1
|
Záhonová K, Lukeš J, Dacks JB. Diplonemid protists possess exotic endomembrane machinery, impacting models of membrane trafficking in modern and ancient eukaryotes. Curr Biol 2025; 35:1508-1520.e2. [PMID: 40088893 DOI: 10.1016/j.cub.2025.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/03/2024] [Accepted: 02/17/2025] [Indexed: 03/17/2025]
Abstract
Diplonemids are among the most abundant and species-rich protists in the oceans. Marine heterotrophic flagellates, including diplonemids, have been suggested to play important roles in global biogeochemical cycles. Diplonemids are also the sister taxon of kinetoplastids, home to trypanosomatid parasites of global health importance, and thus are informative about the evolution of kinetoplastid biology. However, the genomic and cellular complement that underpins diplonemids' highly successful lifestyle is underexplored. At the same time, our framework describing cellular processes may not be as broadly applicable as presumed, as it is largely derived from animal and fungal model organisms, a small subset of extant eukaryotic diversity. In addition to uniquely evolved machinery in animals and fungi, there exist components with sporadic (i.e., "patchy") distributions across other eukaryotes. A most intriguing subset are components ("jötnarlogs") stochastically present in a wide range of eukaryotes but lost in animal and/or fungal models. Such components are considered exotic curiosities but may be relevant to inferences about the complexity of the last eukaryotic common ancestor (LECA) and frameworks of modern cell biology. Here, we use comparative genomics and phylogenetics to comprehensively assess the membrane-trafficking system of diplonemids. They possess several proteins thought of as kinetoplastid specific, as well as an extensive set of patchy proteins, including jötnarlogs. Diplonemids apparently function with endomembrane machinery distinct from existing cell biological models but comparable with other free-living heterotrophic protists, highlighting the importance of including such exotic components when considering different models of ancient eukaryotic genomic complexity and the cell biology of non-opisthokont organisms.
Collapse
Affiliation(s)
- Kristína Záhonová
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, AB T6G 2G3, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, České Budějovice (Budweis) 370 05, Czech Republic; Life Science Research Centre, Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava 710 00, Czech Republic; Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, Vestec 252 50, Czech Republic.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, České Budějovice (Budweis) 370 05, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1645/31a, České Budějovice 370 05, Czech Republic
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, AB T6G 2G3, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, České Budějovice (Budweis) 370 05, Czech Republic; Centre for Life's Origin and Evolution, Division of Biosciences (Darwin Building), University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
2
|
Black JA, Klinger CM, Lemgruber L, Dacks JB, Mottram JC, McCulloch R. AAK1-like: A putative pseudokinase with potential roles in cargo uptake in bloodstream form Trypanosoma brucei parasites. J Eukaryot Microbiol 2023; 70:e12994. [PMID: 37548427 PMCID: PMC10952953 DOI: 10.1111/jeu.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
Selection and internalization of cargo via clathrin-mediated endocytosis requires adaptor protein complexes. One complex, AP-2, acts during cargo selection at the plasma membrane. African trypanosomes lack all components of the AP-2 complex, except for a recently identified orthologue of the AP-2-associated protein kinase 1, AAK1. In characterized eukaryotes, AAK1 phosphorylates the μ2 subunit of the AP-2 complex to enhance cargo recognition and uptake into clathrin-coated vesicles. Here, we show that kinetoplastids encode not one, but two AAK1 orthologues: one (AAK1L2) is absent from salivarian trypanosomes, while the other (AAK1L1) lacks important kinase-specific residues in a range of trypanosomes. These AAK1L1 and AAK1L2 novelties reinforce suggestions of functional divergence in endocytic uptake within salivarian trypanosomes. Despite this, we show that AAK1L1 null mutant Trypanosoma brucei, while viable, display slowed proliferation, morphological abnormalities including swelling of the flagellar pocket, and altered cargo uptake. In summary, our data suggest an unconventional role for a putative pseudokinase during endocytosis and/or vesicular trafficking in T. brucei, independent of AP-2.
Collapse
Affiliation(s)
- Jennifer A. Black
- The Wellcome Centre for Integrative Parasitology, School of Infection & ImmunityUniversity of GlasgowGlasgowUK
- Department of Cell and Molecular Biology, Ribeirão Preto Medical SchoolUniversity of São PauloSão PauloBrazil
| | - Christen M. Klinger
- The Wellcome Centre for Integrative Parasitology, School of Infection & ImmunityUniversity of GlasgowGlasgowUK
- Division of Infectious Diseases, Department of Medicine, Li Ka Shing Centre for Health, Research InnovationUniversity of AlbertaEdmontonAlbertaCanada
| | - Leandro Lemgruber
- The Wellcome Centre for Integrative Parasitology, School of Infection & ImmunityUniversity of GlasgowGlasgowUK
- Glasgow Imaging Facility, School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| | - Joel B. Dacks
- Department of Cell and Molecular Biology, Ribeirão Preto Medical SchoolUniversity of São PauloSão PauloBrazil
- Institute of Parasitology, Biology CentreCzech Academy of SciencesCeske Budejovice (Budweis)Czech Republic
| | - Jeremy C. Mottram
- York Biomedical Research Institute and Department of BiologyUniversity of YorkYorkUK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| |
Collapse
|
3
|
Santos R, Ástvaldsson Á, Pipaliya SV, Zumthor JP, Dacks JB, Svärd S, Hehl AB, Faso C. Combined nanometric and phylogenetic analysis of unique endocytic compartments in Giardia lamblia sheds light on the evolution of endocytosis in Metamonada. BMC Biol 2022; 20:206. [PMID: 36127707 PMCID: PMC9490929 DOI: 10.1186/s12915-022-01402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022] Open
Abstract
Background Giardia lamblia, a parasitic protist of the Metamonada supergroup, has evolved one of the most diverged endocytic compartment systems investigated so far. Peripheral endocytic compartments, currently known as peripheral vesicles or vacuoles (PVs), perform bulk uptake of fluid phase material which is then digested and sorted either to the cell cytosol or back to the extracellular space. Results Here, we present a quantitative morphological characterization of these organelles using volumetric electron microscopy and super-resolution microscopy (SRM). We defined a morphological classification for the heterogenous population of PVs and performed a comparative analysis of PVs and endosome-like organelles in representatives of phylogenetically related taxa, Spironucleus spp. and Tritrichomonas foetus. To investigate the as-yet insufficiently understood connection between PVs and clathrin assemblies in G. lamblia, we further performed an in-depth search for two key elements of the endocytic machinery, clathrin heavy chain (CHC) and clathrin light chain (CLC), across different lineages in Metamonada. Our data point to the loss of a bona fide CLC in the last Fornicata common ancestor (LFCA) with the emergence of a protein analogous to CLC (GlACLC) in the Giardia genus. Finally, the location of clathrin in the various compartments was quantified. Conclusions Taken together, this provides the first comprehensive nanometric view of Giardia’s endocytic system architecture and sheds light on the evolution of GlACLC analogues in the Fornicata supergroup and, specific to Giardia, as a possible adaptation to the formation and maintenance of stable clathrin assemblies at PVs. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01402-3.
Collapse
Affiliation(s)
- Rui Santos
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, 8057, Zürich, Switzerland.,Institute of Anatomy, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Ásgeir Ástvaldsson
- Department of Cell and Molecular Biology, University of Uppsala, Husargatan 3, 752 37, Uppsala, Sweden.,Department of Microbiology, National Veterinary Institute, 751 23, Uppsala, Sweden
| | - Shweta V Pipaliya
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jon Paulin Zumthor
- Amt für Lebensmittelsicherheit und Tiergesundheit Graubünden, Chur, Switzerland
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Institute of Parasitology, Biology Centre, CAS, v.v.i., Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| | - Staffan Svärd
- Department of Cell and Molecular Biology, University of Uppsala, Husargatan 3, 752 37, Uppsala, Sweden
| | - Adrian B Hehl
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, 8057, Zürich, Switzerland
| | - Carmen Faso
- Institute of Cell Biology, University of Bern, Bern, Switzerland. .,Multidisciplinary Center for Infectious Diseases, Vetsuisse, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Richardson E, Dacks JB. Distribution of Membrane Trafficking System Components Across Ciliate Diversity Highlights Heterogenous Organelle-Associated Machinery. Traffic 2022; 23:208-220. [PMID: 35128766 DOI: 10.1111/tra.12834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
The ciliate phylum is a group of protists noted for their unusual membrane trafficking system and apparent environmental ubiquity; as highly successful microbial predators, they are found in all manner of environments and the ability for specific species to adapt to extremely challenging conditions makes them valued as bioindicators. Ciliates have also been used for many years as cell biological models due to their large cell size and ease of culturing, and for many fundamental cell structures, particularly membrane-bound organelles, ciliates were some of the earliest organisms in which these were observed via microscopy. In this study, we carried out a comparative genomic survey of selected membrane trafficking proteins in a pan-ciliate transcriptome and genome dataset. We observed considerable loss of membrane trafficking system (MTS) proteins that would indicate a loss of machinery that is generally conserved across eukaryotic diversity, even after controlling for potentially incomplete genome representation. In particular, the DSL1 complex was missing in all surveyed ciliates. This protein complex has been shown as involved in peroxisome biogenesis in some model systems, and a paucity of DSL1 components has been indicative of degenerate peroxisome. However, Tetrahymena thermophila (formerly Tetrahymena pyroformis) was one of the original models for visualising peroxisomes. Conversely, the AP3 complex essential for mucocyst maturation in T. thermophila, is poorly conserved despite the presence of secretory lysosome-related organelles across ciliate diversity. We discuss potential resolutions for these apparent paradoxes in the context of the heterogenous distribution of MTS machinery across the diversity of ciliates.
Collapse
Affiliation(s)
- Elisabeth Richardson
- University of Alberta School of Public Health, Edmonton, Alberta, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Joel B Dacks
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Department of Life Sciences, The Natural History Museum, London, UK
| |
Collapse
|
5
|
Biomimetic Magnetoliposomes as Oxaliplatin Nanocarriers: In Vitro Study for Potential Application in Colon Cancer. Pharmaceutics 2020; 12:pharmaceutics12060589. [PMID: 32599905 PMCID: PMC7356838 DOI: 10.3390/pharmaceutics12060589] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Current chemotherapy for colorectal cancer (CRC) includes the use of oxaliplatin (Oxa), a first-line cytotoxic drug which, in combination with irinotecan/5-fluorouracil or biologic agents, increases the survival rate of patients. However, the administration of this drug induces side effects that limit its application in patients, making it necessary to develop new tools for targeted chemotherapy. MamC-mediated biomimetic magnetic nanoparticles coupled with Oxa (Oxa-BMNPs) have been previously demonstrated to efficiently reduce the IC50 compared to that of soluble Oxa. However, their strong interaction with the macrophages revealed toxicity and possibility of aggregation. In this scenario, a further improvement of this nanoassembly was necessary. In the present study, Oxa-BMNPs nanoassemblies were enveloped in phosphatidylcholine unilamellar liposomes (both pegylated and non-pegylated). Our results demonstrate that the addition of both a lipid cover and further pegylation improves the biocompatibility and cellular uptake of the Oxa-BMNPs nanoassemblies without significantly reducing their cytotoxic activity in colon cancer cells. In particular, with the pegylated magnetoliposome nanoformulation (a) hemolysis was reduced from 5% to 2%, being now hematocompatibles, (b) red blood cell agglutination was reduced, (c) toxicity in white blood cells was eliminated. This study represents a truly stepforward in this area as describes the production of one of the very few existing nanoformulations that could be used for a local chemotherapy to treat CRC.
Collapse
|
6
|
Boehm C, Field MC. Evolution of late steps in exocytosis: conservation and specialization of the exocyst complex. Wellcome Open Res 2019; 4:112. [PMID: 31633057 PMCID: PMC6784791 DOI: 10.12688/wellcomeopenres.15142.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
Background: The eukaryotic endomembrane system most likely arose via paralogous expansions of genes encoding proteins that specify organelle identity, coat complexes and govern fusion specificity. While the majority of these gene families were established by the time of the last eukaryotic common ancestor (LECA), subsequent evolutionary events has moulded these systems, likely reflecting adaptations retained for increased fitness. As well as sequence evolution, these adaptations include loss of otherwise canonical components, the emergence of lineage-specific proteins and paralog expansion. The exocyst complex is involved in late exocytosis and additional trafficking pathways and a member of the complexes associated with tethering containing helical rods (CATCHR) tethering complex family. CATCHR includes the conserved oligomeric Golgi (COG) complex, homotypic fusion and vacuole protein sorting (HOPS)/class C core vacuole/endosome tethering (CORVET) complexes and several others. The exocyst is integrated into a complex GTPase signalling network in animals, fungi and other lineages. Prompted by discovery of Exo99, a non-canonical subunit in the excavate protist Trypanosoma brucei, and availability of significantly increased genome sequence data, we re-examined evolution of the exocyst. Methods: We examined the evolution of exocyst components by comparative genomics, phylogenetics and structure prediction. Results: The exocyst composition is highly conserved, but with substantial losses of subunits in the Apicomplexa and expansions in Streptophyta plants, Metazoa and land plants, where for the latter, massive paralog expansion of Exo70 represents an extreme and unique example. Significantly, few taxa retain a partial complex, suggesting that, in general, all subunits are probably required for functionality. Further, the ninth exocyst subunit, Exo99, is specific to the Euglenozoa with a distinct architecture compared to the other subunits and which possibly represents a coat system. Conclusions: These data reveal a remarkable degree of evolutionary flexibility within the exocyst complex, suggesting significant diversity in exocytosis mechanisms.
Collapse
Affiliation(s)
- Cordula Boehm
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovic, 37005, Czech Republic
| |
Collapse
|
7
|
Cernikova L, Faso C, Hehl AB. Roles of Phosphoinositides and Their binding Proteins in Parasitic Protozoa. Trends Parasitol 2019; 35:996-1008. [PMID: 31615721 DOI: 10.1016/j.pt.2019.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022]
Abstract
Phosphoinositides (or phosphatidylinositol phosphates, PIPs) are low-abundance membrane phospholipids that act, in conjunction with their binding partners, as important constitutive signals defining biochemical organelle identity as well as membrane trafficking and signal transduction at eukaryotic cellular membranes. In this review, we present roles for PIP residues and PIP-binding proteins in endocytosis and autophagy in protist parasites such as Trypanosoma brucei, Toxoplasma gondii, Plasmodium falciparum, Entamoeba histolytica, and Giardia lamblia. Molecular parasitologists with an interest in comparative cell and molecular biology of membrane trafficking in protist lineages beyond the phylum Apicomplexa, along with cell and molecular biologists generally interested in the diversification of membrane trafficking in eukaryotes, will hopefully find this review to be a useful resource.
Collapse
Affiliation(s)
- Lenka Cernikova
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
| | - Carmen Faso
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland; Institute of Cell Biology, University of Bern (BE), Bern, Switzerland
| | - Adrian B Hehl
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland.
| |
Collapse
|
8
|
Jabalera Y, Garcia-Pinel B, Ortiz R, Iglesias G, Cabeza L, Prados J, Jimenez-Lopez C, Melguizo C. Oxaliplatin-Biomimetic Magnetic Nanoparticle Assemblies for Colon Cancer-Targeted Chemotherapy: An In Vitro Study. Pharmaceutics 2019; 11:E395. [PMID: 31390773 PMCID: PMC6723246 DOI: 10.3390/pharmaceutics11080395] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/29/2023] Open
Abstract
Conventional chemotherapy against colorectal cancer (CRC), the third most common cancer in the world, includes oxaliplatin (Oxa) which induces serious unwanted side effects that limit the efficiency of treatment. Therefore, alternative therapeutic approaches are urgently required. In this work, biomimetic magnetic nanoparticles (BMNPs) mediated by MamC were coupled to Oxa to evaluate the potential of the Oxa-BMNP nanoassembly for directed local delivery of the drug as a proof of concept for the future development of targeted chemotherapy against CRC. Electrostatic interactions between Oxa and BMNPs trigger the formation of the nanoassembly and keep it stable at physiological pH. When the BMNPs become neutral at acidic pH values, the Oxa is released, and such a release is greatly potentiated by hyperthermia. The coupling of the drug with the BMNPs improves its toxicity to even higher levels than the soluble drug, probably because of the fast internalization of the nanoassembly by tumor cells through endocytosis. In addition, the BMNPs are cytocompatible and non-hemolytic, providing positive feedback as a proof of concept for the nanoassembly. Our study clearly demonstrates the applicability of Oxa-BMNP in colon cancer and offers a promising nanoassembly for targeted chemotherapy against this type of tumor.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain
| | - Beatriz Garcia-Pinel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - Guillermo Iglesias
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain.
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain.
| | - Concepcion Jimenez-Lopez
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain.
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| |
Collapse
|
9
|
Boehm C, Field MC. Evolution of late steps in exocytosis: conservation, specialization. Wellcome Open Res 2019; 4:112. [PMID: 31633057 PMCID: PMC6784791 DOI: 10.12688/wellcomeopenres.15142.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 01/05/2025] Open
Abstract
Background: The eukaryotic endomembrane system likely arose via paralogous expansion of genes encoding proteins specifying organelle identity, coat complexes and government of fusion specificity. While the majority of these gene families were established by the time of the last eukaryotic common ancestor (LECA), subsequent evolutionary events molded these systems, likely reflecting adaptations retained for increased fitness. As well as sequence evolution, these adaptations include loss of otherwise canonical subunits, emergence of lineage-specific proteins and paralog expansion. The exocyst complex is involved in late exocytosis, and possibly additional pathways, and is a member of the complexes associated with tethering containing helical rods (CATCHR) tethering complex family, which includes conserved oligomeric Golgi (COG), homotypic fusion and vacuole protein sorting (HOPS), class C core vacuole/endosome tethering (CORVET) and others. The exocyst is integrated into a complex GTPase signaling network in animals, fungi and other lineages. Prompted by discovery of Exo99, a non-canonical subunit in the excavate protist Trypanosoma brucei, and significantly increased genome sequence data, we examined evolution of the exocyst. Methods: We examined evolution of the exocyst by comparative genomics, phylogenetics and structure prediction. Results: The exocyst is highly conserved, but with substantial losses of subunits in the Apicomplexa and expansions in Streptophyta plants and Metazoa. Significantly, few taxa retain a partial complex, suggesting that, in the main, all subunits are required for functionality. Further, the ninth exocyst subunit Exo99 is specific to the Euglenozoa with a distinct architecture compared to the other subunits and which possibly represents a coat system. Conclusions: These data reveal a remarkable degree of evolutionary flexibility within the exocyst complex, suggesting significant diversity in exocytosis mechanisms.
Collapse
Affiliation(s)
- Cordula Boehm
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovic, 37005, Czech Republic
| |
Collapse
|
10
|
Mudogo CN, Werner SF, Mogk S, Betzel C, Duszenko M. The conserved hypothetical protein Tb427.10.13790 is required for cytokinesis in Trypanosoma brucei. Acta Trop 2018; 188:34-40. [PMID: 30153427 DOI: 10.1016/j.actatropica.2018.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 11/17/2022]
Abstract
Trypanosoma brucei, a flagellated protozoan causing the deadly tropical disease Human African Trypanosomiasis (HAT), affects people in sub-Saharan Africa. HAT therapy relies upon drugs which use is limited by toxicity and rigorous treatment regimes, while development of vaccines remains elusive, due to the effectiveness of the parasite´s antigenic variation. Here, we evaluate a hypothetical protein Tb427.10.13790, as a potential drug target. This protein is conserved among all kinetoplastids, but lacks homologs in all other pro- and eukaryotes. Knockdown of Tb427.10.13790 resulted in appearance of monster cells containing multiple nuclei and multiple flagella, a considerable enlargement of the flagellar pocket and eventually a lethal phenotype. Furthermore, analysis of kinetoplast and nucleus division in the knockdown cell line revealed a partial cell cycle arrest and failure to initiate cytokinesis. Likewise, overexpression of the respective protein fused with enhanced green fluorescent protein was also lethal for T. brucei. In these cells, the labelled protein appeared as a single dot near kinetoplast and flagellar pocket. Our results reveal that Tb427.10.13790 is essential for the parasite´s viability and may be a suitable new anti-trypanosomatid drug target candidate. Furthermore, we suggest that it might be worthwhile to investigate also other of the many so far just annotated trypanosome genes as a considerable number of them to lack human homologs but may be of critical importance for the kinetoplastid parasites.
Collapse
Affiliation(s)
- Celestin Nzanzu Mudogo
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; Institute of Biochemistry and Molecular Biology, University of Hamburg, Laboratory for Structural Biology of Infection and Inflammation, Hamburg, Germany; Department of Basic Sciences, School of Medicine, University of Kinshasa, Democratic Republic of Congo.
| | | | - Stefan Mogk
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Laboratory for Structural Biology of Infection and Inflammation, Hamburg, Germany.
| | - Michael Duszenko
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
11
|
Dacks JB, Field MC. Evolutionary origins and specialisation of membrane transport. Curr Opin Cell Biol 2018; 53:70-76. [PMID: 29929066 PMCID: PMC6141808 DOI: 10.1016/j.ceb.2018.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/09/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023]
Abstract
From unicellular protists to the largest megafauna and flora, all eukaryotes depend upon the organelles and processes of the intracellular membrane trafficking system. Well-defined machinery selectively packages and delivers material between endomembrane organelles and imports and exports material from the cell surface. This process underlies intracellular compartmentalization and facilitates myriad processes that define eukaryotic biology. Membrane trafficking is a landmark in the origins of the eukaryotic cell and recent work has begun to unravel how the revolution in cellular structure occurred.
Collapse
Affiliation(s)
- Joel B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
12
|
Venkatesh D, Zhang N, Zoltner M, del Pino RC, Field MC. Evolution of protein trafficking in kinetoplastid parasites: Complexity and pathogenesis. Traffic 2018; 19:803-812. [DOI: 10.1111/tra.12601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022]
Affiliation(s)
| | - Ning Zhang
- School of Life Sciences; University of Dundee; Dundee UK
| | - Martin Zoltner
- School of Life Sciences; University of Dundee; Dundee UK
| | | | - Mark C. Field
- School of Life Sciences; University of Dundee; Dundee UK
| |
Collapse
|
13
|
Quintana JF, Pino RCD, Yamada K, Zhang N. Adaptation and Therapeutic Exploitation of the Plasma Membrane of African Trypanosomes. Genes (Basel) 2018; 9:E368. [PMID: 30037058 PMCID: PMC6071061 DOI: 10.3390/genes9070368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
African trypanosomes are highly divergent from their metazoan hosts, and as part of adaptation to a parasitic life style have developed a unique endomembrane system. The key virulence mechanism of many pathogens is successful immune evasion, to enable survival within a host, a feature that requires both genetic events and membrane transport mechanisms in African trypanosomes. Intracellular trafficking not only plays a role in immune evasion, but also in homeostasis of intracellular and extracellular compartments and interactions with the environment. Significantly, historical and recent work has unraveled some of the connections between these processes and highlighted how immune evasion mechanisms that are associated with adaptations to membrane trafficking may have, paradoxically, provided specific sensitivity to drugs. Here, we explore these advances in understanding the membrane composition of the trypanosome plasma membrane and organelles and provide a perspective for how transport could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Juan F Quintana
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | | | - Kayo Yamada
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | - Ning Zhang
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
14
|
Stijlemans B, De Baetselier P, Caljon G, Van Den Abbeele J, Van Ginderachter JA, Magez S. Nanobodies As Tools to Understand, Diagnose, and Treat African Trypanosomiasis. Front Immunol 2017; 8:724. [PMID: 28713367 PMCID: PMC5492476 DOI: 10.3389/fimmu.2017.00724] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/08/2017] [Indexed: 02/04/2023] Open
Abstract
African trypanosomes are strictly extracellular protozoan parasites that cause diseases in humans and livestock and significantly affect the economic development of sub-Saharan Africa. Due to an elaborate and efficient (vector)–parasite–host interplay, required to complete their life cycle/transmission, trypanosomes have evolved efficient immune escape mechanisms that manipulate the entire host immune response. So far, not a single field applicable vaccine exists, and chemotherapy is the only strategy available to treat the disease. Current therapies, however, exhibit high drug toxicity and an increased drug resistance is being reported. In addition, diagnosis is often hampered due to the inadequacy of current diagnostic procedures. In the context of tackling the shortcomings of current treatment and diagnostic approaches, nanobodies (Nbs, derived from the heavy chain-only antibodies of camels and llamas) might represent unmet advantages compared to conventional tools. Indeed, the combination of their small size, high stability, high affinity, and specificity for their target and tailorability represents a unique advantage, which is reflected by their broad use in basic and clinical research to date. In this article, we will review and discuss (i) diagnostic and therapeutic applications of Nbs that are being evaluated in the context of African trypanosomiasis, (ii) summarize new strategies that are being developed to optimize their potency for advancing their use, and (iii) document on unexpected properties of Nbs, such as inherent trypanolytic activities, that besides opening new therapeutic avenues, might offer new insight in hidden biological activities of conventional antibodies.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp (UA), Antwerp, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| |
Collapse
|