1
|
Krishnan D, Menon RN, Gopala S. SHARPIN: Role in Finding NEMO and in Amyloid-Beta Clearance and Degradation (ABCD) Pathway in Alzheimer's Disease? Cell Mol Neurobiol 2022; 42:1267-1281. [PMID: 33400084 PMCID: PMC11421708 DOI: 10.1007/s10571-020-01023-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
SHANK- associated RH domain-interacting protein (SHARPIN) is a multifunctional protein associated with numerous physiological functions and many diseases. The primary role of the protein as a LUBAC-dependent component in regulating the activation of the transcription factor NF-κB accounts to its role in inflammation and antiapoptosis. Hence, an alteration of SHARPIN expression or genetic mutations or polymorphisms leads to the alteration of the above-mentioned primary physiological functions contributing to inflammation-associated diseases and cancer, respectively. However, there are complications of targeting SHARPIN as a therapeutic approach, which arises from the wide-range of LUBAC-independent functions and yet unknown roles of SHARPIN including neuronal functions. The identification of SHARPIN as a postsynaptic protein and the emerging studies indicating its role in several neurodegenerative diseases including Alzheimer's disease suggests a strong role of SHARPIN in neuronal functioning. This review summarizes the functional roles of SHARPIN in normal physiology and disease pathogenesis and strongly suggests a need for concentrating more studies on identifying the unknown neuronal functions of SHARPIN and hence its role in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dhanya Krishnan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Ramsekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
2
|
Nabil-Adam A, Shreadah MA, Abd El-Moneam NM, El-Assar SA. Marine Algae of the Genus Gracilaria as Multi Products Source for Different Biotechnological and Medical Applications. Recent Pat Biotechnol 2021; 14:203-228. [PMID: 31987028 DOI: 10.2174/1872208314666200121144816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/10/2019] [Accepted: 12/05/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Gracilaria has been shown to be an important source of marine bioactive natural biomaterials and compounds. Although there are no enough patents used Gracilaria worldwide, the current study tries to put the Gracilaria on the spot for further important patents in the future. OBJECTIVE The current study investigates the pharmaceuticals and biochemical activity of Gracilaria because no previous studies have been carried out to examine the biochemical and pharmaceutical activates of Gracilaria from the Suez Canal of Egypt as an excellent source for bioactive compounds. METHODS Different advanced experimental models and analytical techniques, such as cytotoxicity, total antioxidant capacity, anticancer, and anti-inflammatory profiling were applied. The phytochemical analysis of different constituents was also carried out. RESULTS The mineral analysis revealed the presence of copper (188.3 ppm) and iron (10.07 ppm) in addition to a remarkable wealth of selenium and sulfur contents giving up to 36% of its dry mass. The elemental analysis showed high contents of sulfur and nitrogen compounds. The GCMS profiling showed varieties of different bioactive compounds, such as fatty acids, different types of carotenoids in addition to pigments, alkaloids, steroids. Many other compounds, such as carbohydrates and amino acids having antioxidant, anti-inflammatory, and antiviral activities, etc. were identified. The cytotoxicity activity of Gracilaria marine extract was very effective against cancerous cell lines and showed high ability as a potent antitumor due to their bioactive constituents. Specialized screening assays using two anticancer experimental models, i.e., PTK and SKH1 revealed 77.88% and 84.50% inhibition anticancer activity; respectively. The anti-inflammatory activities investigated using four different experimental models, i.e., COX1, COX2, IL6, and TNF resulted in 68%, 81.76%, 56.02% and 78.43% inhibition; respectively. Moreover, Gracilaria extracts showed potent anti-Alzheimer with all concentrations. CONCLUSION Gracilaria proved to be a multi-product source of marine natural products for different biotechnological applications. Our recommendation is to investigate the Gracilaria bioactive secondary metabolites in order to create and innovate in more patents from current important seaweeds (Gracilaria).
Collapse
Affiliation(s)
- Asmaa Nabil-Adam
- National Institute of Oceanography and Fisheries (NIOF), Marine Biotechnology and Natural Products Lab (MBNP), Alexandria, Egypt
| | - Mohamed A Shreadah
- National Institute of Oceanography and Fisheries (NIOF), Marine Biotechnology and Natural Products Lab (MBNP), Alexandria, Egypt
| | - Nehad M Abd El-Moneam
- Faculty of Science, Biochemistry Department, Alexandria University, Alexandria, Egypt
| | - Samy A El-Assar
- Botany and Microbiology Department, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Zhang L, Liu Q, Liu KW, Qin ZY, Zhu GX, Shen LT, Zhang N, Liu BY, Che LR, Li JY, Wang T, Wen LZ, Liu KJ, Guo Y, Yin XR, Wang XW, Zhou ZH, Xiao HL, Cui YH, Bian XW, Lan CH, Chen D, Wang B. SHARPIN stabilizes β-catenin through a linear ubiquitination-independent manner to support gastric tumorigenesis. Gastric Cancer 2021; 24:402-416. [PMID: 33159601 DOI: 10.1007/s10120-020-01138-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Aberrant activation of Wnt/β-catenin signaling by dysregulated post-translational protein modifications, especially ubiquitination is causally linked to cancer development and progression. Although Lys48-linked ubiquitination is known to regulate Wnt/β-catenin signaling, it remains largely obscure how other types of ubiquitination, such as linear ubiquitination governs its signaling activity. METHODS The expression and regulatory mechanism of linear ubiquitin chain assembly complex (LUBAC) on Wnt/β-catenin signaling was examined by immunoprecipitation, western blot and immunohistochemical staining. The ubiquitination status of β-catenin was detected by ubiquitination assay. The impacts of SHARPIN, a core component of LUBAC on malignant behaviors of gastric cancer cells were determined by various functional assays in vitro and in vivo. RESULTS Unlike a canonical role in promoting linear ubiquitination, SHARPIN specifically interacts with β-catenin to maintain its protein stability. Mechanistically, SHARPIN competes with the E3 ubiquitin ligase β-Trcp1 for β-catenin binding, thereby decreasing β-catenin ubiquitination levels to abolish its proteasomal degradation. Importantly, SHARPIN is required for invasiveness and malignant growth of gastric cancer cells in vitro and in vivo, a function that is largely dependent on its binding partner β-catenin. In line with these findings, elevated expression of SHARPIN in gastric cancer tissues is associated with disease malignancy and correlates with β-catenin expression levels. CONCLUSIONS Our findings reveal a novel molecular link connecting linear ubiquitination machinery and Wnt/β-catenin signaling via SHARPIN-mediated stabilization of β-catenin. Targeting the linear ubiquitination-independent function of SHARPIN could be exploited to inhibit the hyperactive β-catenin signaling in a subset of human gastric cancers.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Qin Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Ke-Wei Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Zhong-Yi Qin
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Guang-Xi Zhu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Li-Ting Shen
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Ni Zhang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Bi-Ying Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Lin-Rong Che
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Jin-Yang Li
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Tao Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Liang-Zhi Wen
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Kai-Jun Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Yan Guo
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Xin-Ru Yin
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Xing-Wei Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Zhi-Hua Zhou
- Department of Pathology, The 904 Hospital of People Liberation Army, Wuxi, People's Republic of China
| | - Hua-Liang Xiao
- Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Chun-Hui Lan
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| | - Bin Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China. .,Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
4
|
Sundberg JP, Pratt CH, Goodwin LP, Silva KA, Kennedy VE, Potter CS, Dunham A, Sundberg BA, HogenEsch H. Keratinocyte-specific deletion of SHARPIN induces atopic dermatitis-like inflammation in mice. PLoS One 2020; 15:e0235295. [PMID: 32687504 PMCID: PMC7371178 DOI: 10.1371/journal.pone.0235295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
Spontaneous mutations in the SHANK-associated RH domain interacting protein (Sharpin) resulted in a severe autoinflammatory type of chronic proliferative dermatitis, inflammation in other organs, and lymphoid organ defects. To determine whether cell-type restricted loss of Sharpin causes similar lesions, a conditional null mutant was created. Ubiquitously expressing cre-recombinase recapitulated the phenotype seen in spontaneous mutant mice. Limiting expression to keratinocytes (using a Krt14-cre) induced a chronic eosinophilic dermatitis, but no inflammation in other organs or lymphoid organ defects. The dermatitis was associated with a markedly increased concentration of serum IgE and IL18. Crosses with S100a4-cre resulted in milder skin lesions and moderate to severe arthritis. This conditional null mutant will enable more detailed studies on the role of SHARPIN in regulating NFkB and inflammation, while the Krt14-Sharpin-/- provides a new model to study atopic dermatitis.
Collapse
Affiliation(s)
- John P. Sundberg
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - C. Herbert Pratt
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | | | | | | | - Anisa Dunham
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States of America
| | - Beth A. Sundberg
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Harm HogenEsch
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
5
|
Lerche M, Elosegui-Artola A, Kechagia JZ, Guzmán C, Georgiadou M, Andreu I, Gullberg D, Roca-Cusachs P, Peuhu E, Ivaska J. Integrin Binding Dynamics Modulate Ligand-Specific Mechanosensing in Mammary Gland Fibroblasts. iScience 2020; 23:100907. [PMID: 32106057 PMCID: PMC7044518 DOI: 10.1016/j.isci.2020.100907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/19/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
The link between integrin activity regulation and cellular mechanosensing of tissue rigidity, especially on different extracellular matrix ligands, remains poorly understood. Here, we find that primary mouse mammary gland stromal fibroblasts (MSFs) are able to spread efficiently, generate high forces, and display nuclear YAP on soft collagen-coated substrates, resembling the soft mammary gland tissue. We describe that loss of the integrin inhibitor, SHARPIN, impedes MSF spreading specifically on soft type I collagen but not on fibronectin. Through quantitative experiments and computational modeling, we find that SHARPIN-deficient MSFs display faster force-induced unbinding of adhesions from collagen-coated beads. Faster unbinding, in turn, impairs force transmission in these cells, particularly, at the stiffness optimum observed for wild-type cells. Mechanistically, we link the impaired mechanotransduction of SHARPIN-deficient cells on collagen to reduced levels of collagen-binding integrin α11β1. Thus integrin activity regulation and α11β1 play a role in collagen-specific mechanosensing in MSFs.
Collapse
Affiliation(s)
- Martina Lerche
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | | | - Jenny Z Kechagia
- Institute for Bioengineering of Catalonia, University of Barcelona, Barcelona 08028, Spain
| | - Camilo Guzmán
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Maria Georgiadou
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Ion Andreu
- Institute for Bioengineering of Catalonia, University of Barcelona, Barcelona 08028, Spain
| | | | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia, University of Barcelona, Barcelona 08028, Spain; University of Barcelona, Barcelona 08028, Spain
| | - Emilia Peuhu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; Institute of Biomedicine and Cancer Research Laboratory FICAN West, University of Turku, FI-20520 Turku, Finland.
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; Department of Biochemistry, University of Turku, FI-20520 Turku, Finland.
| |
Collapse
|
6
|
Meschede J, Šadić M, Furthmann N, Miedema T, Sehr DA, Müller-Rischart AK, Bader V, Berlemann LA, Pilsl A, Schlierf A, Barkovits K, Kachholz B, Rittinger K, Ikeda F, Marcus K, Schaefer L, Tatzelt J, Winklhofer KF. The parkin-coregulated gene product PACRG promotes TNF signaling by stabilizing LUBAC. Sci Signal 2020; 13:13/617/eaav1256. [PMID: 32019898 DOI: 10.1126/scisignal.aav1256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Parkin-coregulated gene (PACRG), which encodes a protein of unknown function, shares a bidirectional promoter with Parkin (PRKN), which encodes an E3 ubiquitin ligase. Because PRKN is important in mitochondrial quality control and protection against stress, we tested whether PACRG also affected these pathways in various cultured human cell lines and in mouse embryonic fibroblasts. PACRG did not play a role in mitophagy but did play a role in tumor necrosis factor (TNF) signaling. Similarly to Parkin, PACRG promoted nuclear factor κB (NF-κB) activation in response to TNF. TNF-induced nuclear translocation of the NF-κB subunit p65 and NF-κB-dependent transcription were decreased in PACRG-deficient cells. Defective canonical NF-κB activation in the absence of PACRG was accompanied by a decrease in linear ubiquitylation mediated by the linear ubiquitin chain assembly complex (LUBAC), which is composed of the two E3 ubiquitin ligases HOIP and HOIL-1L and the adaptor protein SHARPIN. Upon TNF stimulation, PACRG was recruited to the activated TNF receptor complex and interacted with LUBAC components. PACRG functionally replaced SHARPIN in this context. In SHARPIN-deficient cells, PACRG prevented LUBAC destabilization, restored HOIP-dependent linear ubiquitylation, and protected cells from TNF-induced apoptosis. This function of PACRG in positively regulating TNF signaling may help to explain the association of PACRG and PRKN polymorphisms with an increased susceptibility to intracellular pathogens.
Collapse
Affiliation(s)
- Jens Meschede
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Maria Šadić
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, 80336 Munich, Germany
| | - Nikolas Furthmann
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Tim Miedema
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Dominik A Sehr
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Verian Bader
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lena A Berlemann
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Anna Pilsl
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, 80336 Munich, Germany
| | - Anita Schlierf
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, 80336 Munich, Germany
| | - Katalin Barkovits
- Medizinisches Proteom-Center, Ruhr University Bochum, 44801 Bochum, Germany
| | - Barbara Kachholz
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Fumiyo Ikeda
- Institute of Molecular Biotechnology (IMBA), 1030 Vienna, Austria
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr University Bochum, 44801 Bochum, Germany
| | - Liliana Schaefer
- Pharmacenter Frankfurt/ZAFES, Institute for General Pharmacology and Toxicology, Goethe University, 60590 Frankfurt am Main, Germany
| | - Jörg Tatzelt
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, 80336 Munich, Germany.,Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Konstanze F Winklhofer
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany. .,Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, 80336 Munich, Germany
| |
Collapse
|
7
|
SHARPIN at the nexus of integrin, immune, and inflammatory signaling in human platelets. Proc Natl Acad Sci U S A 2019; 116:4983-4988. [PMID: 30804189 DOI: 10.1073/pnas.1819156116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Platelets mediate primary hemostasis, and recent work has emphasized platelet participation in immunity and inflammation. The function of the platelet-specific integrin αIIbβ3 as a fibrinogen receptor in hemostasis is well defined, but the roles of αIIbβ3 or integrin-associated proteins in nonhemostatic platelet functions are poorly understood. Here we show that human platelets express the integrin-associated protein SHARPIN with functional consequences. In leukocytes, SHARPIN interacts with integrin α cytoplasmic tails, and it is also an obligate member of the linear ubiquitin chain assembly complex (LUBAC), which mediates Met1 linear ubiquitination of proteins leading to canonical NF-κB activation. SHARPIN interacted with αIIb in pull-down and coimmunoprecipitation assays. SHARPIN was partially localized, as was αIIbβ3, at platelet edges, and thrombin stimulation induced more central SHARPIN localization. SHARPIN also coimmunoprecipitated from platelets with the two other proteins comprising LUBAC, the E3 ligase HOIP and HOIL-1. Platelet stimulation with thrombin or inflammatory agonists, including lipopolysaccharide or soluble CD40 ligand (sCD40L), induced Met1 linear ubiquitination of the NF-κB pathway protein NEMO and serine-536 phosphorylation of the p65 RelA subunit of NF-κB. In human megakaryocytes and/or platelets derived from induced pluripotent stem (iPS) cells, SHARPIN knockdown caused increased basal and agonist-induced fibrinogen binding to αIIbβ3 as well as reduced Met1 ubiquitination and RelA phosphorylation. Moreover, these SHARPIN knockdown cells exhibited increased surface expression of MHC class I molecules and increased release of sCD40L. These results establish that SHARPIN functions in the human megakaryocyte/platelet lineage through protein interactions at the nexus of integrin and immune/inflammatory signaling.
Collapse
|
8
|
First person – Meraj Hasan Khan. J Cell Sci 2017. [DOI: 10.1242/jcs.209817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Meraj Hasan Khan is the first author on ‘The Sharpin interactome reveals a role for Sharpin in lamellipodium formation via the Arp2/3 complex’, published in Journal of Cell Science. Meraj is a PhD student in the laboratory of Jeroen Pouwels at the University of Turku, Finland, investigating the cytoskeleton and protein early markers of metastasis.
Collapse
|