1
|
Llorente A, Arora GK, Murad R, Emerling BM. Phosphoinositide kinases in cancer: from molecular mechanisms to therapeutic opportunities. Nat Rev Cancer 2025:10.1038/s41568-025-00810-1. [PMID: 40181165 DOI: 10.1038/s41568-025-00810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 04/05/2025]
Abstract
Phosphoinositide kinases, extending beyond the well-known phosphoinositide 3-kinase (PI3K), are key players in the dynamic and site-specific phosphorylation of lipid phosphoinositides. Unlike PI3Ks, phosphatidylinositol 4-kinases (PI4Ks) and phosphatidylinositol phosphate kinases (PIPKs) do not usually exhibit mutational alterations, but mostly show altered expression in tumours, orchestrating a broad spectrum of signalling, metabolic and immune processes, all of which are crucial in the pathogenesis of cancer. Dysregulation of PI4Ks and PIPKs has been associated with various malignancies, which has sparked considerable interest towards their therapeutic targeting. In this Review we summarize the current understanding of the lesser-studied phosphoinositide kinase families, PI4K and PIPK, focusing on their functions and relevance in cancer. In addition, we provide an overview of ongoing efforts driving the preclinical and clinical development of phosphoinositide kinase-targeting molecules.
Collapse
Affiliation(s)
- Alicia Llorente
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Gurpreet K Arora
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rabi Murad
- Bioformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Brooke M Emerling
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
2
|
Llorente A, Loughran RM, Emerling BM. Targeting phosphoinositide signaling in cancer: relevant techniques to study lipids and novel avenues for therapeutic intervention. Front Cell Dev Biol 2023; 11:1297355. [PMID: 37954209 PMCID: PMC10634348 DOI: 10.3389/fcell.2023.1297355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Phosphoinositides serve as essential players in numerous biological activities and are critical for overall cellular function. Due to their complex chemical structures, localization, and low abundance, current challenges in the phosphoinositide field include the accurate measurement and identification of specific variants, particularly those with acyl chains. Researchers are intensively developing innovative techniques and approaches to address these challenges and advance our understanding of the impact of phosphoinositide signaling on cellular biology. This article provides an overview of recent advances in the study of phosphoinositides, including mass spectrometry, lipid biosensors, and real-time activity assays using fluorometric sensors. These methodologies have proven instrumental for a comprehensive exploration of the cellular distribution and dynamics of phosphoinositides and have shed light on the growing significance of these lipids in human health and various pathological processes, including cancer. To illustrate the importance of phosphoinositide signaling in disease, this perspective also highlights the role of a family of lipid kinases named phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks), which have recently emerged as exciting therapeutic targets for cancer treatment. The ongoing exploration of phosphoinositide signaling not only deepens our understanding of cellular biology but also holds promise for novel interventions in cancer therapy.
Collapse
Affiliation(s)
| | | | - Brooke M. Emerling
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, United States
| |
Collapse
|
3
|
Abstract
The accidental discovery of PI5P (phosphatidylinositol-5-phosphate) was published 25 years ago, when PIP5K type II (phosphoinositide-4-phosphate 5-kinase) was shown to actually be a 4-kinase that uses PI5P as a substrate to generate PI(4,5)P2. Consequently, PIP5K type II was renamed to PI5P4K, or PIP4K for short, and PI5P became the last of the 7 signaling phosphoinositides to be discovered. Much of what we know about PI5P comes from genetic studies of PIP4K, as the pathways for PI5P synthesis, the downstream targets of PI5P and how PI5P affects cellular function all remain largely enigmatic. Nevertheless, PI5P and PI5P-dependent PI(4,5)P2 synthesis have been clearly implicated in metabolic homeostasis and in diseases such as cancer. Here, we review the past 25 years of PI5P research, with particular emphasis on the impact this small signaling lipid has on human health.
Collapse
Affiliation(s)
- Lucia E. Rameh
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Raymond D. Blind
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
4
|
Ghosh A, Venugopal A, Shinde D, Sharma S, Krishnan M, Mathre S, Krishnan H, Saha S, Raghu P. PI3P-dependent regulation of cell size and autophagy by phosphatidylinositol 5-phosphate 4-kinase. Life Sci Alliance 2023; 6:e202301920. [PMID: 37316298 PMCID: PMC10267561 DOI: 10.26508/lsa.202301920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023] Open
Abstract
Phosphatidylinositol 3-phosphate (PI3P) and phosphatidylinositol 5-phosphate (PI5P) are low-abundance phosphoinositides crucial for key cellular events such as endosomal trafficking and autophagy. Phosphatidylinositol 5-phosphate 4-kinase (PIP4K) is an enzyme that regulates PI5P in vivo but can act on both PI5P and PI3P in vitro. In this study, we report a role for PIP4K in regulating PI3P levels in Drosophila Loss-of-function mutants of the only Drosophila PIP4K gene show reduced cell size in salivary glands. PI3P levels are elevated in dPIP4K 29 and reverting PI3P levels back towards WT, without changes in PI5P levels, can rescue the reduced cell size. dPIP4K 29 mutants also show up-regulation in autophagy and the reduced cell size can be reverted by depleting Atg8a that is required for autophagy. Lastly, increasing PI3P levels in WT can phenocopy the reduction in cell size and associated autophagy up-regulation seen in dPIP4K 29 Thus, our study reports a role for a PIP4K-regulated PI3P pool in the control of autophagy and cell size.
Collapse
Affiliation(s)
- Avishek Ghosh
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | | | - Dhananjay Shinde
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Sanjeev Sharma
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Meera Krishnan
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Swarna Mathre
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Harini Krishnan
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Sankhanil Saha
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Padinjat Raghu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| |
Collapse
|
5
|
The PH Domain and C-Terminal polyD Motif of Phafin2 Exhibit a Unique Concurrence in Animals. MEMBRANES 2022; 12:membranes12070696. [PMID: 35877899 PMCID: PMC9324892 DOI: 10.3390/membranes12070696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023]
Abstract
Phafin2, a member of the Phafin family of proteins, contributes to a plethora of cellular activities including autophagy, endosomal cargo transportation, and macropinocytosis. The PH and FYVE domains of Phafin2 play key roles in membrane binding, whereas the C-terminal poly aspartic acid (polyD) motif specifically autoinhibits the PH domain binding to the membrane phosphatidylinositol 3-phosphate (PtdIns3P). Since the Phafin2 FYVE domain also binds PtdIns3P, the role of the polyD motif remains unclear. In this study, bioinformatics tools and resources were employed to determine the concurrence of the PH-FYVE module with the polyD motif among Phafin2 and PH-, FYVE-, or polyD-containing proteins from bacteria to humans. FYVE was found to be an ancient domain of Phafin2 and is related to proteins that are present in both prokaryotes and eukaryotes. Interestingly, the polyD motif only evolved in Phafin2 and PH- or both PH-FYVE-containing proteins in animals. PolyD motifs are absent in PH domain-free FYVE-containing proteins, which usually display cellular trafficking or autophagic functions. Moreover, the prediction of the Phafin2-interacting network indicates that Phafin2 primarily cross-talks with proteins involved in autophagy, protein trafficking, and neuronal function. Taken together, the concurrence of the polyD motif with the PH domain may be associated with complex cellular functions that evolved specifically in animals.
Collapse
|
6
|
Behari J, Borkar P, Vindu A, Dandewad V, Upadrasta S, Shanmugam D, Seshadri V. Conserved RNA Binding Activity of Phosphatidyl Inositol 5-Phosphate 4-Kinase (PIP4K2A). Front Mol Biosci 2021; 8:631281. [PMID: 34124142 PMCID: PMC8194828 DOI: 10.3389/fmolb.2021.631281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/28/2021] [Indexed: 12/04/2022] Open
Abstract
Plasmodium falciparum is a causative agent for malaria and has a complex life cycle in human and mosquito hosts. During its life cycle, the malarial parasite Plasmodium goes through different asexual and sexual stages, in humans and mosquitoes. Expression of stage-specific proteins is important for successful completion of its life cycle and requires tight gene regulation. In the case of Plasmodium, due to relative paucity of the transcription factors, it is postulated that posttranscriptional regulation plays an important role in stage-specific gene expression. Translation repression of specific set of mRNA has been reported in gametocyte stages of the parasite. A conserved element present in the 3′UTR of some of these transcripts was identified. Phosphatidylinositol 5-phosphate 4-kinase (PIP4K2A) was identified as the protein that associates with these RNA. We now show that the RNA binding activity of PIP4K2A is independent of its kinase activity. We also observe that PIP4K2A is imported into the parasite from the host on Plasmodium berghei and Toxoplasma gondii. The RNA binding activity of PIP4K2A seems to be conserved across species from Drosophila and C. elegans to humans, suggesting that the RNA binding activity of PIP4K may be important, and there may be host transcripts that may be regulated by PIP4K2A. These results identify a novel RNA binding role for PIP4K2A that may not only play a role in Plasmodium propagation but may also function in regulating gene expression in multicellular organisms.
Collapse
Affiliation(s)
- Jatin Behari
- National Centre for Cell Science, Pune, India.,Department of Biotechnology, SPPU, Pune, India
| | - Pranita Borkar
- National Centre for Cell Science, Pune, India.,Department of Biotechnology, SPPU, Pune, India
| | - Arya Vindu
- National Centre for Cell Science, Pune, India.,Department of Biotechnology, SPPU, Pune, India
| | - Vishal Dandewad
- National Centre for Cell Science, Pune, India.,Department of Biotechnology, SPPU, Pune, India
| | - Sindhuri Upadrasta
- CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Dhanasekaran Shanmugam
- CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | | |
Collapse
|
7
|
Sharma S, Mathre S, Ramya V, Shinde D, Raghu P. Phosphatidylinositol 5 Phosphate 4-Kinase Regulates Plasma-Membrane PIP 3 Turnover and Insulin Signaling. Cell Rep 2020; 27:1979-1990.e7. [PMID: 31091438 PMCID: PMC6591132 DOI: 10.1016/j.celrep.2019.04.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/06/2019] [Accepted: 04/17/2019] [Indexed: 01/25/2023] Open
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP3) generation at the plasma membrane is a key event during activation of receptor tyrosine kinases such as the insulin receptor required for normal growth and metabolism. We report that in Drosophila, phosphatidylinositol 5 phosphate 4-kinase (PIP4K) is required to limit PIP3 levels during insulin receptor activation. Depletion of PIP4K increases the levels of PIP3 produced in response to insulin stimulation. We find that PIP4K function at the plasma membrane enhances class I phosphoinositide 3-kinase (PI3K) activity, although the catalytic ability of PIP4K to produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] at the plasma membrane is dispensable for this regulation. Animals lacking PIP4K show enhanced insulin signaling-dependent phenotypes and are resistant to the metabolic consequences of a high-sugar diet, highlighting the importance of PIP4K in normal metabolism and development. Thus, PIP4Ks are key regulators of receptor tyrosine kinase signaling with implications for growth factor-dependent processes including tumor growth, T cell activation, and metabolism.
Collapse
Affiliation(s)
- Sanjeev Sharma
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Swarna Mathre
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Visvanathan Ramya
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Dhananjay Shinde
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Padinjat Raghu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
8
|
Noch EK, Yim I, Milner TA, Cantley LC. Distribution and localization of phosphatidylinositol 5-phosphate, 4-kinase alpha and beta in the brain. J Comp Neurol 2020; 529:434-449. [PMID: 32449185 DOI: 10.1002/cne.24956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2 ) is critical for synaptic vesicle docking and fusion and generation of the second messengers, diacylglycerol and inositol-1,4,5-trisphosphate. PI-4,5-P2 can be generated by two families of kinases: type 1 phosphatidylinositol-4-phosphate 5-kinases, encoded by PIP5K1A, PIP5K1B and PIP5K1C, and type 2 phosphatidylinositol-5-phosphate 4-kinases, encoded by PIP4K2A, PIP4K2B, and PIP4K2C. While the roles of the type 1 enzymes in brain function have been extensively studied, the roles of the type 2 enzymes are poorly understood. Using selective antibodies validated by genetic deletion of pip4k2a or pip4k2b in mouse brain, we characterized the location of the enzymes, PI5P4Kα and PI5P4Kβ, encoded by these genes. In mice, we demonstrate that PI5P4Kα is expressed in adulthood, whereas PI5P4Kβ is expressed early in development. PI5P4Kα localizes to white matter tracts, especially the corpus callosum, and at a low level in neurons, while PI5P4Kβ is expressed in neuronal populations, especially hippocampus and cortex. Dual labeling studies demonstrate that PI5P4Kα co-localizes with the oligodendrocyte marker, Olig2, whereas PI5P4Kβ co-localizes with the neuronal marker, NeuN. Ultrastructural analysis demonstrates that both kinases are contained in axon terminals and dendritic spines adjacent to the synaptic membrane, which support a potential role in synaptic transmission. Immunoperoxidase analysis of macaque and human brain tissue demonstrate a conserved pattern for PI5P4Kα and PI5P4Kβ. These results highlight the diverse cell-autonomous expression of PI5P4Kα and PI5P4Kβ and support further exploration into their role in synaptic function in the brain.
Collapse
Key Words
- PIP4K
- RRID:AB_1,127,270
- RRID:AB_10,622,025
- RRID:AB_10,711,040
- RRID:AB_1904103
- RRID:AB_2,164,572
- RRID:AB_2,223,210
- RRID:AB_2096811
- RRID:AB_2269374
- RRID:AB_2300649
- RRID:AB_353,929
- RRID:AB_561,049
- brain
- neuron
- oligodendrocyte
- phosphatidylinositol-5-phosphate 4-kinase
- phosphoinositide
Collapse
Affiliation(s)
- Evan K Noch
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA.,Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Isaiah Yim
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA.,Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Lewis C Cantley
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
9
|
Ghosh A, Sharma S, Shinde D, Ramya V, Raghu P. A novel mass assay to measure phosphatidylinositol-5-phosphate from cells and tissues. Biosci Rep 2019; 39:BSR20192502. [PMID: 31652444 PMCID: PMC6822513 DOI: 10.1042/bsr20192502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
Phosphatidylinositol-5-phosphate (PI5P) is a low abundance lipid proposed to have functions in cell migration, DNA damage responses, receptor trafficking and insulin signalling in metazoans. However, studies of PI5P function are limited by the lack of scalable techniques to quantify its level from cells and tissues in multicellular organisms. Currently, PI5P measurement requires the use of radionuclide labelling approaches that are not easily applicable in tissues or in vivo samples. In the present study, we describe a simple and reliable, non-radioactive mass assay to measure total PI5P levels from cells and tissues of Drosophila, a genetically tractable multicellular model. We use heavy oxygen-labelled ATP (18O-ATP) to label PI5P from tissue extracts while converting it into PI(4,5)P2 using an in vitro kinase reaction. The product of this reaction can be selectively detected and quantified with high sensitivity using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) platform. Further, using this method, we capture and quantify the unique acyl chain composition of PI5P from Drosophila cells and tissues. Finally, we demonstrate the use of this technique to quantify elevations in PI5P levels, from Drosophila larval tissues and cultured cells depleted of phosphatidylinositol 5 phosphate 4-kinase (PIP4K), that metabolizes PI5P into PI(4,5)P2 thus regulating its levels. Thus, we demonstrate the potential of our method to quantify PI5P levels with high sensitivity from cells and tissues of multicellular organisms thus accelerating understanding of PI5P functions in vivo.
Collapse
Affiliation(s)
- Avishek Ghosh
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Sanjeev Sharma
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Dhananjay Shinde
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Visvanathan Ramya
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Padinjat Raghu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
10
|
Raghu P, Joseph A, Krishnan H, Singh P, Saha S. Phosphoinositides: Regulators of Nervous System Function in Health and Disease. Front Mol Neurosci 2019; 12:208. [PMID: 31507376 PMCID: PMC6716428 DOI: 10.3389/fnmol.2019.00208] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphoinositides, the seven phosphorylated derivatives of phosphatidylinositol have emerged as regulators of key sub-cellular processes such as membrane transport, cytoskeletal function and plasma membrane signaling in eukaryotic cells. All of these processes are also present in the cells that constitute the nervous system of animals and in this setting too, these are likely to tune key aspects of cell biology in relation to the unique structure and function of neurons. Phosphoinositides metabolism and function are mediated by enzymes and proteins that are conserved in evolution, and analysis of knockouts of these in animal models implicate this signaling system in neural function. Most recently, with the advent of human genome analysis, mutations in genes encoding components of the phosphoinositide signaling pathway have been implicated in human diseases although the cell biological basis of disease phenotypes in many cases remains unclear. In this review we evaluate existing evidence for the involvement of phosphoinositide signaling in human nervous system diseases and discuss ways of enhancing our understanding of the role of this pathway in the human nervous system's function in health and disease.
Collapse
Affiliation(s)
- Padinjat Raghu
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | | | | | | | | |
Collapse
|
11
|
Otsuka Y, Satoh T, Nakayama N, Inaba R, Yamashita H, Satoh AK. Parcas is the predominant Rab11-GEF for rhodopsin transport in Drosophila photoreceptors. J Cell Sci 2019; 132:jcs.231431. [PMID: 31296556 DOI: 10.1242/jcs.231431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022] Open
Abstract
Rab11 is essential for polarized post-Golgi vesicle trafficking to photosensitive membrane rhabdomeres in Drosophila photoreceptors. Here, we found that Parcas (Pcs), recently shown to have guanine nucleotide exchange (GEF) activity toward Rab11, co-localizes with Rab11 on the trans-side of Golgi units and post-Golgi vesicles at the base of the rhabdomeres in pupal photoreceptors. Pcs fused with the electron micrography tag APEX2 localizes on 150-300 nm vesicles at the trans-side of Golgi units, which are presumably fly recycling endosomes. Loss of Pcs impairs Rab11 localization on the trans-side of Golgi units and induces the cytoplasmic accumulation of post-Golgi vesicles bearing rhabdomere proteins, as observed in Rab11 deficiency. In contrast, loss of Rab11-specific subunits of the TRAPPII complex, another known Rab11-GEF, does not cause any defects in eye development nor the transport of rhabdomere proteins; however, simultaneous loss of TRAPPII and Pcs results in severe defects in eye development. These results indicate that both TRAPPII and Pcs are required for eye development, but Pcs functions as the predominant Rab11-GEF for post-Golgi transport to photosensitive membrane rhabdomeres.
Collapse
Affiliation(s)
- Yuna Otsuka
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Nozomi Nakayama
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Ryota Inaba
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Hitomi Yamashita
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akiko K Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
12
|
D'Souza Z, Blackburn JB, Kudlyk T, Pokrovskaya ID, Lupashin VV. Defects in COG-Mediated Golgi Trafficking Alter Endo-Lysosomal System in Human Cells. Front Cell Dev Biol 2019; 7:118. [PMID: 31334232 PMCID: PMC6616090 DOI: 10.3389/fcell.2019.00118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
The conserved oligomeric complex (COG) is a multi-subunit vesicle tethering complex that functions in retrograde trafficking at the Golgi. We have previously demonstrated that the formation of enlarged endo-lysosomal structures (EELSs) is one of the major glycosylation-independent phenotypes of cells depleted for individual COG complex subunits. Here, we characterize the EELSs in HEK293T cells using microscopy and biochemical approaches. Our analysis revealed that the EELSs are highly acidic and that vATPase-dependent acidification is essential for the maintenance of this enlarged compartment. The EELSs are accessible to both trans-Golgi enzymes and endocytic cargo. Moreover, the EELSs specifically accumulate endolysosomal proteins Lamp2, CD63, Rab7, Rab9, Rab39, Vamp7, and STX8 on their surface. The EELSs are distinct from lysosomes and do not accumulate active Cathepsin B. Retention using selective hooks (RUSH) experiments revealed that biosynthetic cargo mCherry-Lamp1 reaches the EELSs much faster as compared to both receptor-mediated and soluble endocytic cargo, indicating TGN origin of the EELSs. In support to this hypothesis, EELSs are enriched with TGN specific lipid PI4P. Additionally, analysis of COG4/VPS54 double KO cells revealed that the activity of the GARP tethering complex is necessary for EELSs’ accumulation, indicating that protein mistargeting and the imbalance of Golgi-endosome membrane flow leads to the formation of EELSs in COG-deficient cells. The EELSs are likely to serve as a degradative storage hybrid organelle for mistargeted Golgi enzymes and underglycosylated glycoconjugates. To our knowledge this is the first report of the formation of an enlarged hybrid endosomal compartment in a response to malfunction of the intra-Golgi trafficking machinery.
Collapse
Affiliation(s)
- Zinia D'Souza
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jessica Bailey Blackburn
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Tetyana Kudlyk
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Irina D Pokrovskaya
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vladimir V Lupashin
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
13
|
Baroja-Mazo A, Compan V, Martín-Sánchez F, Tapia-Abellán A, Couillin I, Pelegrín P. Early endosome autoantigen 1 regulates IL-1β release upon caspase-1 activation independently of gasdermin D membrane permeabilization. Sci Rep 2019; 9:5788. [PMID: 30962463 PMCID: PMC6453936 DOI: 10.1038/s41598-019-42298-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
Abstract
Unconventional protein secretion represents an important process of the inflammatory response. The release of the pro-inflammatory cytokine interleukin (IL)-1β which burst during pyroptosis as a consequence of gasdermin D plasma membrane pore formation, can also occur through other unconventional secretion pathways dependent on caspase-1 activation. However, how caspase-1 mediates cytokine release independently of gasdermin D remains poorly understood. Here we show that following caspase-1 activation by different inflammasomes, caspase-1 cleaves early endosome autoantigen 1 (EEA1) protein at Asp127/132. Caspase-1 activation also results in the release of the endosomal EEA1 protein in a gasdermin D-independent manner. EEA1 knock-down results in adecreased release of caspase-1 and IL-1β, but the pyroptotic release of other inflammasome components and lactate dehydrogenase was not affected. This study shows how caspase-1 control the release of EEA1 and IL-1β in a pyroptotic-independent manner.
Collapse
Affiliation(s)
- Alberto Baroja-Mazo
- Inflammation and Experimental Surgery Unit, Biomedical Research Institute of Murcia IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, 30120, Murcia, Spain.
| | - Vincent Compan
- Institute of Functional Genomics, Labex ICST; INSERM U661, CNRS UMR5203, University of Montpellier.141, 34094, Montpellier cedex 5, France
| | - Fátima Martín-Sánchez
- Inflammation and Experimental Surgery Unit, Biomedical Research Institute of Murcia IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Ana Tapia-Abellán
- Inflammation and Experimental Surgery Unit, Biomedical Research Institute of Murcia IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Isabelle Couillin
- Molecular and Experimental Immunology and Neurogenetics, NEM, CNRS, UMR7355, University of Orleans, Orleans, 45071, France
| | - Pablo Pelegrín
- Inflammation and Experimental Surgery Unit, Biomedical Research Institute of Murcia IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, 30120, Murcia, Spain.
| |
Collapse
|
14
|
Functional analysis of the biochemical activity of mammalian phosphatidylinositol 5 phosphate 4-kinase enzymes. Biosci Rep 2019; 39:BSR20182210. [PMID: 30718367 PMCID: PMC6379509 DOI: 10.1042/bsr20182210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/20/2019] [Accepted: 01/29/2019] [Indexed: 01/12/2023] Open
Abstract
Phosphatidylinositol 5 phosphate 4-kinase (PIP4K) are enzymes that catalyse the phosphorylation of phosphatidylinositol 5-phosphate (PI5P) to generate PI(4,5)P2. Mammalian genomes contain three genes, PIP4K2Α, 2B and 2C and murine knockouts for these suggested important physiological roles in vivo. The proteins encoded by PIP4K2A, 2B and 2C show widely varying specific activities in vitro; PIP4K2A is highly active and PIP4K2C 2000-times less active, and the relationship between this biochemical activity and in vivo function is unknown. By contrast, the Drosophila genome encodes a single PIP4K (dPIP4K) that shows high specific activity in vitro and loss of this enzyme results in reduced salivary gland cell size in vivo. We find that the kinase activity of dPIP4K is essential for normal salivary gland cell size in vivo. Despite their highly divergent specific activity, we find that all three mammalian PIP4K isoforms are able to enhance salivary gland cell size in the Drosophila PIP4K null mutant implying a lack of correlation between in vitro activity measurements and in vivo function. Further, the kinase activity of PIP4K2C, reported to be almost inactive in vitro, is required for in vivo function. Our findings suggest the existence of unidentified factors that regulate PIP4K enzyme activity in vivo.
Collapse
|
15
|
Podinovskaia M, Spang A. The Endosomal Network: Mediators and Regulators of Endosome Maturation. ENDOCYTOSIS AND SIGNALING 2018; 57:1-38. [DOI: 10.1007/978-3-319-96704-2_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|