1
|
Polon R, Heard CR, Gonzales-Viera O, Macías-Rioseco M, Mete A, Watson K, Woods LW, Armién AG. Ex situ and in situ demonstration of amyloid fibrils for confirmation of amyloidosis using transmission electron microscopy. J Vet Diagn Invest 2025; 37:429-438. [PMID: 39979789 PMCID: PMC11843569 DOI: 10.1177/10406387251321415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
Confirmation of extracellular amyloid deposition across various animal species and tissue types has been a long-standing challenge in veterinary diagnostic pathology. Transmission electron microscopy (TEM) has historically been used to advance the understanding of amyloid fibril morphology and confirm amyloid fibril deposition when histologic methods provide unclear results. We assessed the feasibility of utilizing TEM for routine confirmation of amyloidosis as an addition to histology. We analyzed ex situ amyloid fibrils with direct, negative-contrast TEM and in situ amyloid fibrils with aldehyde-fixed, plastic-embedding TEM to confirm amyloidosis in a variety of cases in which amorphous extracellular amyloid deposits had been identified by H&E and Congo red staining. We compared the 2 TEM methods and documented amyloid fibril morphology and morphometry in 7 species (goat, guinea pig, kudu, fox, sheep, flamingo, and duck). Ex situ fibrils had helical morphology and widths of 15-18 nm across all species. Fibril crossover distances had more interspecies variation of 60-130 nm, and species could be grouped based on pitch (twist size). Twisting patterns of in situ fibrils could not be visualized, but in situ widths of 10 nm were measured across all species. In 4 different chicken cases, fibrils differing morphologically from amyloid were consistently detected via both TEM methods, suggesting the possibility of a non-amyloid deposit that is commonly diagnosed as amyloidosis based on its histologic appearance. When available, we recommend routine confirmation of amyloid fibril deposition by TEM.
Collapse
Affiliation(s)
- Robert Polon
- California Animal Health and Food Safety Laboratory System, Davis branches, University of California–Davis, Davis, CA, USA
| | - Christina R. Heard
- California Animal Health and Food Safety Laboratory System, Davis branches, University of California–Davis, Davis, CA, USA
| | - Omar Gonzales-Viera
- California Animal Health and Food Safety Laboratory System, Davis branches, University of California–Davis, Davis, CA, USA
| | | | - Aslı Mete
- California Animal Health and Food Safety Laboratory System, Davis branches, University of California–Davis, Davis, CA, USA
| | - Katherine Watson
- California Animal Health and Food Safety Laboratory System, Davis branches, University of California–Davis, Davis, CA, USA
| | - Leslie W. Woods
- California Animal Health and Food Safety Laboratory System, Davis branches, University of California–Davis, Davis, CA, USA
| | - Aníbal G. Armién
- California Animal Health and Food Safety Laboratory System, Davis branches, University of California–Davis, Davis, CA, USA
| |
Collapse
|
2
|
Ghorbaninia M, Doroudgar S, Ganjalikhany MR. Delving into the crucial role of the initial structure in the dynamic and self-assembly of amyloid beta. Biochem Biophys Res Commun 2025; 758:151652. [PMID: 40117973 DOI: 10.1016/j.bbrc.2025.151652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
Alzheimer's disease involves the accumulation of amyloid beta (Aβ) monomers that form oligomers and fibrils in the brain. Studying the Aβ monomer is critical for understanding Aβ assembly and peptide behavior and has implications for drug design. Choosing a starting structure with a higher aggregation tendency for cost-effective MD studies and drug design is crucial. Previous studies have utilized distinct initial conformations, leading to varying results. Hence, this study was conducted to compare different initial conformations using the same MD simulation protocol to investigate the behavior and oligomerization propensity of different starting structures of Aβ during 1μs. The behavior of the monomers and their self-assembly systems were studied thoroughly, and the results revealed that highly helical Aβ monomers which used as starting structures retain high helix content during the simulation, and their tautomerization states did not cause significant changes in the structure. On the other hand, the Aβ extended and S-shaped monomers displayed the fingerprints of the fibril structure, which is believed to be more favorable for self-assembly. Self-assembly behaviors were seen for three S-shaped and three Aβ extended peptides. However, both conformations did not show stable β-sheet intermolecular interaction. For the Aβ16-22 monomer as a fragment of the Aβ that can assemble into fibrils, the impacts of capping and uncapping on the initial structure were also investigated. The results displayed that capped and uncapped structures can form oligomers with β-sheet at termini. However, in the capped state, β-sheet interactions were more stable and remained relatively longer than uncapped.
Collapse
Affiliation(s)
- Maryam Ghorbaninia
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Shirin Doroudgar
- Department of Internal Medicine and the Translational Cardiovascular Research Center, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
3
|
Sulatsky MI, Stepanenko OV, Stepanenko OV, Povarova OI, Kuznetsova IM, Turoverov KK, Sulatskaya AI. Broken but not beaten: Challenge of reducing the amyloids pathogenicity by degradation. J Adv Res 2025; 70:45-62. [PMID: 38642804 PMCID: PMC11976429 DOI: 10.1016/j.jare.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND The accumulation of ordered protein aggregates, amyloid fibrils, accompanies various neurodegenerative diseases (such as Parkinson's, Huntington's, Alzheimer's, etc.) and causes a wide range of systemic and local amyloidoses (such as insulin, hemodialysis amyloidosis, etc.). Such pathologies are usually diagnosed when the disease is already irreversible and a large amount of amyloid plaques have accumulated. In recent years, new drugs aimed at reducing amyloid levels have been actively developed. However, although clinical trials have demonstrated a reduction in amyloid plaque size with these drugs, their effect on disease progression has been controversial and associated with significant side effects, the reasons of which are not fully understood. AIM OF REVIEW The purpose of this review is to summarize extensive array of data on the effect of exogenous and endogenous factors (physico-mechanical effects, chemical effects of low molecular weight compounds, macromolecules and their complexes) on the structure and pathogenicity of mature amyloids for proposing future directions of the development of effective and safe anti-amyloid therapeutics. KEY SCIENTIFIC CONCEPTS OF REVIEW Our analysis show that destruction of amyloids is in most cases incomplete and degradation products often retain the properties of amyloids (including high and sometimes higher than fibrils, cytotoxicity), accelerate amyloidogenesis and promote the propagation of amyloids between cells. Probably, the appearance of protein aggregates, polymorphic in structure and properties (such as amorphous aggregates, fibril fragments, amyloid oligomers, etc.), formed because of uncontrolled degradation of amyloids, may be one of the reasons for the ambiguous effectiveness and serious side effects of the anti-amyloid drugs. This means that all medications that are supposed to be used both for degradation and slow down the fibrillogenesis must first be tested on mature fibrils: the mechanism of drug action and cytotoxic, seeding, and infectious activity of the degradation products must be analyzed.
Collapse
Affiliation(s)
- Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Olga I Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| |
Collapse
|
4
|
López-García P, Tejero-Ojeda MM, Vaquero ME, Carrión-Vázquez M. Current amyloid inhibitors: Therapeutic applications and nanomaterial-based innovations. Prog Neurobiol 2025; 247:102734. [PMID: 40024279 DOI: 10.1016/j.pneurobio.2025.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Amyloid proteins have long been in the spotlight for being involved in many degenerative diseases including Alzheimer´s, Parkinson´s or type 2 diabetes, which currently cannot be prevented and for which there is no effective treatment or cure. Here we provide a comprehensive review of inhibitors that act directly on the amyloidogenic pathway (at the monomer, oligomer or fibril level) of key pathological amyloids, focusing on the most representative amyloid-related diseases. We discuss the latest advances in preclinical and clinical trials, focusing on cutting-edge developments, particularly on nanomaterials-based inhibitors, which offer unprecedented opportunities to address the complexity of protein misfolding disorders and are revolutionizing the landscape of anti-amyloid therapeutics. Notably, nanomaterials are impacting critical areas such as bioavailability, penetrability and functionality of compounds currently used in biomedicine, paving the way for more specific therapeutic solutions tailored to various amyloid-related diseases. Finally, we highlight the window of opportunity opened by comparative analysis with so-called functional amyloids for the development of innovative therapeutic approaches for these devastating diseases.
Collapse
|
5
|
D'Angelo D, Sánchez-Vázquez VH, Cartes-Saavedra B, Vecellio Reane D, Cupo RR, Delgado de la Herran H, Ghirardo G, Shorter J, Wevers RA, Wortmann SB, Perocchi F, Rizzuto R, Raffaello A, Hajnóczky G. Dependence of mitochondrial calcium signalling and dynamics on the disaggregase, CLPB. Nat Commun 2025; 16:2810. [PMID: 40118824 PMCID: PMC11928477 DOI: 10.1038/s41467-025-57641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 02/25/2025] [Indexed: 03/24/2025] Open
Abstract
Cells utilize protein disaggregases to avoid abnormal protein aggregation that causes many diseases. Among these, caseinolytic peptidase B protein homolog (CLPB) is localized in the mitochondrial intermembrane space and linked to human disease. Upon CLPB loss, MICU1 and MICU2, regulators of the mitochondrial calcium uniporter complex (mtCU), and OPA1, a main mediator of mitochondrial fusion, become insoluble but the functional outcome remains unclear. In this work we demonstrate that CLPB is required to maintain mitochondrial calcium signalling and fusion dynamics. CLPB loss results in altered mtCU composition, interfering with mitochondrial calcium uptake independently of cytosolic calcium and mitochondrial membrane potential. Additionally, OPA1 decreases, and aggregation occurs, accompanied by mitochondrial fragmentation. Disease-associated mutations in the CLPB gene present in skin fibroblasts from patients also display mitochondrial calcium and structural changes. Thus, mtCU and fusion activity are dependent on CLPB, and their impairments might contribute to the disease caused by CLPB variants.
Collapse
Affiliation(s)
- Donato D'Angelo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Víctor H Sánchez-Vázquez
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Benjamín Cartes-Saavedra
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Denis Vecellio Reane
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Ryan R Cupo
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
- Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Hilda Delgado de la Herran
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Giorgia Ghirardo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
- Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Saskia B Wortmann
- Department of Paediatrics, University Children's Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University, Salzburg, Austria
- Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Fabiana Perocchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
- National Center on Gene Therapy and RNA-Based Drugs, Padua, Italy.
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
- Myology Center (CIR-Myo), University of Padua, Padua, Italy.
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
6
|
Mahato OP, Prajapati KP, Ansari M, Mittal S, Mishra N, Anand BG, Kar K. Fabricating Silver Nanoparticles with Antidiabetic d-Pinitol to Restrict Amyloid Formation of Insulin. ACS APPLIED BIO MATERIALS 2025; 8:1934-1945. [PMID: 39928478 DOI: 10.1021/acsabm.4c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
In this study, we synthesized silver nanoparticles functionalized with antidiabetic d-pinitol molecules and investigated their anti-amyloid effect on Insulin aggregation. Our results show that these functionalized nanoparticles effectively inhibit both spontaneous and seed-induced amyloid aggregation of Insulin in a dose-dependent manner. The d-pinitol-functionalized silver nanoparticles interact directly with the aggregation-prone regions of Insulin's partially unfolded structures, as demonstrated by quenching and computational experiments. Analysis of docking and simulation data suggests that antiamyloid activity of d-pinitol functionalized AgNPs is due to a strong Insulin-nanoparticle interaction, facilitated via hydrogen bonds. These interactions disrupt the Insulin monomer-dimer equilibrium and prevent the formation of toxic amyloid structures. The results could lead to the development of d-pinitol-based Insulin-stabilizing nanoformulations with potential antidiabetic properties.
Collapse
Affiliation(s)
- Om Prakash Mahato
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nishant Mishra
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
7
|
Sulatsky MI, Stepanenko OV, Stepanenko OV, Mikhailova EV, Sulatskaya AI. Cathepsin B prevents cell death by fragmentation and destruction of pathological amyloid fibrils. Cell Death Discov 2025; 11:61. [PMID: 39955315 PMCID: PMC11830053 DOI: 10.1038/s41420-025-02343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/09/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Amyloid fibrils cause organ and tissue dysfunction in numerous severe diseases. Despite the prevalence and severity of amyloidoses, there is still no effective and safe anti-amyloid therapy. This study investigates the impact of cysteine protease cathepsin B (CTSB) on amyloids associated with Alzheimer's and Parkinson's diseases, hemodialysis, and lysozyme amyloidosis. We analyzed the effect of CTSB on the size, structure, and proteotoxicity of amyloid fibrils formed from alpha-synuclein, abeta peptide (1-42), insulin, and lysozyme using a combination of spectroscopic, microscopic, electrophoretic, and colorimetric methods. Our comprehensive research revealed a dual effect of CTSB on amyloid fibrils. Firstly, CTSB induced amyloid fragmentation while preserving their ordered morphology, and, secondly, it "loosened" the tertiary structure of amyloids and reduced the regularity of the secondary structure. This dual mechanism of action was universal across fibrils associated with different pathologies, although the disruption efficacy and predominant type of degradation products depended on the amyloids' structure, size, and clustering. Notably, CTSB-induced irreversible degradation significantly reduced the toxicity for immortalized and primary cell lines of low-clustered fibrils, such as alpha-synuclein amyloids associated with Parkinson's disease. These findings enhance our understanding of how endogenous CTSB may regulate amyloid content at the molecular level in different neuropathologies. In addition, our results suggest the potential of CTSB as a component of anti-amyloid drugs in combination with agents that enhance the accessibility of proteolytic sites within amyloid clots and reduce these clusters stability.
Collapse
Affiliation(s)
- Maksim I Sulatsky
- Laboratory of cell morphology, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Olesya V Stepanenko
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga V Stepanenko
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina V Mikhailova
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna I Sulatskaya
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
8
|
Brunello L, Polanowska J, Le Tareau L, Maghames C, Georget V, Guette C, Chaoui K, Balor S, O'Donohue MF, Bousquet MP, Gleizes PE, Xirodimas DP. A nuclear protein quality control system for elimination of nucleolus-related inclusions. EMBO J 2025; 44:801-823. [PMID: 39690241 PMCID: PMC11791210 DOI: 10.1038/s44318-024-00333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
The identification of pathways that control elimination of protein inclusions is essential to understand the cellular response to proteotoxicity, particularly in the nuclear compartment, for which our knowledge is limited. We report that stress-induced nuclear inclusions related to the nucleolus are eliminated upon stress alleviation during the recovery period. This process is independent of autophagy/lysosome and CRM1-mediated nuclear export pathways, but strictly depends on the ubiquitin-activating E1 enzyme, UBA1, and on nuclear proteasomes that are recruited into the formed inclusions. UBA1 activity is essential only for the recovery process but dispensable for nuclear inclusion formation. Furthermore, the E3 ligase HUWE1 and HSP70 are components of the ubiquitin/chaperone systems that promote inclusion elimination. The recovery process also requires RNA Pol I-dependent production of the lncRNA IGS42 during stress. IGS42 localises within the formed inclusions and promotes their elimination by preserving the mobility of resident proteins. These findings reveal a protein quality control system that operates within the nucleus for the elimination of stress-induced nucleolus-related inclusions.
Collapse
Affiliation(s)
| | | | | | | | - Virginie Georget
- CRBM, Univ. Montpellier, CNRS, Montpellier, France
- MRI, BioCampus, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Charlotte Guette
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UT3, Toulouse, France
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier (UPS), Université de Toulouse, Toulouse, 31000, France
| | - Stéphanie Balor
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UT3, Toulouse, France
| | - Marie-Françoise O'Donohue
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UT3, Toulouse, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier (UPS), Université de Toulouse, Toulouse, 31000, France
| | - Pierre-Emmanuel Gleizes
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UT3, Toulouse, France
| | | |
Collapse
|
9
|
Lin J, Carman PJ, Gambogi CW, Kendsersky NM, Chuang E, Gates SN, Yokom AL, Rizo AN, Southworth DR, Shorter J. Design principles to tailor Hsp104 therapeutics. Cell Rep 2024; 43:115005. [PMID: 39671291 PMCID: PMC11815640 DOI: 10.1016/j.celrep.2024.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/27/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024] Open
Abstract
The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated proteins. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration. Manipulating this network can (1) reduce Hsp70 collaboration without enhancing activity, (2) generate Hsp104 hypomorphs that collaborate selectively with class B Hsp40s, (3) produce Hsp70-independent potentiated variants, or (4) create species barriers between Hsp104 and Hsp70. Conversely, ADP-specific intraprotomer contacts between MD helix L2 and NBD1 restrict activity, and their perturbation frequently potentiates Hsp104. Importantly, adjusting an NBD1:MD helix L1 rheostat via rational design enables finely tuned collaboration with Hsp70 to safely potentiate Hsp104, minimize off-target toxicity, and counteract FUS and TDP-43 proteinopathies in human cells. Thus, we establish design principles to tailor Hsp104 therapeutics.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J Carman
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig W Gambogi
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathan M Kendsersky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie N Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam L Yokom
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandrea N Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Stepanenko OV, Sulatskaya AI. Degradation of pathogenic amyloids induced by matrix metalloproteinase-9. Int J Biol Macromol 2024; 281:136362. [PMID: 39395518 DOI: 10.1016/j.ijbiomac.2024.136362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Over the past decade, the greatest promise for treating severe and currently incurable systemic and neurodegenerative diseases has turned to agents capable of effectively degrading pathological amyloid deposits without causing side effects. Specifically, amyloid destruction observed in immunotherapy is hypothesized to occur through activation of proteolytic enzymes. This study examines poorly understood effects of an immune enzyme, extracellular matrix metalloproteinase-9 (MMP9), on amyloids associated with Alzheimer's and Parkinson's diseases, lysozyme, insulin, and dialysis-related amyloidoses. The study establishes the universality of MMP9's effect on various amyloids, with its efficacy largely depending on the fibrillar cluster size. Irreversible amyloid degradation by MMP9 is attributed to the destruction of intramolecular interactions rather than intermolecular hydrogen bonds in the fibril backbone. This process results in the loss of ordered fiber structure without reducing aggregate size or increasing cytotoxicity. Thus, MMP9 can mitigate side effects of anti-amyloid therapy associated with the formation of low-molecular-weight degradation products that may accelerate fibrillogenesis and amyloid propagation between tissues and organs. MMP9 shows promise as a component of safe anti-amyloid drugs by enhancing the accessibility of binding sites through "loosening" amyloid clusters, which facilitates subsequent fragmentation and monomerization by other enzymes.
Collapse
Affiliation(s)
- Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Ekaterina V Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| |
Collapse
|
11
|
Kihal N, Archambault MJ, Babych M, Nazemi A, Bourgault S. Probing the molecular determinants of the activation of toll-like receptor 2/6 by amyloid nanostructures through directed peptide self-assembly. SOFT MATTER 2024; 20:7821-7831. [PMID: 39225438 DOI: 10.1039/d4sm00638k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Amyloid fibrils are proteinaceous nanostructures known for their ability to activate the innate immune system, which has been recently exploited for their use as self-adjuvanted antigen delivery systems for vaccines. Among mechanisms of immunostimulation, the activation of the heterodimeric toll-like receptor 2/6 (TLR2/TLR6) by the cross-β-sheet quaternary conformation appears important. Nonetheless, the lack of control over the process of self-assembly and the polydispersity of the resulting supramolecular architectures make it challenging to elucidate the molecular basis of TLR2/TLR6 engagement by amyloid assemblies. In this context, we harnessed the effects of N- and C-terminal modifications of a short 10-mer β-peptide derived from the islet amyloid polypeptide (I10) to investigate the relationships between the morphology and physicochemical properties of amyloid assemblies and their TLR2/TLR6 activity. Chemical substitutions at the N- and C-termini of the I10 peptide, including addition of charged residues at the N-terminus and α-amidation of C-terminus, allowed the controlled formation of a diversity of architectures, including belt-like filaments, rigid nanorods as well as flat and twisted fibrils. These fully cytocompatible peptide nanostructures showed different potencies to activate TLR2/TLR6, which correlated with the charge exposed on the surface. These results further demonstrate the potent modulatory effect of N- and C-terminal electrostatic capping on the self-assembly of short synthetic β-peptides. This study also indicates that self-assembly into cross-β-sheet nanostructures is essential for the activation of the TLR2/TLR6 by amyloidogenic peptides, albeit the structural requirements of the engagement of this promiscuous immune receptor by the nanostructures remain challenging to precisely untangle.
Collapse
Affiliation(s)
- Nadjib Kihal
- Department of Chemistry, Université du Québec à Montréal. C.P.8888, Succursale Centre-Ville, Montréal, H3C 3P8, Canada.
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec, Canada
- Quebec Centre for Advanced Materials, QCAM, Montreal, Canada
| | - Marie-Jeanne Archambault
- Department of Chemistry, Université du Québec à Montréal. C.P.8888, Succursale Centre-Ville, Montréal, H3C 3P8, Canada.
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec, Canada
| | - Margaryta Babych
- Department of Chemistry, Université du Québec à Montréal. C.P.8888, Succursale Centre-Ville, Montréal, H3C 3P8, Canada.
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec, Canada
| | - Ali Nazemi
- Department of Chemistry, Université du Québec à Montréal. C.P.8888, Succursale Centre-Ville, Montréal, H3C 3P8, Canada.
- Quebec Centre for Advanced Materials, QCAM, Montreal, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal. C.P.8888, Succursale Centre-Ville, Montréal, H3C 3P8, Canada.
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec, Canada
| |
Collapse
|
12
|
Schillinger J, Koci M, Bravo-Rodriguez K, Heilmann G, Kaschani F, Kaiser M, Beuck C, Luecke H, Huber R, Hellerschmied D, Burston SG, Ehrmann M. High resolution analysis of proteolytic substrate processing. J Biol Chem 2024; 300:107812. [PMID: 39313096 PMCID: PMC11513451 DOI: 10.1016/j.jbc.2024.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024] Open
Abstract
Members of the widely conserved high temperature requirement A (HtrA) family of serine proteases are involved in multiple aspects of protein quality control. In this context, they have been shown to efficiently degrade misfolded proteins or protein fragments. However, recent reports suggest that folded proteins can also be native substrates. To gain a deeper understanding of how folded proteins are initially processed and subsequently degraded into short peptides by human HTRA1, we established an integrated and quantitative approach using time-resolved mass spectrometry, CD spectroscopy, and bioinformatics. The resulting data provide high-resolution information on up to 178 individual proteolytic sites within folded ANXA1 (consisting of 346 amino acids), the relative frequency of cuts at each proteolytic site, the preferences of the protease for the amino acid sequence surrounding the scissile bond, as well as the degrees of sequential structural relaxation and unfolding of the substrate that occur during progressive degradation. Our workflow provides precise molecular insights into protease-substrate interactions, which could be readily adapted to address other posttranslational modifications such as phosphorylation in dynamic protein complexes.
Collapse
Affiliation(s)
- Jasmin Schillinger
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Michelle Koci
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | | | - Geronimo Heilmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Farnusch Kaschani
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Christine Beuck
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Hartmut Luecke
- Nova School of Science and Technology, Lisbon, Portugal; Department of Biophysics, University of California, Irvine, California, USA
| | - Robert Huber
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany; Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | - Doris Hellerschmied
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Steven G Burston
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol, United Kingdom
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
13
|
Rodina N, Hornung S, Sarkar R, Suladze S, Peters C, Schmid PWN, Niu Z, Haslbeck M, Buchner J, Kapurniotu A, Reif B. Modulation of Alzheimer's Disease Aβ40 Fibril Polymorphism by the Small Heat Shock Protein αB-Crystallin. J Am Chem Soc 2024; 146:19077-19087. [PMID: 38973199 PMCID: PMC11258688 DOI: 10.1021/jacs.4c03504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Deposition of amyloid plaques in the brains of Alzheimer's disease (AD) patients is a hallmark of the disease. AD plaques consist primarily of the beta-amyloid (Aβ) peptide but can contain other factors such as lipids, proteoglycans, and chaperones. So far, it is unclear how the cellular environment modulates fibril polymorphism and how differences in fibril structure affect cell viability. The small heat-shock protein (sHSP) alpha-B-Crystallin (αBC) is abundant in brains of AD patients, and colocalizes with Aβ amyloid plaques. Using solid-state NMR spectroscopy, we show that the Aβ40 fibril seed structure is not replicated in the presence of the sHSP. αBC prevents the generation of a compact fibril structure and leads to the formation of a new polymorph with a dynamic N-terminus. We find that the N-terminal fuzzy coat and the stability of the C-terminal residues in the Aβ40 fibril core affect the chemical and thermodynamic stability of the fibrils and influence their seeding capacity. We believe that our results yield a better understanding of how sHSP, such as αBC, that are part of the cellular environment, can affect fibril structures related to cell degeneration in amyloid diseases.
Collapse
Affiliation(s)
- Natalia Rodina
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Simon Hornung
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Riddhiman Sarkar
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Saba Suladze
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Carsten Peters
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Philipp W. N. Schmid
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Zheng Niu
- School
of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Martin Haslbeck
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Johannes Buchner
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Aphrodite Kapurniotu
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Bernd Reif
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| |
Collapse
|
14
|
Bassani CL, van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M, Dimitriyev MS, Efrati E, Faraudo J, Gang O, Gaston N, Golestanian R, Guerrero-Garcia GI, Gruenwald M, Haji-Akbari A, Ibáñez M, Karg M, Kraus T, Lee B, Van Lehn RC, Macfarlane RJ, Mognetti BM, Nikoubashman A, Osat S, Prezhdo OV, Rotskoff GM, Saiz L, Shi AC, Skrabalak S, Smalyukh II, Tagliazucchi M, Talapin DV, Tkachenko AV, Tretiak S, Vaknin D, Widmer-Cooper A, Wong GCL, Ye X, Zhou S, Rabani E, Engel M, Travesset A. Nanocrystal Assemblies: Current Advances and Open Problems. ACS NANO 2024; 18:14791-14840. [PMID: 38814908 DOI: 10.1021/acsnano.3c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Qian Chen
- University of Illinois, Urbana, Illinois 61801, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - G Ivan Guerrero-Garcia
- Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México
| | - Michael Gruenwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Karg
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sara Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David Vaknin
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eran Rabani
- Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alex Travesset
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| |
Collapse
|
15
|
Criddle RS, Hansen LD, Woodfield BF, Tolley HD. Modeling transthyretin (TTR) amyloid diseases, from monomer to amyloid fibrils. PLoS One 2024; 19:e0304891. [PMID: 38843135 PMCID: PMC11156392 DOI: 10.1371/journal.pone.0304891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
ATTR amyloidosis is caused by deposition of large, insoluble aggregates (amyloid fibrils) of cross-β-sheet TTR protein molecules on the intercellular surfaces of tissues. The process of amyloid formation from monomeric TTR protein molecules to amyloid deposits has not been fully characterized and is therefore modeled in this paper. Two models are considered: 1) TTR monomers in the blood spontaneously fold into a β-sheet conformation, aggregate into short proto-fibrils that then circulate in the blood until they find a complementary tissue where the proto-fibrils accumulate to form the large, insoluble amyloid fibrils found in affected tissues. 2) TTR monomers in the native or β-sheet conformation circulate in the blood until they find a tissue binding site and deposit in the tissue or tissues forming amyloid deposits in situ. These models only differ on where the selection for β-sheet complementarity occurs, in the blood where wt-wt, wt-v, and v-v interactions determine selectivity, or on the tissue surface where tissue-wt and tissure-v interactions also determine selectivity. Statistical modeling in both cases thus involves selectivity in fibril aggregation and tissue binding. Because binding of protein molecules into fibrils and binding of fibrils to tissues occurs through multiple weak non-covalent bonds, strong complementarity between β-sheet molecules and between fibrils and tissues is required to explain the insolubility and tissue selectivity of ATTR amyloidosis. Observation of differing tissue selectivity and thence disease phenotypes from either pure wildtype TTR protein or a mix of wildtype and variant molecules in amyloid fibrils evidences the requirement for fibril-tissue complementarity. Understanding the process that forms fibrils and binds fibrils to tissues may lead to new possibilities for interrupting the process and preventing or curing ATTR amyloidosis.
Collapse
Affiliation(s)
- Richard S Criddle
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Lee D Hansen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Brian F Woodfield
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - H Dennis Tolley
- Department of Statistics, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
16
|
Lin J, Carman PJ, Gambogi CW, Kendsersky NM, Chuang E, Gates SN, Yokom AL, Rizo AN, Southworth DR, Shorter J. Design principles to tailor Hsp104 therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591398. [PMID: 38712168 PMCID: PMC11071516 DOI: 10.1101/2024.04.26.591398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated protein conformers. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration. Manipulating this network can: (a) reduce Hsp70 collaboration without enhancing activity; (b) generate Hsp104 hypomorphs that collaborate selectively with class B Hsp40s; (c) produce Hsp70-independent potentiated variants; or (d) create species barriers between Hsp104 and Hsp70. Conversely, ADP-specific intraprotomer contacts between MD helix L2 and NBD1 restrict activity, and their perturbation frequently potentiates Hsp104. Importantly, adjusting the NBD1:MD helix L1 rheostat via rational design enables finely tuned collaboration with Hsp70 to safely potentiate Hsp104, minimize off-target toxicity, and counteract FUS proteinopathy in human cells. Thus, we establish important design principles to tailor Hsp104 therapeutics.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Peter J. Carman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Craig W. Gambogi
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Nathan M. Kendsersky
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Edward Chuang
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Stephanie N. Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
- Current address: Department of Biochemistry, University of Missouri, Columbia, MO 65211. U.S.A
| | - Adam L. Yokom
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
- Current address: Department of Biochemistry, University of Missouri, Columbia, MO 65211. U.S.A
| | - Alexandrea N. Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
| | - Daniel R. Southworth
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94158. U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| |
Collapse
|
17
|
Seth P, Mukherjee A, Sarkar N. Formation of hen egg white lysozyme derived amyloid-based hydrogels using different gelation agents: A potential tool for drug delivery. Int J Biol Macromol 2023; 253:127177. [PMID: 37783247 DOI: 10.1016/j.ijbiomac.2023.127177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Amyloids are highly stable protein fibrillar aggregates that get deposited in various parts of our body and cause detrimental diseases. But in nature, the presence of functional amyloids is also noted in bacteria that help them by forming hyphae, biofilm, protein reservoirs, signalling messengers, etc. Keeping this perspective in mind, the idea behind this research was to develop functional amyloids in the form of hydrogel and analyse its potential in the biomedical sector as a drug-delivery tool. The synthesis and characterisation of three types of amyloid-based hydrogels have been reported in this work. Hen Egg-White Lysozyme (HEWL) protein was chosen as the principal ingredient as it is extensively used as a standard protein for studying amyloidogenesis and has inherent antibacterial properties. Comparative studies of different hydrogel properties exhibited variations in the hydrogels based on compositional differences in them. Finally, a drug release assay was done on the synthesized hydrogels to explore their potential as drug delivery tools.
Collapse
Affiliation(s)
- Prakriti Seth
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Aniket Mukherjee
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
18
|
Guido G, Mangano K, Tancheva L, Kalfin R, Leone GM, Saraceno A, Fagone P, Nicoletti F, Petralia MC. Evaluation of Cell-Specific Alterations in Alzheimer's Disease and Relevance of In Vitro Models. Genes (Basel) 2023; 14:2187. [PMID: 38137009 PMCID: PMC10743149 DOI: 10.3390/genes14122187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder classically characterized by two neuropathological hallmarks: β-amyloid plaques and tau tangles in the brain. However, the cellular and molecular mechanisms involved in AD are still elusive, which dampens the possibility of finding new and more effective therapeutic interventions. Current in vitro models are limited in modelling the complexity of AD pathogenesis. In this study, we aimed to characterize the AD expression signature upon a meta-analysis of multiple human datasets, including different cell populations from various brain regions, and compare cell-specific alterations in AD patients and in vitro models to highlight the appropriateness and the limitations of the currently available models in recapitulating AD pathology. The meta-analysis showed consistent enrichment of the Rho GTPases signaling pathway among different cell populations and in the models. The accuracy of in vitro models was higher for neurons and lowest for astrocytes. Our study underscores the particularly low fidelity in modelling down-regulated genes across all cell populations. The top enriched pathways arising from meta-analysis of human data differ from the enriched pathways arising from the overlap. We hope that our data will prove useful in indicating a starting point in the development of future, more complex, 3D in vitro models.
Collapse
Affiliation(s)
- Giorgio Guido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (G.G.); (K.M.); (G.M.L.); (A.S.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (G.G.); (K.M.); (G.M.L.); (A.S.)
| | - Lyubka Tancheva
- Department of Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. Block 23, 1113 Sofia, Bulgaria; (L.T.); (R.K.)
| | - Reni Kalfin
- Department of Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. Block 23, 1113 Sofia, Bulgaria; (L.T.); (R.K.)
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov Str. 66, 2700 Blagoevgrad, Bulgaria
| | - Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (G.G.); (K.M.); (G.M.L.); (A.S.)
| | - Andrea Saraceno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (G.G.); (K.M.); (G.M.L.); (A.S.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (G.G.); (K.M.); (G.M.L.); (A.S.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (G.G.); (K.M.); (G.M.L.); (A.S.)
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| |
Collapse
|
19
|
Oliveira FFD, Almeida SSD, Chen ES, Smith MC, Bertolucci PHF. Pharmacogenetics of angiotensin modulators according to APOE-ϵ4 alleles and the ACE insertion/deletion polymorphism in Alzheimer's disease. Acta Neuropsychiatr 2023; 35:346-361. [PMID: 37605989 DOI: 10.1017/neu.2023.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
OBJECTIVE In Alzheimer's disease (AD), angiotensin II receptor blockers (ARBs) could reduce cerebrovascular dysfunction, while angiotensin-converting enzyme inhibitors (ACEis) might increase brain amyloid-β by suppressing effects of the angiotensin-converting enzyme 1, an amyloid-β-degrading enzyme. However, ACEis could benefit patients with AD by reducing the amyloidogenic processing of the amyloid precursor protein, by central cholinergic and anti-inflammatory mechanisms, and by peripheral modulation of glucose homeostasis. We aimed to investigate whether the ACE insertion/deletion polymorphism is associated with clinical changes in patients with AD, while considering apolipoprotein E (APOE)-ϵ4 carrier status and blood pressure response to angiotensin modulators. METHODS Consecutive outpatients with late-onset AD were screened with cognitive tests and anthropometric measurements, while their caregivers were queried for functional and caregiver burden scores. Prospective pharmacogenetic associations were estimated for 1 year, taking APOE-ϵ4 carrier status and genotypes of the ACE insertion/deletion polymorphism into account, along with treatment with ACEis or ARBs. RESULTS For 193 patients (67.4% women, 53.4% APOE-ϵ4 carriers), the ACE insertion/deletion polymorphism was in Hardy-Weinberg equilibrium (p = 0.281), while arterial hypertension was prevalent in 80.3% (n = 124 used an ACEi, n = 21 used an ARB). ARBs benefitted mostly APOE-ϵ4 carriers concerning caregiver burden variations, cognitive and functional decline. ACEis benefitted APOE-ϵ4 non-carriers concerning cognitive and functional decline due to improved blood pressure control in addition to possible central mechanisms. The ACE insertion/deletion polymorphism led to variable response to angiotensin modulators concerning neurological outcomes and blood pressure variations. CONCLUSION Angiotensin modulators may be disease-modifiers in AD, while genetic stratification of samples is recommended in clinical studies.
Collapse
Affiliation(s)
- Fabricio Ferreira de Oliveira
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Sandro Soares de Almeida
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Elizabeth Suchi Chen
- Department of Morphology and Genetics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Marilia Cardoso Smith
- Department of Morphology and Genetics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | |
Collapse
|
20
|
Morris DL, Nyenhuis DA, Dean DN, Strub MP, Tjandra N. Observation of pH-Dependent Residual Structure in the Pmel17 Repeat Domain and the Implication for Its Amyloid Formation. Biochemistry 2023; 62:3222-3233. [PMID: 37917797 DOI: 10.1021/acs.biochem.3c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The varying conformational states of amyloid-forming protein monomers can determine their fibrillation outcome. In this study, we utilize solution NMR and the paramagnetic relaxation enhancement (PRE) effect to observe monomer properties of the repeat domain (RPT) from a human functional amyloid, premelanosomal protein, Pmel17. After excision from the full-length protein, RPT can self-assemble into amyloid fibrils, functioning as a scaffold for melanin deposition. Here, we report possible conformational states of the short RPT (sRPT) isoform, which has been demonstrated to be a fibrillation nucleator. NMR experiments were performed to determine conformational differences in sRPT by comparing aggregation-prone vs nonaggregating solution conditions. We observed significant chemical shift perturbations localized to residues near the C-terminus, demonstrating that the local chemical environment of the amyloid core region is highly sensitive to changes in pH. Next, we introduced cysteine point mutations for the covalent attachment of PRE ligands to sRPT to facilitate the observation of intramolecular interactions. We also utilized solvent PRE molecules with opposing charges to measure changes in the electrostatic potential of sRPT in different pH environments. These observed PRE effects offer insight into initial molecular events that might promote intermolecular interactions, which can trigger fibrillation. Taken together, our results show that sRPT monomers adopt a conformation inconsistent with a fully random coil at neutral pH and undergo conformational changes at lower pH values. These observations highlight regulatory mechanisms via organelle-associated pH conditions that can affect the fibrillation activity of proteins like RPT.
Collapse
Affiliation(s)
- Daniel L Morris
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - David A Nyenhuis
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Dexter N Dean
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Marie-Paule Strub
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| |
Collapse
|
21
|
Demissie Z, Zemedkun N, Demile A, Nega B, Bekuretsion Y, Getachew B, Berhanu B. Primary Tracheobronchial Amyloidosis Presenting with an Upper Airway Obstruction. Int Med Case Rep J 2023; 16:757-761. [PMID: 38020579 PMCID: PMC10661957 DOI: 10.2147/imcrj.s438379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
This is a case of localized primary tracheobronchial amyloidosis in a patient who presented with upper airway obstruction. Tracheobronchial amyloidosis is a type of localized bronchopulmonary amyloidosis that is frequently overlooked. It involves the deposition of amyloid protein on the tracheal and bronchial tissue, leading to progressive tracheal stenosis and airway obstruction that can be seen on imaging as a tracheal mass. Because of its significant diagnostic difficulty and therapeutic conundrum, it ought to be considered in the differential diagnosis of upper airway symptoms with an unknown etiology.
Collapse
Affiliation(s)
- Zekewos Demissie
- Department of Internal Medicine, Lancet General Hospital, Addis Ababa, Ethiopia
| | - Nahom Zemedkun
- Department of Internal Medicine, Lancet General Hospital, Addis Ababa, Ethiopia
| | - Abraham Demile
- Department of Internal Medicine, Lancet General Hospital, Addis Ababa, Ethiopia
| | - Berhanu Nega
- Department of Surgery, Division of Cardiothoracic Surgery, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yonas Bekuretsion
- Department of Pathology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Bisrat Getachew
- Department of Otolaryngology, Head and Neck Surgery, St. Paul Millennium Medical College, Addis Ababa, Ethiopia
| | - Bethelhem Berhanu
- Department of Radiology, St. Paul Millennium Medical College, Addis Ababa, Ethiopia
| |
Collapse
|
22
|
Kang WB, Bao L, Zhang K, Guo J, Zhu BC, Tang QY, Ren WT, Zhu G. Multi-scale molecular simulation of random peptide phase separation and its extended-to-compact structure transition driven by hydrophobic interactions. SOFT MATTER 2023; 19:7944-7954. [PMID: 37815389 DOI: 10.1039/d3sm00633f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Intrinsically disordered proteins (IDPs) often undergo liquid-liquid phase separation (LLPS) and form membraneless organelles or protein condensates. One of the core problems is how do electrostatic repulsion and hydrophobic interactions in peptides regulate the phase separation process? To answer this question, this study uses random peptides composed of positively charged arginine (Arg, R) and hydrophobic isoleucine (Ile, I) as the model systems, and conduct large-scale simulations using all atom and coarse-grained model multi-scale simulation methods. In this article, we investigate the phase separation of different sequences using a coarse-grained model. It is found that the stronger the electrostatic repulsion in the system, the more extended the single-chain structure, and the more likely the system forms a low-density homogeneous phase. In contrast, the stronger the hydrophobic effect of the system, the more compact the single-chain structure, the easier phase separation, and the higher the critical temperature of phase separation. Overall, by taking the random polypeptides composed of two types of amino acid residues as model systems, this study discusses the relationship between the protein sequence and phase behaviour, and provides theoretical insights into the interactions within or between proteins. It is expected to provide essential physical information for the sequence design of functional IDPs, as well as data to support the diagnosis and treatment of the LLPS-associated diseases.
Collapse
Affiliation(s)
- Wen Bin Kang
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Lei Bao
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Kai Zhang
- School of Physics, Nanjing University, Nanjing 210093, China
| | - Jia Guo
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Ben Chao Zhu
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Qian-Yuan Tang
- Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Wei Tong Ren
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Gen Zhu
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
23
|
Abbaspour S, Alijanvand SH, Morshedi D, Shojaosadati SA. Inhibitory effect of plain and functionalized graphene nanoplateles on hen egg white lysozyme fibrillation. Colloids Surf B Biointerfaces 2023; 230:113487. [PMID: 37542838 DOI: 10.1016/j.colsurfb.2023.113487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/22/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Protein fibrillation is a phenomenon associated with misfolding and the production of highly ordered nanofibrils, which may cause serious degenerative diseases such as Parkinson's disease, Alzheimer's disease, and type 2 diabetes. Upon contact with biological fluids, the nanomaterials are immediately covered by proteins and interact with them. In this study, the effects of Graphene NanoPlateles (Plain-GNPs) and their modified forms with a carboxyl group (GNPs -COOH) and an amine group (GNPs -NH2) are evaluated on the fibrillation process of Hen Egg White Lysozyme (HEWL). The fibrillation process of HEWL was studied using thioflavin-T, Circular Dichroism spectrometry, and Atomic Force Microscopy. Plain-GNPs significantly decreased the fibrillation process at different stages, including nucleation, exponential fibrillation phases, and end-mature fibril products. However, GNPs-COOH and GNPs-NH2 affected the final fluorescence of ThT. The species formed in the presence of Plain-GNPs showed less toxicity in SH-SY5Y cells, which could be applicable for therapeutic purposes.
Collapse
Affiliation(s)
- Sakineh Abbaspour
- Biotechnology Group Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, the Islamic Republic of Iran; Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965-161, Tehran, the Islamic Republic of Iran
| | - Saeid Hadi Alijanvand
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965-161, Tehran, the Islamic Republic of Iran
| | - Dina Morshedi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965-161, Tehran, the Islamic Republic of Iran
| | - Seyed Abbas Shojaosadati
- Biotechnology Group Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, the Islamic Republic of Iran.
| |
Collapse
|
24
|
Mack KL, Kim H, Barbieri EM, Lin J, Braganza S, Jackrel ME, DeNizio JE, Yan X, Chuang E, Tariq A, Cupo RR, Castellano LM, Caldwell KA, Caldwell GA, Shorter J. Tuning Hsp104 specificity to selectively detoxify α-synuclein. Mol Cell 2023; 83:3314-3332.e9. [PMID: 37625404 PMCID: PMC10530207 DOI: 10.1016/j.molcel.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
Hsp104 is an AAA+ protein disaggregase that solubilizes and reactivates proteins trapped in aggregated states. We have engineered potentiated Hsp104 variants to mitigate toxic misfolding of α-synuclein, TDP-43, and FUS implicated in fatal neurodegenerative disorders. Though potent disaggregases, these enhanced Hsp104 variants lack substrate specificity and can have unfavorable off-target effects. Here, to lessen off-target effects, we engineer substrate-specific Hsp104 variants. By altering Hsp104 pore loops that engage substrate, we disambiguate Hsp104 variants that selectively suppress α-synuclein toxicity but not TDP-43 or FUS toxicity. Remarkably, α-synuclein-specific Hsp104 variants emerge that mitigate α-synuclein toxicity via distinct ATPase-dependent mechanisms involving α-synuclein disaggregation or detoxification of soluble α-synuclein conformers. Importantly, both types of α-synuclein-specific Hsp104 variant reduce dopaminergic neurodegeneration in a C. elegans model of Parkinson's disease more effectively than non-specific variants. We suggest that increasing the substrate specificity of enhanced disaggregases could be applied broadly to tailor therapeutics for neurodegenerative disease.
Collapse
Affiliation(s)
- Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Edward M Barbieri
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvanne Braganza
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie E DeNizio
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaohui Yan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amber Tariq
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan R Cupo
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura M Castellano
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Wang AY, Patel J, Kanter M, Olmos M, Maurer MS, McPhail ED, Patel AR, Arkun K, Kryzanski J, Riesenburger RI. The Emerging Significance of Amyloid Deposits in the Ligamentum Flavum of Spinal Stenosis Patients: A Review. World Neurosurg 2023; 177:88-97. [PMID: 37331471 DOI: 10.1016/j.wneu.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
Spinal stenosis is one of the most common neurosurgical diseases and a leading cause of pain and disability. Wild-type transthyretin amyloid (ATTRwt) has been found in the ligamentum flavum (LF) of a significant subset of patients with spinal stenosis who undergo decompression surgery. Histologic and biochemical analyses of LF specimens from spinal stenosis patients, normally discarded as waste, have the potential to help elucidate the underlying pathophysiology of spinal stenosis and possibly allow for medical treatment of stenosis and screening for other systemic diseases. In the present review, we discuss the utility of analyzing LF specimens after spinal stenosis surgery for ATTRwt deposits. Screening for ATTRwt amyloidosis cardiomyopathy through LF specimens has led to the early diagnosis and treatment of cardiac amyloidosis in several patients, with more expected to benefit from this process. Emerging evidence in the literature also point to ATTRwt as a contributor to a previously unrecognized subtype of spinal stenosis in patients who might, in the future, benefit from medical therapy. In the present report, we review the current literature regarding the early detection of ATTRwt cardiomyopathy via LF screening and the possible contribution of ATTRwt deposits in the LF to spinal stenosis development.
Collapse
Affiliation(s)
- Andy Y Wang
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Jainith Patel
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Matthew Kanter
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Michelle Olmos
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Mathew S Maurer
- Department of Cardiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ellen D McPhail
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ayan R Patel
- CardioVascular Center, Tufts Medical Center, Boston, Massachusetts, USA
| | - Knarik Arkun
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA; Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - James Kryzanski
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ron I Riesenburger
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA.
| |
Collapse
|
26
|
Piroska L, Fenyi A, Thomas S, Plamont MA, Redeker V, Melki R, Gueroui Z. α-Synuclein liquid condensates fuel fibrillar α-synuclein growth. SCIENCE ADVANCES 2023; 9:eadg5663. [PMID: 37585526 PMCID: PMC10431715 DOI: 10.1126/sciadv.adg5663] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
α-Synuclein (α-Syn) aggregation into fibrils with prion-like features is intimately associated with Lewy pathology and various synucleinopathies. Emerging studies suggest that α-Syn could form liquid condensates through phase separation. The role of these condensates in aggregation and disease remains elusive and the interplay between α-Syn fibrils and α-Syn condensates remains unexplored, possibly due to difficulties in triggering the formation of α-Syn condensates in cells. To address this gap, we developed an assay allowing the controlled assembly/disassembly of α-Syn condensates in cells and studied them upon exposure to preformed α-Syn fibrillar polymorphs. Fibrils triggered the evolution of liquid α-Syn condensates into solid-like structures displaying growing needle-like extensions and exhibiting pathological amyloid hallmarks. No such changes were elicited on α-Syn that did not undergo phase separation. We, therefore, propose a model where α-Syn within condensates fuels exogenous fibrillar seeds growth, thus speeding up the prion-like propagation of pathogenic aggregates.
Collapse
Affiliation(s)
- Leonard Piroska
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Alexis Fenyi
- Institut Francois Jacob (MIRCen), CEA, CNRS, Fontenay-aux-Roses, France
| | - Scott Thomas
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marie-Aude Plamont
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Virginie Redeker
- Institut Francois Jacob (MIRCen), CEA, CNRS, Fontenay-aux-Roses, France
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA, CNRS, Fontenay-aux-Roses, France
| | - Zoher Gueroui
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
27
|
Lan C, Kim J, Ulferts S, Aprile-Garcia F, Weyrauch S, Anandamurugan A, Grosse R, Sawarkar R, Reinhardt A, Hugel T. Quantitative real-time in-cell imaging reveals heterogeneous clusters of proteins prior to condensation. Nat Commun 2023; 14:4831. [PMID: 37582808 PMCID: PMC10427612 DOI: 10.1038/s41467-023-40540-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Our current understanding of biomolecular condensate formation is largely based on observing the final near-equilibrium condensate state. Despite expectations from classical nucleation theory, pre-critical protein clusters were recently shown to form under subsaturation conditions in vitro; if similar long-lived clusters comprising more than a few molecules are also present in cells, our understanding of the physical basis of biological phase separation may fundamentally change. Here, we combine fluorescence microscopy with photobleaching analysis to quantify the formation of clusters of NELF proteins in living, stressed cells. We categorise small and large clusters based on their dynamics and their response to p38 kinase inhibition. We find a broad distribution of pre-condensate cluster sizes and show that NELF protein cluster formation can be explained as non-classical nucleation with a surprisingly flat free-energy landscape for a wide range of sizes and an inhibition of condensation in unstressed cells.
Collapse
Affiliation(s)
- Chenyang Lan
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- BIOSS and CIBSS Signalling Research Centres, University of Freiburg, Freiburg, Germany
- PicoQuant GmbH, Rudower Chaussee 29, 12489, Berlin, Germany
| | - Juhyeong Kim
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Svenja Ulferts
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | | | - Sophie Weyrauch
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Chemistry and Pharmacology, University of Freiburg, Freiburg, Germany
| | | | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Ritwick Sawarkar
- Medical Research Council (MRC), University of Cambridge, Cambridge, CB2 1QR, United Kingdom
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom.
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany.
- BIOSS and CIBSS Signalling Research Centres, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
28
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
29
|
Avni A, Joshi A, Mukhopadhyay S. Hydrogen-Deuterium Exchange Vibrational Raman Spectroscopy Distinguishes Distinct Amyloid Polymorphs Comprising Altered Core Architecture. J Phys Chem Lett 2023:5592-5601. [PMID: 37307286 DOI: 10.1021/acs.jpclett.3c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amyloid fibrils are ordered protein aggregates comprising a hydrogen-bonded central cross-β core displaying a structural diversity in their supramolecular packing arrangements within the core. Such an altered packing results in amyloid polymorphism that gives rise to morphological and biological strain diversities. Here, we show that vibrational Raman spectroscopy coupled with hydrogen/deuterium (H/D) exchange discerns the key structural features that are responsible for yielding diverse amyloid polymorphs. Such a noninvasive and label-free methodology allows us to structurally distinguish distinct amyloid polymorphs displaying altered hydrogen bonding and supramolecular packing within the cross-β structural motif. By using quantitative molecular fingerprinting and multivariate statistical analysis, we analyze key Raman bands for the protein backbone and side chains that allow us to capture the conformational heterogeneity and structural distributions within distinct amyloid polymorphs. Our results delineate the key molecular factors governing the structural diversity in amyloid polymorphs and can potentially simplify studying amyloid remodeling by small molecules.
Collapse
|
30
|
MacKeigan TP, Morgan ML, Stys PK. Quantitation of Tissue Amyloid via Fluorescence Spectroscopy Using Controlled Concentrations of Thioflavin-S. Molecules 2023; 28:molecules28114483. [PMID: 37298959 DOI: 10.3390/molecules28114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Amyloids are misfolded proteins that aggregate into fibrillar structures, the accumulation of which is associated with the pathogenesis of many neurodegenerative diseases, such as Alzheimer's disease (AD). Early, sensitive detection of these misfolded aggregates is of great interest to the field, as amyloid deposition begins well before the presentation of clinical symptoms. Thioflavin-S (ThS) is a fluorescent probe commonly used to detect amyloid pathology. Protocols for ThS staining vary, but they often use high staining concentrations followed by differentiation, which causes varying levels of non-specific staining and potentially leaves more subtle amyloid deposition unidentified. In this study, we developed an optimized ThS staining protocol for the sensitive detection of β-amyloids in the widely used 5xFAD Alzheimer's mouse model. Controlled dye concentrations together with fluorescence spectroscopy and advanced analytical methods enabled not only the visualization of plaque pathology, but also the detection of subtle and widespread protein misfolding throughout the 5xFAD white matter and greater parenchyma. Together, these findings demonstrate the efficacy of a controlled ThS staining protocol and highlight the potential use of ThS for the detection of protein misfolding that precedes clinical manifestation of disease.
Collapse
Affiliation(s)
- Tatiana P MacKeigan
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Megan L Morgan
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
31
|
Seira Curto J, Fernandez MR, Cladera J, Benseny-Cases N, Sanchez de Groot N. Aβ40 Aggregation under Changeable Conditions. Int J Mol Sci 2023; 24:ijms24098408. [PMID: 37176115 PMCID: PMC10179685 DOI: 10.3390/ijms24098408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Homeostasis is crucial for cell function, and disturbances in homeostasis can lead to health disorders. Under normal conditions, intracellular pH is maintained between 7.35 and 7.45. Altered endosomal and lysosomal pH together with a general drop in brain pH are associated with the aggregation of amyloid-β-peptide (Aβ) and the development of Alzheimer's disease. Under acidic conditions, close to the Aβ isoelectric point, the absence of charges favors the formation of intermolecular contacts and promotes aggregation. Here, we analyzed how pH levels affect the aggregation of Aβ40 considering the variations in brain pH and the coexistence of different aggregated conformations. Our results suggest that different macromolecular conformations can interact with each other and influence the aggregation process. In addition, we showed that neutral pH and physiological salt concentrations favor a slow aggregation, resulting in ordered, stable fibrils, with low cytotoxic effects. Overall, we highlight the complexity of the aggregation processes occurring in different physiological and pathological environments.
Collapse
Affiliation(s)
- Jofre Seira Curto
- Unitat de Bioquímica, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Maria Rosario Fernandez
- Unitat de Bioquímica, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Josep Cladera
- Unitat de Biofísica, Departament de Bioquímica i Biologia Molecular, Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Núria Benseny-Cases
- Unitat de Biofísica, Departament de Bioquímica i Biologia Molecular, Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Natalia Sanchez de Groot
- Unitat de Bioquímica, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
32
|
Chew PY, Joseph JA, Collepardo-Guevara R, Reinhardt A. Thermodynamic origins of two-component multiphase condensates of proteins. Chem Sci 2023; 14:1820-1836. [PMID: 36819870 PMCID: PMC9931050 DOI: 10.1039/d2sc05873a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Intracellular condensates are highly multi-component systems in which complex phase behaviour can ensue, including the formation of architectures comprising multiple immiscible condensed phases. Relying solely on physical intuition to manipulate such condensates is difficult because of the complexity of their composition, and systematically learning the underlying rules experimentally would be extremely costly. We address this challenge by developing a computational approach to design pairs of protein sequences that result in well-separated multilayered condensates and elucidate the molecular origins of these compartments. Our method couples a genetic algorithm to a residue-resolution coarse-grained protein model. We demonstrate that we can design protein partners to form multiphase condensates containing naturally occurring proteins, such as the low-complexity domain of hnRNPA1 and its mutants, and show how homo- and heterotypic interactions must differ between proteins to result in multiphasicity. We also show that in some cases the specific pattern of amino-acid residues plays an important role. Our findings have wide-ranging implications for understanding and controlling the organisation, functions and material properties of biomolecular condensates.
Collapse
Affiliation(s)
- Pin Yu Chew
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Jerelle A Joseph
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- Department of Physics, University of Cambridge Cambridge CB3 0HE UK
- Department of Genetics, University of Cambridge Cambridge CB2 3EH UK
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- Department of Physics, University of Cambridge Cambridge CB3 0HE UK
- Department of Genetics, University of Cambridge Cambridge CB2 3EH UK
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
33
|
Yuan R, Hahn Y, Stempel MH, Sidibe DK, Laxton O, Chen J, Kulkarni A, Maday S. Proteasomal inhibition preferentially stimulates lysosome activity relative to autophagic flux in primary astrocytes. Autophagy 2023; 19:570-596. [PMID: 35722992 PMCID: PMC9851260 DOI: 10.1080/15548627.2022.2084884] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 01/22/2023] Open
Abstract
Neurons and astrocytes face unique demands on their proteome to enable proper function and survival of the nervous system. Consequently, both cell types are critically dependent on robust quality control pathways such as macroautophagy (hereafter referred to as autophagy) and the ubiquitin-proteasome system (UPS). We previously reported that autophagy is differentially regulated in astrocytes and neurons in the context of metabolic stress, but less is understood in the context of proteotoxic stress induced by inhibition of the UPS. Dysfunction of the proteasome or autophagy has been linked to the progression of various neurodegenerative diseases. Therefore, in this study, we explored the connection between autophagy and the proteasome in primary astrocytes and neurons. Prior studies largely in non-neural models report a compensatory relationship whereby inhibition of the UPS stimulates autophagy. To our surprise, inhibition of the proteasome did not robustly upregulate autophagy in astrocytes or neurons. In fact, the effects on autophagy are modest particularly in comparison to paradigms of metabolic stress. Rather, we find that UPS inhibition in astrocytes induces formation of Ub-positive aggregates that harbor the selective autophagy receptor, SQSTM1/p62, but these structures were not productive substrates for autophagy. By contrast, we observed a significant increase in lysosomal degradation in astrocytes in response to UPS inhibition, but this stimulation was not sufficient to reduce total SQSTM1 levels. Last, UPS inhibition was more toxic in neurons compared to astrocytes, suggesting a cell type-specific vulnerability to proteotoxic stress.Abbreviations: Baf A1: bafilomycin A1; CQ: chloroquine; Epox: epoxomicin; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; p-ULK1: phospho-ULK1; SQSTM1/p62: sequestosome 1; Ub: ubiquitin; ULK1: unc-51 like kinase 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Ruiyi Yuan
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Younghee Hahn
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Max H. Stempel
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David K. Sidibe
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia Laxton
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Chen
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Aditi Kulkarni
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Kaygisiz K, Ender AM, Gačanin J, Kaczmarek LA, Koutsouras DA, Nalakath AN, Winterwerber P, Mayer FJ, Räder HJ, Marszalek T, Blom PWM, Synatschke CV, Weil T. Photoinduced Amyloid Fibril Degradation for Controlled Cell Patterning. Macromol Biosci 2023; 23:e2200294. [PMID: 36281903 DOI: 10.1002/mabi.202200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Indexed: 11/12/2022]
Abstract
Amyloid-like fibrils are a special class of self-assembling peptides that emerge as a promising nanomaterial with rich bioactivity for applications such as cell adhesion and growth. Unlike the extracellular matrix, the intrinsically stable amyloid-like fibrils do not respond nor adapt to stimuli of their natural environment. Here, a self-assembling motif (CKFKFQF), in which a photosensitive o-nitrobenzyl linker (PCL) is inserted, is designed. This peptide (CKFK-PCL-FQF) assembles into amyloid-like fibrils comparable to the unsubstituted CKFKFQF and reveals a strong response to UV-light. After UV irradiation, the secondary structure of the fibrils, fibril morphology, and bioactivity are lost. Thus, coating surfaces with the pre-formed fibrils and exposing them to UV-light through a photomask generate well-defined areas with patterns of intact and destroyed fibrillar morphology. The unexposed, fibril-coated surface areas retain their ability to support cell adhesion in culture, in contrast to the light-exposed regions, where the cell-supportive fibril morphology is destroyed. Consequently, the photoresponsive peptide nanofibrils provide a facile and efficient way of cell patterning, exemplarily demonstrated for A549, Chinese Hamster Ovary, and Raw Dual type cells. This study introduces photoresponsive amyloid-like fibrils as adaptive functional materials to precisely arrange cells on surfaces.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Adriana M Ender
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jasmina Gačanin
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - L Alix Kaczmarek
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dimitrios A Koutsouras
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Abin N Nalakath
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Pia Winterwerber
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Franz J Mayer
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hans-Joachim Räder
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tomasz Marszalek
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz, 90-924, Poland
| | - Paul W M Blom
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Christopher V Synatschke
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tanja Weil
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
35
|
Shi H, Sun Y, Yao Z, Bai M. New Insights into the Structural and Binding Properties on Aβ Mature Fibrils Due to Histidine Protonation Behaviors. ACS Chem Neurosci 2023; 14:218-225. [PMID: 36604946 DOI: 10.1021/acschemneuro.2c00487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Histidine tautomeric behaviors have been considered origin factors for controlling the structure and aggregation properties of misfolding peptides. Except for tautomeric behaviors, histidine protonation behaviors definitely have the same capacities due to the net charge changes and the various N/N-H orientations on imidazole rings. However, such phenomena are still unknown. In the current study, Aβ mature fibrils substituted with various protonation states were performed by molecular dynamics simulations to investigate the structure and binding properties. Our results show that all kinds of protonation states can increase the ΔG1 stability and decrease ΔG2 and ΔG3 stabilities. A significantly higher averaged β-sheet content was detected in (εεp), (εpp), and (ppp) fibrils in one, two, and three protonation stages, respectively. Impressively, we found that the substituted fibril with specific protonated states can control the N-terminus structural properties. Further analysis confirmed that H6 and H13 are more important than H14 since the H-bond donor and receptor cooperate among C1/C3/C8_H6, C1/C3/C8_H13, and C1/C3/C8_E11. Furthermore, the mechanism of protonation behaviors was discussed. The current study is helpful for understanding the histidine protonation behaviors on one, two, and three protonation stages, which provides new horizons for exploring the origin of protein folding and misfolding.
Collapse
Affiliation(s)
- Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.,Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yue Sun
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zeshuai Yao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Min Bai
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030006, China
| |
Collapse
|
36
|
Sun Y, Yao Z, Shi H. Structural properties of Aβ (1-40) peptide in protonation stage of one, two, and three: New insights from the histidine protonation behaviors. Int J Biol Macromol 2022; 223:1556-1561. [PMID: 36370861 DOI: 10.1016/j.ijbiomac.2022.11.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Structural properties and aggregation tendency can be significantly influenced by histidine behaviors (histidine on Nδ-H state is defined as δ, likewise, Nε-H: ε and both Nδ-H and Nε-H: p). In current study, we investigated structural properties of Aβ(1-40) peptide during protonation evolution stage of one, two, and three by total 19 independent replica exchange molecular dynamics simulations using implicit solvent. Our results show that any kind of protonated state will promote β-sheet structure formation in comparison with deprotonated (εεε). With increase in number of protonation, the lowest β-sheet content increased. The highest averaged β-sheet structure content was detected in (δpδ) (46.0 %), (εpp) (36.8 %), and (ppp) (16.0 %) in each protonation stage. With three β-strand structures, (δpδ) shows more stable features and high hydrophobic properties. Further analysis confirmed that H13 and H14 are more important than H6. Specifically, H13 and H14 have a synergistic effect for structural formations by controlling H-bond networks in H13(p) with V39/V40 and H14(p/δ) with G37/G38. Finally, the Pearson correlation coefficient results confirmed that experimental result (ref. 44) is corresponding to our (εpp) system. Our current study will be conducive to understanding the effects of the histidine behaviors, it provides new insights for exploration protein folding and misfolding processes.
Collapse
Affiliation(s)
- Yue Sun
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zeshuai Yao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China; Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
37
|
Santorelli L, Caterino M, Costanzo M. Dynamic Interactomics by Cross-Linking Mass Spectrometry: Mapping the Daily Cell Life in Postgenomic Era. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:633-649. [PMID: 36445175 DOI: 10.1089/omi.2022.0137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The majority of processes that occur in daily cell life are modulated by hundreds to thousands of dynamic protein-protein interactions (PPI). The resulting protein complexes constitute a tangled network that, with its continuous remodeling, builds up highly organized functional units. Thus, defining the dynamic interactome of one or more proteins allows determining the full range of biological activities these proteins are capable of. This conceptual approach is poised to gain further traction and significance in the current postgenomic era wherein the treatment of severe diseases needs to be tackled at both genomic and PPI levels. This also holds true for COVID-19, a multisystemic disease affecting biological networks across the biological hierarchy from genome to proteome to metabolome. In this overarching context and the current historical moment of the COVID-19 pandemic where systems biology increasingly comes to the fore, cross-linking mass spectrometry (XL-MS) has become highly relevant, emerging as a powerful tool for PPI discovery and characterization. This expert review highlights the advanced XL-MS approaches that provide in vivo insights into the three-dimensional protein complexes, overcoming the static nature of common interactomics data and embracing the dynamics of the cell proteome landscape. Many XL-MS applications based on the use of diverse cross-linkers, MS detection methods, and predictive bioinformatic tools for single proteins or proteome-wide interactions were shown. We conclude with a future outlook on XL-MS applications in the field of structural proteomics and ways to sustain the remarkable flexibility of XL-MS for dynamic interactomics and structural studies in systems biology and planetary health.
Collapse
Affiliation(s)
- Lucia Santorelli
- Department of Oncology and Hematology-Oncology, University of Milano, Milan, Italy.,IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| |
Collapse
|
38
|
Maya-Martinez R, Xu Y, Guthertz N, Walko M, Karamanos TK, Sobott F, Breeze AL, Radford SE. Dimers of D76N-β 2-microglobulin display potent antiamyloid aggregation activity. J Biol Chem 2022; 298:102659. [PMID: 36328246 PMCID: PMC9712992 DOI: 10.1016/j.jbc.2022.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022] Open
Abstract
Self-association of WT β2-microglobulin (WT-β2m) into amyloid fibrils is associated with the disorder dialysis related amyloidosis. In the familial variant D76N-β2m, the single amino acid substitution enhances the aggregation propensity of the protein dramatically and gives rise to a disorder that is independent of renal dysfunction. Numerous biophysical and structural studies on WT- and D76N-β2m have been performed in order to better understand the structure and dynamics of the native proteins and their different potentials to aggregate into amyloid. However, the structural properties of transient D76N-β2m oligomers and their role(s) in assembly remained uncharted. Here, we have utilized NMR methods, combined with photo-induced crosslinking, to detect, trap, and structurally characterize transient dimers of D76N-β2m. We show that the crosslinked D76N-β2m dimers have different structures from those previously characterized for the on-pathway dimers of ΔN6-β2m and are unable to assemble into amyloid. Instead, the crosslinked D76N-β2m dimers are potent inhibitors of amyloid formation, preventing primary nucleation and elongation/secondary nucleation when added in substoichiometric amounts with D76N-β2m monomers. The results highlight the specificity of early protein-protein interactions in amyloid formation and show how mapping these interfaces can inform new strategies to inhibit amyloid assembly.
Collapse
Affiliation(s)
- Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
39
|
Prosswimmer T, Daggett V. The role of α-sheet structure in amyloidogenesis: characterization and implications. Open Biol 2022; 12:220261. [PMID: 36416010 PMCID: PMC9682440 DOI: 10.1098/rsob.220261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Amyloid diseases are linked to protein misfolding whereby the amyloidogenic protein undergoes a conformational change, aggregates and eventually forms amyloid fibrils. While the amyloid fibrils and plaques are hallmarks of these diseases, they typically form late in the disease process and do not correlate with disease. Instead, there is growing evidence that smaller, soluble toxic oligomers form prior and appear to be early triggers of the molecular pathology underlying these diseases. Nearly 20 years ago, we proposed the α-sheet hypothesis after discovering that the early conformational changes observed during atomistic molecular dynamics simulations involve the formation of a non-standard protein structure, α-sheet. Furthermore, we proposed that toxic oligomers contain α-sheet structure and that preferentially targeting this structure could neutralize the toxicity, prevent further aggregation and serve as the basis for early detection of disease. Here, we present the origin of the α-sheet hypothesis and describe α-sheet structure and the corresponding mechanisms of conversion. We discuss experimental studies demonstrating that both mammalian and bacterial amyloid systems form α-sheet oligomers before converting to conventional β-sheet fibrils. Furthermore, we show that the process can be inhibited with de novo designed α-sheet peptides complementary to the structure in the toxic oligomers.
Collapse
Affiliation(s)
- Tatum Prosswimmer
- Molecular Engineering Program, University of Washington, Seattle, WA 98195-5013, USA
| | - Valerie Daggett
- Molecular Engineering Program, University of Washington, Seattle, WA 98195-5013, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013, USA
| |
Collapse
|
40
|
Jayawardena BM, Peacey L, Gamsjaeger R, Jones CE. Essential Role of Histidine for Rapid Copper(II)-Mediated Disassembly of Neurokinin B Amyloid. Biomolecules 2022; 12:biom12111585. [PMID: 36358935 PMCID: PMC9687585 DOI: 10.3390/biom12111585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2022] Open
Abstract
Neurokinin B is a tachykinin peptide involved in a diverse range of neuronal functions. It rapidly forms an amyloid, which is considered physiologically important for efficient packing into dense core secretory vesicles within hypothalamic neurons. Disassembly of the amyloid is thought to require the presence of copper ions, which interact with histidine at the third position in the peptide sequence. However, it is unclear how the histidine is involved in the amyloid structure and why copper coordination can trigger disassembly. In this work, we demonstrate that histidine contributes to the amyloid structure via π-stacking interactions with nearby phenylalanine residues. The ability of neurokinin B to form an amyloid is dependent on any aromatic residue at the third position in the sequence; however, only the presence of histidine leads to both amyloid formation and rapid copper-induced disassembly.
Collapse
|
41
|
Tejedor AR, Sanchez-Burgos I, Estevez-Espinosa M, Garaizar A, Collepardo-Guevara R, Ramirez J, Espinosa JR. Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it. Nat Commun 2022; 13:5717. [PMID: 36175408 PMCID: PMC9522849 DOI: 10.1038/s41467-022-32874-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Biomolecular condensates, some of which are liquid-like during health, can age over time becoming gel-like pathological systems. One potential source of loss of liquid-like properties during ageing of RNA-binding protein condensates is the progressive formation of inter-protein β-sheets. To bridge microscopic understanding between accumulation of inter-protein β-sheets over time and the modulation of FUS and hnRNPA1 condensate viscoelasticity, we develop a multiscale simulation approach. Our method integrates atomistic simulations with sequence-dependent coarse-grained modelling of condensates that exhibit accumulation of inter-protein β-sheets over time. We reveal that inter-protein β-sheets notably increase condensate viscosity but does not transform the phase diagrams. Strikingly, the network of molecular connections within condensates is drastically altered, culminating in gelation when the network of strong β-sheets fully percolates. However, high concentrations of RNA decelerate the emergence of inter-protein β-sheets. Our study uncovers molecular and kinetic factors explaining how the accumulation of inter-protein β-sheets can trigger liquid-to-solid transitions in condensates, and suggests a potential mechanism to slow such transitions down. In this work the authors propose a multiscale computational approach, integrating atomistic and coarse-grained models simulations, to study the thermodynamic and kinetic factors playing a major role in the liquid-to-solid transition of biomolecular condensates. It is revealed how the gradual accumulation of inter-protein β-sheets increases the viscosity of functional liquid-like condensates, transforming them into gel-like pathological aggregates, and it is also shown how high concentrations of RNA can decelerate such transition.
Collapse
Affiliation(s)
- Andres R Tejedor
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006, Madrid, Spain.,Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Maria Estevez-Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.,Department of Biochemistry, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.,Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Jorge Ramirez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
42
|
Mishra RP, Gupta S, Rathore AS, Goel G. Multi-Level High-Throughput Screening for Discovery of Ligands That Inhibit Insulin Aggregation. Mol Pharm 2022; 19:3770-3783. [PMID: 36173709 DOI: 10.1021/acs.molpharmaceut.2c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed a multi-level virtual screening protocol to identify lead molecules from the FDA inactives database that can inhibit insulin aggregation. The method is based on the presence of structural and interaction specificity in non-native aggregation pathway protein-protein interactions. Some key challenges specific to the present problem, when compared with native protein association, include structural heterogeneity of the protein species involved, multiple association pathways, and relatively higher probability of conformational rearrangement of the association complex. In this multi-step method, the inactives database was first screened using the dominant pharmacophore features of previously identified molecules shown to significantly inhibit insulin aggregation nucleation by binding to its aggregation-prone conformers. We then performed ensemble docking of several low-energy ligand conformations on these aggregation-prone conformers followed by molecular dynamics simulations and binding affinity calculations on a subset of docked complexes to identify a final set of five potential lead molecules to inhibit insulin aggregation nucleation. Their effect on aggregation inhibition was extensively investigated by incubating insulin under aggregation-prone aqueous buffer conditions (low pH, high temperature). Aggregation kinetics were characterized using size exclusion chromatography and Thioflavin T fluorescence assay, and the secondary structure was determined using circular dichroism spectroscopy. Riboflavin provided the best aggregation inhibition, with 85% native monomer retention after 48 h incubation under aggregation-prone conditions, whereas the no-ligand formulation showed complete monomer loss after 36 h. Further, insulin incubated with two of the screened inactives (aspartame, riboflavin) had the characteristic α-helical dip in CD spectra, while the no-ligand formulation showed a change to β-sheet rich conformations.
Collapse
Affiliation(s)
- Rit Pratik Mishra
- Department of Chemical Engineering, Indian Institute Technology Delhi, New Delhi, 110016, India
| | - Surbhi Gupta
- Department of Chemical Engineering, Indian Institute Technology Delhi, New Delhi, 110016, India
| | - Anurag Singh Rathore
- Department of Chemical Engineering, Indian Institute Technology Delhi, New Delhi, 110016, India
| | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
43
|
Kawasaki T, Yamaguchi Y, Kitahara H, Irizawa A, Tani M. Exploring Biomolecular Self-Assembly with Far-Infrared Radiation. Biomolecules 2022; 12:biom12091326. [PMID: 36139165 PMCID: PMC9496551 DOI: 10.3390/biom12091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
Physical engineering technology using far-infrared radiation has been gathering attention in chemical, biological, and material research fields. In particular, the high-power radiation at the terahertz region can give remarkable effects on biological materials distinct from a simple thermal treatment. Self-assembly of biological molecules such as amyloid proteins and cellulose fiber plays various roles in medical and biomaterials fields. A common characteristic of those biomolecular aggregates is a sheet-like fibrous structure that is rigid and insoluble in water, and it is often hard to manipulate the stacking conformation without heating, organic solvents, or chemical reagents. We discovered that those fibrous formats can be conformationally regulated by means of intense far-infrared radiations from a free-electron laser and gyrotron. In this review, we would like to show the latest and the past studies on the effects of far-infrared radiation on the fibrous biomaterials and to suggest the potential use of the far-infrared radiation for regulation of the biomolecular self-assembly.
Collapse
Affiliation(s)
- Takayasu Kawasaki
- Accelerator Laboratory, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Ibaraki, Japan
- Correspondence:
| | - Yuusuke Yamaguchi
- Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Fukui, Japan
| | - Hideaki Kitahara
- Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Fukui, Japan
| | - Akinori Irizawa
- SR Center, Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan
| | - Masahiko Tani
- Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Fukui, Japan
| |
Collapse
|
44
|
Österlund N, Vosselman T, Leppert A, Gräslund A, Jörnvall H, Ilag LL, Marklund EG, Elofsson A, Johansson J, Sahin C, Landreh M. Mass Spectrometry and Machine Learning Reveal Determinants of Client Recognition by Antiamyloid Chaperones. Mol Cell Proteomics 2022; 21:100413. [PMID: 36115577 PMCID: PMC9563204 DOI: 10.1016/j.mcpro.2022.100413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 01/18/2023] Open
Abstract
The assembly of proteins and peptides into amyloid fibrils is causally linked to serious disorders such as Alzheimer's disease. Multiple proteins have been shown to prevent amyloid formation in vitro and in vivo, ranging from highly specific chaperone-client pairs to completely nonspecific binding of aggregation-prone peptides. The underlying interactions remain elusive. Here, we turn to the machine learning-based structure prediction algorithm AlphaFold2 to obtain models for the nonspecific interactions of β-lactoglobulin, transthyretin, or thioredoxin 80 with the model amyloid peptide amyloid β and the highly specific complex between the BRICHOS chaperone domain of C-terminal region of lung surfactant protein C and its polyvaline target. Using a combination of native mass spectrometry (MS) and ion mobility MS, we show that nonspecific chaperoning is driven predominantly by hydrophobic interactions of amyloid β with hydrophobic surfaces in β-lactoglobulin, transthyretin, and thioredoxin 80, and in part regulated by oligomer stability. For C-terminal region of lung surfactant protein C, native MS and hydrogen-deuterium exchange MS reveal that a disordered region recognizes the polyvaline target by forming a complementary β-strand. Hence, we show that AlphaFold2 and MS can yield atomistic models of hard-to-capture protein interactions that reveal different chaperoning mechanisms based on separate ligand properties and may provide possible clues for specific therapeutic intervention.
Collapse
Affiliation(s)
- Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Thibault Vosselman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Axel Leppert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hans Jörnvall
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Leopold L. Ilag
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Erik G. Marklund
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Arne Elofsson
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden,Department of Biology, University of Copenhagen, Denmark,For correspondence: Michael Landreh; Cagla Sahin
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden,For correspondence: Michael Landreh; Cagla Sahin
| |
Collapse
|
45
|
Murakami K, Ono K. Interactions of amyloid coaggregates with biomolecules and its relevance to neurodegeneration. FASEB J 2022; 36:e22493. [PMID: 35971743 DOI: 10.1096/fj.202200235r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 01/16/2023]
Abstract
The aggregation of amyloidogenic proteins is a pathological hallmark of various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In these diseases, oligomeric intermediates or toxic aggregates of amyloids cause neuronal damage and degeneration. Despite the substantial effort made over recent decades to implement therapeutic interventions, these neurodegenerative diseases are not yet understood at the molecular level. In many cases, multiple disease-causing amyloids overlap in a sole pathological feature or a sole disease-causing amyloid represents multiple pathological features. Various amyloid pathologies can coexist in the same brain with or without clinical presentation and may even occur in individuals without disease. From sparse data, speculation has arisen regarding the coaggregation of amyloids with disparate amyloid species and other biomolecules, which are the same characteristics that make diagnostics and drug development challenging. However, advances in research related to biomolecular condensates and structural analysis have been used to overcome some of these challenges. Considering the development of these resources and techniques, herein we review the cross-seeding of amyloidosis, for example, involving the amyloids amyloid β, tau, α-synuclein, and human islet amyloid polypeptide, and their cross-inhibition by transthyretin and BRICHOS. The interplay of nucleic acid-binding proteins, such as prions, TAR DNA-binding protein 43, fused in sarcoma/translated in liposarcoma, and fragile X mental retardation polyglycine, with nucleic acids in the pathology of neurodegeneration are also described, and we thereby highlight the potential clinical applications in central nervous system therapy.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenjiro Ono
- Department of Neurology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
46
|
Yarawsky AE, Hopkins JB, Chatzimagas L, Hub JS, Herr AB. Solution Structural Studies of Pre-amyloid Oligomer States of the Biofilm Protein Aap. J Mol Biol 2022; 434:167708. [PMID: 35777467 PMCID: PMC9615840 DOI: 10.1016/j.jmb.2022.167708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022]
Abstract
Staphylococcus epidermidis is a commensal bacterium on human skin that is also the leading cause of medical device-related infections. The accumulation-associated protein (Aap) from S. epidermidis is a critical factor for infection via its ability to mediate biofilm formation. The B-repeat superdomain of Aap is composed of 5 to 17 Zn2+-binding B-repeats, which undergo rapid, reversible assembly to form dimer and tetramer species. The tetramer can then undergo a conformational change and nucleate highly stable functional amyloid fibrils. In this study, multiple techniques including analytical ultracentrifugation (AUC) and small-angle X-ray scattering (SAXS) are used to probe a panel of B-repeat mutant constructs that assemble to distinct oligomeric states to define the structural characteristics of B-repeat dimer and tetramer species. The B-repeat region from Aap forms an extremely elongated conformation that presents several challenges for standard SAXS analyses. Specialized approaches, such as cross-sectional analyses, allowed for in-depth interpretation of data, while explicit-solvent calculations via WAXSiS allowed for accurate evaluation of atomistic models. The resulting models suggest mechanisms by which Aap functional amyloid fibrils form, illuminating an important contributing factor to recurrent staphylococcal infections.
Collapse
Affiliation(s)
- Alexander E Yarawsky
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Leonie Chatzimagas
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
47
|
Siemer AB. What makes functional amyloids work? Crit Rev Biochem Mol Biol 2022; 57:399-411. [PMID: 35997712 PMCID: PMC9588633 DOI: 10.1080/10409238.2022.2113030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Although first described in the context of disease, cross-β (amyloid) fibrils have also been found as functional entities in all kingdoms of life. However, what are the specific properties of the cross-β fibril motif that convey biological function, make them especially suited for their particular purpose, and distinguish them from other fibrils found in biology? This review approaches these questions by arguing that cross-β fibrils are highly periodic, stable, and self-templating structures whose formation is accompanied by substantial conformational change that leads to a multimerization of their core and framing sequences. A discussion of each of these properties is followed by selected examples of functional cross-β fibrils that show how function is usually achieved by leveraging many of these properties.
Collapse
Affiliation(s)
- Ansgar B Siemer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
48
|
Artikis E, Kraus A, Caughey B. Structural biology of ex vivo mammalian prions. J Biol Chem 2022; 298:102181. [PMID: 35752366 PMCID: PMC9293645 DOI: 10.1016/j.jbc.2022.102181] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 01/13/2023] Open
Abstract
The structures of prion protein (PrP)-based mammalian prions have long been elusive. However, cryo-EM has begun to reveal the near-atomic resolution structures of fully infectious ex vivo mammalian prion fibrils as well as relatively innocuous synthetic PrP amyloids. Comparisons of these various types of PrP fibrils are now providing initial clues to structural features that correlate with pathogenicity. As first indicated by electron paramagnetic resonance and solid-state NMR studies of synthetic amyloids, all sufficiently resolved PrP fibrils of any sort (n > 10) have parallel in-register intermolecular β-stack architectures. Cryo-EM has shown that infectious brain-derived prion fibrils of the rodent-adapted 263K and RML scrapie strains have much larger ordered cores than the synthetic fibrils. These bona fide prion strains share major structural motifs, but the conformational details and the overall shape of the fibril cross sections differ markedly. Such motif variations, as well as differences in sequence within the ordered polypeptide cores, likely contribute to strain-dependent templating. When present, N-linked glycans and glycophosphatidylinositol (GPI) anchors project outward from the fibril surface. For the mouse RML strain, these posttranslational modifications have little effect on the core structure. In the GPI-anchored prion structures, a linear array of GPI anchors along the twisting fibril axis appears likely to bind membranes in vivo, and as such, may account for pathognomonic membrane distortions seen in prion diseases. In this review, we focus on these infectious prion structures and their implications regarding prion replication mechanisms, strains, transmission barriers, and molecular pathogenesis.
Collapse
Affiliation(s)
- Efrosini Artikis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
| |
Collapse
|
49
|
Leisi EV, Barinova KV, Kudryavtseva SS, Moiseenko AV, Muronetz VI, Kurochkina LP. Effect of bacteriophage-encoded chaperonins on amyloid transformation of α-synuclein. Biochem Biophys Res Commun 2022; 622:136-142. [PMID: 35849955 DOI: 10.1016/j.bbrc.2022.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/02/2022]
Abstract
Controversial information about the role of chaperonins in the amyloid transformation of proteins and, in particular, α-synuclein, requires a more detailed study of the observed effects due to the structure and functional state of various chaperonins. In this work, two types of phage chaperonins, the double-ring EL and the single-ring OBP, were shown to stimulate α-synuclein fibrillation in an ATP-dependent manner. Chaperonin morphology does not affect the stimulation of α-synuclein amyloid transformation. However, the ATP-dependent effect of single- and double-ring chaperonins on this process differs, which can lead to different morphology of resulting fibrils. Fibril formation seems to proceed without substrate encapsulation in the internal cavity of chaperonin, because of the structural features of phage chaperonins and their ability to function without co-chaperonins. In the absence of ATP, both chaperonins, on the contrary, completely prevent α-synuclein amyloid transformation, which provides the possibility of their use as anti-amyloid agents, in the form of incomplete molecules or mutants with suppressed ATPase activity.
Collapse
Affiliation(s)
- Evgeniia V Leisi
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 12, 119991, Moscow, Russia
| | - Kseniya V Barinova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991, Moscow, Russia
| | - Sofia S Kudryavtseva
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 12, 119991, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, Bld 73, 119991, Moscow, Russia
| | - Andrey V Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 12, 119991, Moscow, Russia
| | - Vladimir I Muronetz
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991, Moscow, Russia; Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008, Kazan, Russia
| | - Lidia P Kurochkina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991, Moscow, Russia.
| |
Collapse
|
50
|
Tyrikos-Ergas T, Gim S, Huang JY, Pinzón Martín S, Varón Silva D, Seeberger PH, Delbianco M. Synthetic phosphoethanolamine-modified oligosaccharides reveal the importance of glycan length and substitution in biofilm-inspired assemblies. Nat Commun 2022; 13:3954. [PMID: 35804023 PMCID: PMC9270332 DOI: 10.1038/s41467-022-31633-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/28/2022] [Indexed: 12/18/2022] Open
Abstract
Bacterial biofilm matrices are nanocomposites of proteins and polysaccharides with remarkable mechanical properties. Efforts understanding and tuning the protein component have been extensive, whereas the polysaccharide part remained mostly overlooked. The discovery of phosphoethanolamine (pEtN) modified cellulose in E. coli biofilms revealed that polysaccharide functionalization alters the biofilm properties. To date, the pattern of pEtN cellulose and its mode of interactions with proteins remains elusive. Herein, we report a model system based on synthetic epitomes to explore the role of pEtN in biofilm-inspired assemblies. Nine pEtN-modified oligosaccharides were synthesized with full control over the length, degree and pattern of pEtN substitution. The oligomers were co-assembled with a representative peptide, triggering the formation of fibers in a length dependent manner. We discovered that the pEtN pattern modulates the adhesion of biofilm-inspired matrices, while the peptide component controls its stiffness. Unnatural oligosaccharides tune or disrupt the assembly morphology, revealing interesting targets for polysaccharide engineering to develop tunable bio-inspired materials.
Collapse
Affiliation(s)
- Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Soeun Gim
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Jhih-Yi Huang
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Sandra Pinzón Martín
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Daniel Varón Silva
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany.,Institute of Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|