valosin-containing protein activity causes cardiomyopathy and reveals pleiotropic functions in cardiac homeostasis. J Biol Chem 2019; 294:8918-8929. [PMID: 31006653 DOI: 10.1074/jbc.ra119.007585] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/08/2019] [Indexed: 01/14/2023] Open
Abstract
Valosin-containing protein (VCP), also known as p97, is an ATPase with diverse cellular functions, although the most highly characterized is targeting of misfolded or aggregated proteins to degradation pathways, including the endoplasmic reticulum-associated degradation (ERAD) pathway. However, how VCP functions in the heart has not been carefully examined despite the fact that human mutations in VCP cause Paget disease of bone and frontotemporal dementia, an autosomal dominant multisystem proteinopathy that includes disease in the heart, skeletal muscle, brain, and bone. Here we generated heart-specific transgenic mice overexpressing WT VCP or a VCPK524A mutant with deficient ATPase activity. Transgenic mice overexpressing WT VCP exhibit normal cardiac structure and function, whereas mutant VCP-overexpressing mice develop cardiomyopathy. Mechanistically, mutant VCP-overexpressing hearts up-regulate ERAD complex components and have elevated levels of ubiquitinated proteins prior to manifestation of cardiomyopathy, suggesting dysregulation of ERAD and inefficient clearance of proteins targeted for proteasomal degradation. The hearts of mutant VCP transgenic mice also exhibit profound defects in cardiomyocyte nuclear morphology with increased nuclear envelope proteins and nuclear lamins. Proteomics revealed overwhelming interactions of endogenous VCP with ribosomal, ribosome-associated, and RNA-binding proteins in the heart, and impairment of cardiac VCP activity resulted in aggregation of large ribosomal subunit proteins. These data identify multifactorial functions and diverse mechanisms whereby VCP regulates cardiomyocyte protein and RNA quality control that are critical for cardiac homeostasis, suggesting how human VCP mutations negatively affect the heart.
Collapse
Affiliation(s)
- Matthew J Brody
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Davy Vanhoutte
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Chinmay V Bakshi
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Ruije Liu
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039.,the Department of Biomedical Sciences, Grand Valley State University, Allendale, Michigan 49401, and
| | - Robert N Correll
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039.,the Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487-0344
| | - Michelle A Sargent
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Jeffery D Molkentin
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039, .,the Howard Hughes Medical Institute, Cincinnati, Ohio 45229-3039
| |
Collapse
|
11
|
Koch BA, Jin H, Tomko RJ, Yu HG. The anaphase-promoting complex regulates the degradation of the inner nuclear membrane protein Mps3. J Cell Biol 2019; 218:839-854. [PMID: 30737264 PMCID: PMC6400550 DOI: 10.1083/jcb.201808024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/04/2018] [Accepted: 01/09/2019] [Indexed: 01/08/2023] Open
Abstract
How resident inner nuclear membrane (INM) proteins are turned over is unclear. Koch et al. identify an APC/C-dependent mechanism controlling the degradation of Mps3, a conserved integral protein of the INM. The nucleus is enclosed by the inner nuclear membrane (INM) and the outer nuclear membrane (ONM). While the ONM is continuous with the endoplasmic reticulum (ER), the INM is independent and separates the nucleoplasm from the ER lumen. Turnover of ER proteins has been well characterized by the ER-associated protein degradation (ERAD) pathway, but very little is known about turnover of resident INM proteins. Here we show that the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase, regulates the degradation of Mps3, a conserved integral protein of the INM. Turnover of Mps3 requires the ubiquitin-conjugating enzyme Ubc7, but was independent of the known ERAD ubiquitin ligases Doa10 and Hrd1 as well as the recently discovered Asi1–Asi3 complex. Using a genetic approach, we have found that Cdh1, a coactivator of APC/C, modulates Mps3 stability. APC/C controls Mps3 degradation through Mps3’s N terminus, which resides in the nucleoplasm and possesses two putative APC/C-dependent destruction motifs. Accumulation of Mps3 at the INM impairs nuclear morphological changes and cell division. Our findings therefore reveal an unexpected mechanism of APC/C-mediated protein degradation at the INM that coordinates nuclear morphogenesis and cell cycle progression.
Collapse
Affiliation(s)
- Bailey A Koch
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Hui Jin
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL
| | - Hong-Guo Yu
- Department of Biological Science, Florida State University, Tallahassee, FL
| |
Collapse
|
12
|
Distribution of Proteins at the Inner Nuclear Membrane Is Regulated by the Asi1 E3 Ligase in Saccharomyces cerevisiae. Genetics 2019; 211:1269-1282. [PMID: 30709848 PMCID: PMC6456303 DOI: 10.1534/genetics.119.301911] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Inner nuclear membrane (INM) protein composition regulates nuclear function, affecting processes such as gene expression, chromosome organization, nuclear shape, and stability. Mechanisms that drive changes in the INM proteome are poorly understood, in part because it is difficult to definitively assay INM composition rigorously and systematically. Using a split-GFP complementation system to detect INM access, we examined the distribution of all C-terminally tagged Saccharomyces cerevisiae membrane proteins in wild-type cells and in mutants affecting protein quality control pathways, such as INM-associated degradation (INMAD), ER-associated degradation, and vacuolar proteolysis. Deletion of the E3 ligase Asi1 had the most specific effect on the INM compared to mutants in vacuolar or ER-associated degradation pathways, consistent with a role for Asi1 in the INMAD pathway. Our data suggest that Asi1 not only removes mistargeted proteins at the INM, but also controls the levels and distribution of native INM components, such as the membrane nucleoporin Pom33. Interestingly, loss of Asi1 does not affect Pom33 protein levels but instead alters Pom33 distribution in the nuclear envelope through Pom33 ubiquitination, which drives INM redistribution. Taken together, our data demonstrate that the Asi1 E3 ligase has a novel function in INM protein regulation in addition to protein turnover.
Collapse
|
13
|
Esaki M, Islam MT, Tani N, Ogura T. Deviation of the typical AAA substrate-threading pore prevents fatal protein degradation in yeast Cdc48. Sci Rep 2017; 7:5475. [PMID: 28710470 PMCID: PMC5511170 DOI: 10.1038/s41598-017-05806-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/02/2017] [Indexed: 01/15/2023] Open
Abstract
Yeast Cdc48 is a well-conserved, essential chaperone of ATPases associated with diverse cellular activity (AAA) proteins, which recognizes substrate proteins and modulates their conformations to carry out many cellular processes. However, the fundamental mechanisms underlying the diverse pivotal roles of Cdc48 remain unknown. Almost all AAA proteins form a ring-shaped structure with a conserved aromatic amino acid residue that is essential for proper function. The threading mechanism hypothesis suggests that this residue guides the intrusion of substrate proteins into a narrow pore of the AAA ring, thereby becoming unfolded. By contrast, the aromatic residue in one of the two AAA rings of Cdc48 has been eliminated through evolution. Here, we show that artificial retrieval of this aromatic residue in Cdc48 is lethal, and essential features to support the threading mechanism are required to exhibit the lethal phenotype. In particular, genetic and biochemical analyses of the Cdc48 lethal mutant strongly suggested that when in complex with the 20S proteasome, essential proteins are abnormally forced to thread through the Cdc48 pore to become degraded, which was not detected in wild-type Cdc48. Thus, the widely applicable threading model is less effective for wild-type Cdc48; rather, Cdc48 might function predominantly through an as-yet-undetermined mechanism.
Collapse
Affiliation(s)
- Masatoshi Esaki
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan. .,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| | - Md Tanvir Islam
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Microbiology, Jessore University of Science and Technology, Jessore, 7408, Bangladesh
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, 332-0012, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, Kumamoto, 860-8556, Japan
| |
Collapse
|