1
|
Doherty R, MacLeod BL, Nelson MM, Ibrahim MMH, Borges BC, Jaradat NW, Finneran MC, Giger RJ, Corfas G. Identification of in vivo roles of ErbB4-JMa and its direct nuclear signaling using a novel isoform-specific knock out mouse. Sci Rep 2022; 12:17267. [PMID: 36241655 PMCID: PMC9568506 DOI: 10.1038/s41598-022-21598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Like all receptor tyrosine kinases (RTKs), ErbB4 signals through a canonical signaling involving phosphorylation cascades. However, ErbB4 can also signal through a non-canonical mechanism whereby the intracellular domain is released into the cytoplasm by regulated intramembrane proteolysis (RIP) and translocates to the nucleus where it regulates transcription. These different signaling mechanisms depend on the generation of alternative spliced isoforms, a RIP cleavable ErbB4-JMa and an uncleavable ErbB4-JMb. Non-canonical signaling by ErbB4-JMa has been implicated in the regulation of brain, heart, mammary gland, lung, and immune cell development. However, most studies on non-canonical ErbB4 signaling have been performed in vitro due to the lack of an adequate mouse model. We created an ErbB4-JMa specific knock out mouse and demonstrate that RIP-dependent, non-canonical signaling by ErbB4-JMa is required for the regulation of GFAP expression during cortical development. We also show that ErbB4-JMa signaling is not required for the development of the heart, mammary glands, sensory ganglia. Furthermore, we identify genes whose expression during cortical development is regulated by ErbB4, and show that the expression of three of them, CRYM and DBi, depend on ErbB4-JMa whereas WDFY1 relies on ErbB4-JMb. Thus, we provide the first animal model to directly study the roles of ErbB4-JMa and non-canonical ErbB4 signaling in vivo.
Collapse
Affiliation(s)
- Robert Doherty
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Medical Sciences I Building, Rm. 5428, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Brenna L MacLeod
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Medical Sciences I Building, Rm. 5428, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Megan M Nelson
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Medical Sciences I Building, Rm. 5428, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Mostafa M H Ibrahim
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Medical Sciences I Building, Rm. 5428, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Beatriz C Borges
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Medical Sciences I Building, Rm. 5428, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Nada W Jaradat
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Medical Sciences I Building, Rm. 5428, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Matthew C Finneran
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Roman J Giger
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Gabriel Corfas
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Medical Sciences I Building, Rm. 5428, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA.
| |
Collapse
|
2
|
Ahmed R, Erten C, Houdjedj A, Kazan H, Yalcin C. A Network-Centric Framework for the Evaluation of Mutual Exclusivity Tests on Cancer Drivers. Front Genet 2021; 12:746495. [PMID: 34899838 PMCID: PMC8664367 DOI: 10.3389/fgene.2021.746495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/27/2021] [Indexed: 12/03/2022] Open
Abstract
One of the key concepts employed in cancer driver gene identification is that of mutual exclusivity (ME); a driver mutation is less likely to occur in case of an earlier mutation that has common functionality in the same molecular pathway. Several ME tests have been proposed recently, however the current protocols to evaluate ME tests have two main limitations. Firstly the evaluations are mostly with respect to simulated data and secondly the evaluation metrics lack a network-centric view. The latter is especially crucial as the notion of common functionality can be achieved through searching for interaction patterns in relevant networks. We propose a network-centric framework to evaluate the pairwise significances found by statistical ME tests. It has three main components. The first component consists of metrics employed in the network-centric ME evaluations. Such metrics are designed so that network knowledge and the reference set of known cancer genes are incorporated in ME evaluations under a careful definition of proper control groups. The other two components are designed as further mechanisms to avoid confounders inherent in ME detection on top of the network-centric view. To this end, our second objective is to dissect the side effects caused by mutation load artifacts where mutations driving tumor subtypes with low mutation load might be incorrectly diagnosed as mutually exclusive. Finally, as part of the third main component, the confounding issue stemming from the use of nonspecific interaction networks generated as combinations of interactions from different tissues is resolved through the creation and use of tissue-specific networks in the proposed framework. The data, the source code and useful scripts are available at: https://github.com/abu-compbio/NetCentric.
Collapse
Affiliation(s)
- Rafsan Ahmed
- Electrical and Computer Engineering Graduate Program, Antalya Bilim University, Antalya, Turkey
| | - Cesim Erten
- Department of Computer Engineering, Antalya Bilim University, Antalya, Turkey
| | - Aissa Houdjedj
- Department of Computer Engineering, Antalya Bilim University, Antalya, Turkey
| | - Hilal Kazan
- Department of Computer Engineering, Antalya Bilim University, Antalya, Turkey
| | - Cansu Yalcin
- Department of Computer Engineering, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
3
|
Sen S, Hallee L, Lam CK. The Potential of Gamma Secretase as a Therapeutic Target for Cardiac Diseases. J Pers Med 2021; 11:jpm11121294. [PMID: 34945766 PMCID: PMC8703931 DOI: 10.3390/jpm11121294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Heart diseases are some of the most common and pressing threats to human health worldwide. The American Heart Association and the National Institute of Health jointly work to annually update data on cardiac diseases. In 2018, 126.9 million Americans were reported as having some form of cardiac disorder, with an estimated direct and indirect total cost of USD 363.4 billion. This necessitates developing therapeutic interventions for heart diseases to improve human life expectancy and economic relief. In this review, we look into gamma-secretase as a potential therapeutic target for cardiac diseases. Gamma-secretase, an aspartyl protease enzyme, is responsible for the cleavage and activation of a number of substrates that are relevant to normal cardiac development and function as found in mutation studies. Some of these substrates are involved in downstream signaling processes and crosstalk with pathways relevant to heart diseases. Most of the substrates and signaling events we explored were found to be potentially beneficial to maintain cardiac function in diseased conditions. This review presents an updated overview of the current knowledge on gamma-secretase processing of cardiac-relevant substrates and seeks to understand if the modulation of gamma-secretase activity would be beneficial to combat cardiac diseases.
Collapse
Affiliation(s)
- Sujoita Sen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Logan Hallee
- Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Chi Keung Lam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Correspondence: ; Tel.: +1-302-831-3165
| |
Collapse
|
4
|
Veikkolainen V, Ali N, Doroszko M, Kiviniemi A, Miinalainen I, Ohlsson C, Poutanen M, Rahman N, Elenius K, Vainio SJ, Naillat F. Erbb4 regulates the oocyte microenvironment during folliculogenesis. Hum Mol Genet 2021; 29:2813-2830. [PMID: 32716031 DOI: 10.1093/hmg/ddaa161] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders leading to infertility in women affecting reproductive, endocrine and metabolic systems. Recent genomewide association studies on PCOS cohorts revealed a single nucleotide polymorphism (SNP) in the ERBB4 receptor tyrosine kinase 4 gene, but its role in ovary development or during folliculogenesis remains poorly understood. Since no genetic animal models mimicking all PCOS reproductive features are available, we conditionally deleted Erbb4 in murine granulosa cells (GCs) under the control of Amh promoter. While we have demonstrated that Erbb4 deletion displayed aberrant ovarian function by affecting the reproductive function (asynchronous oestrous cycle leading to few ovulations and subfertility) and metabolic function (obesity), their ovaries also present severe structural and functional abnormalities (impaired oocyte development). Hormone analysis revealed an up-regulation of serum luteinizing hormone, hyperandrogenism, increased production of ovarian and circulating anti-Müllerian hormone. Our data implicate that Erbb4 deletion in GCs leads to defective intercellular junctions between the GCs and oocytes, causing changes in the expression of genes regulating the local microenvironment of the follicles. In vitro culture assays reducing the level of Erbb4 via shRNAs confirm that Erbb4 is essential for regulating Amh level. In conclusion, our results indicate a functional role for Erbb4 in the ovary, especially during folliculogenesis and its reduced expression plays an important role in reproductive pathophysiology, such as PCOS development.
Collapse
Affiliation(s)
- Ville Veikkolainen
- Institute of Biomedicine and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland
| | - Nsrein Ali
- Organogenesis Laboratory, Department of Medical Biochemistry and Molecular Biology, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Milena Doroszko
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland.,Department of Immunology Genetics and Pathology, Section for Neuro-oncology, Uppsala University, 752 36 Uppsala, Sweden
| | - Antti Kiviniemi
- Organogenesis Laboratory, Department of Medical Biochemistry and Molecular Biology, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Ilkka Miinalainen
- Electron Microscopy Unit, Biocenter Oulu, University of Oulu, FI-90220 Oulu, Finland
| | - Claes Ohlsson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland.,Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Nafis Rahman
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland.,Department of Oncology, Turku University Hospital, FI-20520 Turku, Finland
| | - Seppo J Vainio
- Department of Immunology Genetics and Pathology, Section for Neuro-oncology, Uppsala University, 752 36 Uppsala, Sweden.,InfoTech Oulu, Oulu University and Biobank Borealis of Northern Finland, Oulu University Hospital, University of Oulu, FI-90014 Oulu, FINLAND
| | - Florence Naillat
- Organogenesis Laboratory, Department of Medical Biochemistry and Molecular Biology, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| |
Collapse
|
5
|
Segers VFM, Dugaucquier L, Feyen E, Shakeri H, De Keulenaer GW. The role of ErbB4 in cancer. Cell Oncol (Dordr) 2020; 43:335-352. [PMID: 32219702 DOI: 10.1007/s13402-020-00499-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The epidermal growth factor receptor family consists of four members, ErbB1 (epidermal growth factor receptor-1), ErbB2, ErbB3, and ErbB4, which all have been found to play important roles in tumor development. ErbB4 appears to be unique among these receptors, because it is the only member with growth inhibiting properties. ErbB4 plays well-defined roles in normal tissue development, in particular the heart, the nervous system, and the mammary gland system. In recent years, information on the role of ErbB4 in a number of tumors has emerged and its general direction points towards a tumor suppressor role for ErbB4. However, there are some controversies and conflicting data, warranting a review on this topic. CONCLUSIONS Here, we discuss the role of ErbB4 in normal physiology and in breast, lung, colorectal, gastric, pancreatic, prostate, bladder, and brain cancers, as well as in hepatocellular carcinoma, cholangiocarcinoma, and melanoma. Understanding the role of ErbB4 in cancer is not only important for the treatment of tumors, but also for the treatment of other disorders in which ErbB4 plays a major role, e.g. cardiovascular disease.
Collapse
Affiliation(s)
- Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium. .,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium.
| | - Lindsey Dugaucquier
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Eline Feyen
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Hadis Shakeri
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Department of Cardiology, ZNA Hospital, Antwerp, Belgium
| |
Collapse
|
6
|
Krynina OI, Korotkevych NV, Labyntsev AJ, Romaniuk SI, Kolybo DV, Komisarenko SV. Influence of human HB-EGF secreted form on cells with different EGFR and ErbB4 quantity. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Merilahti JAM, Elenius K. Gamma-secretase-dependent signaling of receptor tyrosine kinases. Oncogene 2018; 38:151-163. [PMID: 30166589 PMCID: PMC6756091 DOI: 10.1038/s41388-018-0465-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/28/2022]
Abstract
Human genome harbors 55 receptor tyrosine kinases (RTK). At least half of the RTKs have been reported to be cleaved by gamma-secretase-mediated regulated intramembrane proteolysis. The two-step process involves releasing the RTK ectodomain to the extracellular space by proteolytic cleavage called shedding, followed by cleavage in the RTK transmembrane domain by the gamma-secretase complex resulting in release of a soluble RTK intracellular domain. This intracellular domain, including the tyrosine kinase domain, can in turn translocate to various cellular compartments, such as the nucleus or proteasome. The soluble intracellular domain may interact with transcriptional regulators and other proteins to induce specific effects on cell survival, proliferation, and differentiation, establishing an additional signaling mode for the cleavable RTKs. On the other hand, the same process can facilitate RTK turnover and proteasomal degradation. In this review we focus on the regulation of RTK shedding and gamma-secretase cleavage, as well as signaling promoted by the soluble RTK ICDs. In addition, therapeutic implications of increased knowledge on RTK cleavage on cancer drug development are discussed.
Collapse
Affiliation(s)
- Johannes A M Merilahti
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland.,Medicity Research Laboratory, University of Turku, 20520, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520, Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland. .,Medicity Research Laboratory, University of Turku, 20520, Turku, Finland. .,Department of Oncology, Turku University Hospital, 20520, Turku, Finland.
| |
Collapse
|
8
|
Iwamoto R, Mine N, Mizushima H, Mekada E. ErbB1 and ErbB4 generate opposing signals regulating mesenchymal cell proliferation during valvulogenesis. Development 2017. [DOI: 10.1242/dev.152710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|