1
|
Marshall WF. Chlamydomonas as a model system to study cilia and flagella using genetics, biochemistry, and microscopy. Front Cell Dev Biol 2024; 12:1412641. [PMID: 38872931 PMCID: PMC11169674 DOI: 10.3389/fcell.2024.1412641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
The unicellular green alga, Chlamydomonas reinhardtii, has played a central role in discovering much of what is currently known about the composition, assembly, and function of cilia and flagella. Chlamydomonas combines excellent genetics, such as the ability to grow cells as haploids or diploids and to perform tetrad analysis, with an unparalleled ability to detach and isolate flagella in a single step without cell lysis. The combination of genetics and biochemistry that is possible in Chlamydomonas has allowed many of the key components of the cilium to be identified by looking for proteins that are missing in a defined mutant. Few if any other model organisms allow such a seamless combination of genetic and biochemical approaches. Other major advantages of Chlamydomonas compared to other systems include the ability to induce flagella to regenerate in a highly synchronous manner, allowing the kinetics of flagellar growth to be measured, and the ability of Chlamydomonas flagella to adhere to glass coverslips allowing Intraflagellar Transport to be easily imaged inside the flagella of living cells, with quantitative precision and single-molecule resolution. These advantages continue to work in favor of Chlamydomonas as a model system going forward, and are now augmented by extensive genomic resources, a knockout strain collection, and efficient CRISPR gene editing. While Chlamydomonas has obvious limitations for studying ciliary functions related to animal development or organ physiology, when it comes to studying the fundamental biology of cilia and flagella, Chlamydomonas is simply unmatched in terms of speed, efficiency, cost, and the variety of approaches that can be brought to bear on a question.
Collapse
Affiliation(s)
- Wallace F. Marshall
- Department Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Hibbard JVK, Vázquez N, Wallingford JB. Cilia proteins getting to work - how do they commute from the cytoplasm to the base of cilia? J Cell Sci 2022; 135:jcs259444. [PMID: 36073764 PMCID: PMC9482345 DOI: 10.1242/jcs.259444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cilia are multifunctional organelles that originated with the last eukaryotic common ancestor and play central roles in the life cycles of diverse organisms. The motile flagella that move single cells like sperm or unicellular organisms, the motile cilia on animal multiciliated cells that generate fluid flow in organs, and the immotile primary cilia that decorate nearly all cells in animals share many protein components in common, yet each also requires specialized proteins to perform their specialized functions. Despite a now-advanced understanding of how such proteins are transported within cilia, we still know very little about how they are transported from their sites of synthesis through the cytoplasm to the ciliary base. Here, we review the literature concerning this underappreciated topic in ciliary cell biology. We discuss both general mechanisms, as well as specific examples of motor-driven active transport and passive transport via diffusion-and-capture. We then provide deeper discussion of specific, illustrative examples, such as the diverse array of protein subunits that together comprise the intraflagellar transport (IFT) system and the multi-protein axonemal dynein motors that drive beating of motile cilia. We hope this Review will spur further work, shedding light not only on ciliogenesis and ciliary signaling, but also on intracellular transport in general.
Collapse
Affiliation(s)
| | | | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78751, USA
| |
Collapse
|
3
|
Lechtreck KF, Liu Y, Dai J, Alkhofash RA, Butler J, Alford L, Yang P. Chlamydomonas ARMC2/PF27 is an obligate cargo adapter for intraflagellar transport of radial spokes. eLife 2022; 11:74993. [PMID: 34982025 PMCID: PMC8789290 DOI: 10.7554/elife.74993] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Intraflagellar transport (IFT) carries proteins into flagella but how IFT trains interact with the large number of diverse proteins required to assemble flagella remains largely unknown. Here, we show that IFT of radial spokes in Chlamydomonas requires ARMC2/PF27, a conserved armadillo repeat protein associated with male infertility and reduced lung function. Chlamydomonas ARMC2 was highly enriched in growing flagella and tagged ARMC2 and the spoke protein RSP3 co-migrated on anterograde trains. In contrast, a cargo and an adapter of inner and outer dynein arms moved independently of ARMC2, indicating that unrelated cargoes distribute stochastically onto the IFT trains. After concomitant unloading at the flagellar tip, RSP3 attached to the axoneme whereas ARMC2 diffused back to the cell body. In armc2/pf27 mutants, IFT of radial spokes was abolished and the presence of radial spokes was limited to the proximal region of flagella. We conclude that ARMC2 is a cargo adapter required for IFT of radial spokes to ensure their assembly along flagella. ARMC2 belongs to a growing class of cargo-specific adapters that enable flagellar transport of preassembled axonemal substructures by IFT.
Collapse
Affiliation(s)
- Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Yi Liu
- Department of Biological Sciences, Marquette University, Milwaukee, United States
| | - Jin Dai
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Rama A Alkhofash
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Jack Butler
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Lea Alford
- Division of Natural Sciences,, Oglethorpe University, Atlanta, United States
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, United States
| |
Collapse
|
4
|
Pleuger C, Lehti MS, Dunleavy JE, Fietz D, O'Bryan MK. Haploid male germ cells-the Grand Central Station of protein transport. Hum Reprod Update 2020; 26:474-500. [PMID: 32318721 DOI: 10.1093/humupd/dmaa004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The precise movement of proteins and vesicles is an essential ability for all eukaryotic cells. Nowhere is this more evident than during the remarkable transformation that occurs in spermiogenesis-the transformation of haploid round spermatids into sperm. These transformations are critically dependent upon both the microtubule and the actin cytoskeleton, and defects in these processes are thought to underpin a significant percentage of human male infertility. OBJECTIVE AND RATIONALE This review is aimed at summarising and synthesising the current state of knowledge around protein/vesicle transport during haploid male germ cell development and identifying knowledge gaps and challenges for future research. To achieve this, we summarise the key discoveries related to protein transport using the mouse as a model system. Where relevant, we anchored these insights to knowledge in the field of human spermiogenesis and the causality of human male infertility. SEARCH METHODS Relevant studies published in English were identified using PubMed using a range of search terms related to the core focus of the review-protein/vesicle transport, intra-flagellar transport, intra-manchette transport, Golgi, acrosome, manchette, axoneme, outer dense fibres and fibrous sheath. Searches were not restricted to a particular time frame or species although the emphasis within the review is on mammalian spermiogenesis. OUTCOMES Spermiogenesis is the final phase of sperm development. It results in the transformation of a round cell into a highly polarised sperm with the capacity for fertility. It is critically dependent on the cytoskeleton and its ability to transport protein complexes and vesicles over long distances and often between distinct cytoplasmic compartments. The development of the acrosome covering the sperm head, the sperm tail within the ciliary lobe, the manchette and its role in sperm head shaping and protein transport into the tail, and the assembly of mitochondria into the mid-piece of sperm, may all be viewed as a series of overlapping and interconnected train tracks. Defects in this redistribution network lead to male infertility characterised by abnormal sperm morphology (teratozoospermia) and/or abnormal sperm motility (asthenozoospermia) and are likely to be causal of, or contribute to, a significant percentage of human male infertility. WIDER IMPLICATIONS A greater understanding of the mechanisms of protein transport in spermiogenesis offers the potential to precisely diagnose cases of male infertility and to forecast implications for children conceived using gametes containing these mutations. The manipulation of these processes will offer opportunities for male-based contraceptive development. Further, as increasingly evidenced in the literature, we believe that the continuous and spatiotemporally restrained nature of spermiogenesis provides an outstanding model system to identify, and de-code, cytoskeletal elements and transport mechanisms of relevance to multiple tissues.
Collapse
Affiliation(s)
- Christiane Pleuger
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Mari S Lehti
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | | | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| |
Collapse
|
5
|
Picariello T, Brown JM, Hou Y, Swank G, Cochran DA, King OD, Lechtreck K, Pazour GJ, Witman GB. A global analysis of IFT-A function reveals specialization for transport of membrane-associated proteins into cilia. J Cell Sci 2019; 132:jcs220749. [PMID: 30659111 PMCID: PMC6382014 DOI: 10.1242/jcs.220749] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/02/2019] [Indexed: 12/28/2022] Open
Abstract
Intraflagellar transport (IFT), which is essential for the formation and function of cilia in most organisms, is the trafficking of IFT trains (i.e. assemblies of IFT particles) that carry cargo within the cilium. Defects in IFT cause several human diseases. IFT trains contain the complexes IFT-A and IFT-B. To dissect the functions of these complexes, we studied a Chlamydomonas mutant that is null for the IFT-A protein IFT140. The mutation had no effect on IFT-B but destabilized IFT-A, preventing flagella assembly. Therefore, IFT-A assembly requires IFT140. Truncated IFT140, which lacks the N-terminal WD repeats of the protein, partially rescued IFT and supported formation of half-length flagella that contained normal levels of IFT-B but greatly reduced amounts of IFT-A. The axonemes of these flagella had normal ultrastructure and, as investigated by SDS-PAGE, normal composition. However, composition of the flagellar 'membrane+matrix' was abnormal. Analysis of the latter fraction by mass spectrometry revealed decreases in small GTPases, lipid-anchored proteins and cell signaling proteins. Thus, IFT-A is specialized for the import of membrane-associated proteins. Abnormal levels of the latter are likely to account for the multiple phenotypes of patients with defects in IFT140.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tyler Picariello
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jason M Brown
- Department of Biology, Salem State University, Salem, MA 01970, USA
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gregory Swank
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Deborah A Cochran
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Oliver D King
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
6
|
Intraflagellar transport 46 (IFT46) is essential for trafficking IFT proteins between cilia and cytoplasm in Paramecium. Sci Rep 2018; 8:9259. [PMID: 29915351 PMCID: PMC6006156 DOI: 10.1038/s41598-018-27050-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/09/2018] [Indexed: 11/08/2022] Open
Abstract
Intraflagellar transport (IFT) is a bi-directional process by which particles are carried within the cilia or flagella. This process is essential for ciliary growth and functional maintenance. The IFT complex B (IFTB) is linked to a kinesin motor for anterograde transport towards the ciliary tip. The IFT complex A (IFTA) is connected to a dynein motor for retrograde transport towards the ciliary basis. This study focuses on IFT46, an IFTB member that participates in this process. In Paramecium, a GFP-labelled IFT46 protein was found in basal bodies and in some cilia, mostly those undergoing biogenesis. RNA interference against IFT46 in Paramecium triggered severe defects in ciliary growth and architecture, including a decreased cilia number and shortened cilia length. This result differed from that obtained from the cells that were depleted of IFT80, another IFTB protein. Moreover, IFT57-GFP fusion protein abnormally accumulated in the cortex and cytoplasm in IFT46-depleted cells compared with the control. Furthermore, transcriptomic analysis showed that IFT46 depletion induced the abnormal expression of several genes that encodeding kinesin and dynein chains. These findings together indicate that IFT46 plays important roles in trafficking IFT proteins between the cytoplasm and cilia of Paramecium.
Collapse
|
7
|
Shi L, Koll F, Arnaiz O, Cohen J. The Ciliary Protein IFT57 in the Macronucleus of Paramecium. J Eukaryot Microbiol 2017; 65:12-27. [DOI: 10.1111/jeu.12423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Lei Shi
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
- Department of Biochemical and Molecular Biology; School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang 453003 China
| | - France Koll
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
| | - Jean Cohen
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
| |
Collapse
|
8
|
Taschner M, Mourão A, Awasthi M, Basquin J, Lorentzen E. Structural basis of outer dynein arm intraflagellar transport by the transport adaptor protein ODA16 and the intraflagellar transport protein IFT46. J Biol Chem 2017; 292:7462-7473. [PMID: 28298440 DOI: 10.1074/jbc.m117.780155] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/03/2017] [Indexed: 11/06/2022] Open
Abstract
Motile cilia are found on unicellular organisms such as the green alga Chlamydomonas reinhardtii, on sperm cells, and on cells that line the trachea and fallopian tubes in mammals. The motility of cilia relies on a number of large protein complexes including the force-generating outer dynein arms (ODAs). The transport of ODAs into cilia has been previously shown to require the transport adaptor ODA16, as well as the intraflagellar transport (IFT) protein IFT46, but the molecular mechanism by which ODAs are recognized and transported into motile cilia is still unclear. Here, we determined the high-resolution crystal structure of C. reinhardtii ODA16 (CrODA16) and mapped the binding to IFT46 and ODAs. The CrODA16 structure revealed a small 80-residue N-terminal domain and a C-terminal 8-bladed β-propeller domain that are both required for the association with the N-terminal 147 residues of IFT46. The dissociation constant of the IFT46-ODA16 complex was 200 nm, demonstrating that CrODA16 associates with the IFT complex with an affinity comparable with that of the individual IFT subunits. Furthermore, we show, using ODAs extracted from the axonemes of C. reinhardtii, that the C-terminal β-propeller but not the N-terminal domain of CrODA16 is required for the interaction with ODAs. These data allowed us to present an architectural model for ODA16-mediated IFT of ODAs.
Collapse
Affiliation(s)
- Michael Taschner
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - André Mourão
- the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Mayanka Awasthi
- the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Jerome Basquin
- the Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Esben Lorentzen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark,
| |
Collapse
|