1
|
Simchovitz-Gesher A, Soreq H. Pharmaceutical Implications of Sex-Related RNA Divergence in Psychiatric Disorders. Trends Pharmacol Sci 2020; 41:840-850. [DOI: 10.1016/j.tips.2020.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
|
2
|
Dysregulation of TCTP in Biological Processes and Diseases. Cells 2020; 9:cells9071632. [PMID: 32645936 PMCID: PMC7407922 DOI: 10.3390/cells9071632] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), also called histamine releasing factor (HRF) or fortilin, is a multifunctional protein present in almost all eukaryotic organisms. TCTP is involved in a range of basic cell biological processes, such as promotion of growth and development, or cellular defense in response to biological stresses. Cellular TCTP levels are highly regulated in response to a variety of physiological signals, and regulatory mechanism at various levels have been elucidated. Given the importance of TCTP in maintaining cellular homeostasis, it is not surprising that dysregulation of this protein is associated with a range of disease processes. Here, we review recent progress that has been made in the characterisation of the basic biological functions of TCTP, in the description of mechanisms involved in regulating its cellular levels and in the understanding of dysregulation of TCTP, as it occurs in disease processes such as cancer.
Collapse
|
3
|
Expression of Genes Involved in Axon Guidance: How Much Have We Learned? Int J Mol Sci 2020; 21:ijms21103566. [PMID: 32443632 PMCID: PMC7278939 DOI: 10.3390/ijms21103566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/20/2022] Open
Abstract
Neuronal axons are guided to their target during the development of the brain. Axon guidance allows the formation of intricate neural circuits that control the function of the brain, and thus the behavior. As the axons travel in the brain to find their target, they encounter various axon guidance cues, which interact with the receptors on the tip of the growth cone to permit growth along different signaling pathways. Although many scientists have performed numerous studies on axon guidance signaling pathways, we still have an incomplete understanding of the axon guidance system. Lately, studies on axon guidance have shifted from studying the signal transduction pathways to studying other molecular features of axon guidance, such as the gene expression. These new studies present evidence for different molecular features that broaden our understanding of axon guidance. Hence, in this review we will introduce recent studies that illustrate different molecular features of axon guidance. In particular, we will review literature that demonstrates how axon guidance cues and receptors regulate local translation of axonal genes and how the expression of guidance cues and receptors are regulated both transcriptionally and post-transcriptionally. Moreover, we will highlight the pathological relevance of axon guidance molecules to specific diseases.
Collapse
|
4
|
Serobyan V, Kontarakis Z, El-Brolosy MA, Welker JM, Tolstenkov O, Saadeldein AM, Retzer N, Gottschalk A, Wehman AM, Stainier DY. Transcriptional adaptation in Caenorhabditis elegans. eLife 2020; 9:50014. [PMID: 31951195 PMCID: PMC6968918 DOI: 10.7554/elife.50014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Transcriptional adaptation is a recently described phenomenon by which a mutation in one gene leads to the transcriptional modulation of related genes, termed adapting genes. At the molecular level, it has been proposed that the mutant mRNA, rather than the loss of protein function, activates this response. While several examples of transcriptional adaptation have been reported in zebrafish embryos and in mouse cell lines, it is not known whether this phenomenon is observed across metazoans. Here we report transcriptional adaptation in C. elegans, and find that this process requires factors involved in mutant mRNA decay, as in zebrafish and mouse. We further uncover a requirement for Argonaute proteins and Dicer, factors involved in small RNA maturation and transport into the nucleus. Altogether, these results provide evidence for transcriptional adaptation in C. elegans, a powerful model to further investigate underlying molecular mechanisms.
Collapse
Affiliation(s)
- Vahan Serobyan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Zacharias Kontarakis
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mohamed A El-Brolosy
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jordan M Welker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Oleg Tolstenkov
- Institute for Biophysical Chemistry, Goethe University, Frankfurt Am Main, Germany.,Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF-MC), Goethe University, Frankfurt Am Main, Germany
| | - Amr M Saadeldein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nicholas Retzer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alexander Gottschalk
- Institute for Biophysical Chemistry, Goethe University, Frankfurt Am Main, Germany.,Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF-MC), Goethe University, Frankfurt Am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt Am Main, Germany
| | - Ann M Wehman
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
5
|
Hammarton TC. Who Needs a Contractile Actomyosin Ring? The Plethora of Alternative Ways to Divide a Protozoan Parasite. Front Cell Infect Microbiol 2019; 9:397. [PMID: 31824870 PMCID: PMC6881465 DOI: 10.3389/fcimb.2019.00397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
Cytokinesis, or the division of the cytoplasm, following the end of mitosis or meiosis, is accomplished in animal cells, fungi, and amoebae, by the constriction of an actomyosin contractile ring, comprising filamentous actin, myosin II, and associated proteins. However, despite this being the best-studied mode of cytokinesis, it is restricted to the Opisthokonta and Amoebozoa, since members of other evolutionary supergroups lack myosin II and must, therefore, employ different mechanisms. In particular, parasitic protozoa, many of which cause significant morbidity and mortality in humans and animals as well as considerable economic losses, employ a wide diversity of mechanisms to divide, few, if any, of which involve myosin II. In some cases, cell division is not only myosin II-independent, but actin-independent too. Mechanisms employed range from primitive mechanical cell rupture (cytofission), to motility- and/or microtubule remodeling-dependent mechanisms, to budding involving the constriction of divergent contractile rings, to hijacking host cell division machinery, with some species able to utilize multiple mechanisms. Here, I review current knowledge of cytokinesis mechanisms and their molecular control in mammalian-infective parasitic protozoa from the Excavata, Alveolata, and Amoebozoa supergroups, highlighting their often-underappreciated diversity and complexity. Billions of people and animals across the world are at risk from these pathogens, for which vaccines and/or optimal treatments are often not available. Exploiting the divergent cell division machinery in these parasites may provide new avenues for the treatment of protozoal disease.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
6
|
Trenaman A, Glover L, Hutchinson S, Horn D. A post-transcriptional respiratome regulon in trypanosomes. Nucleic Acids Res 2019; 47:7063-7077. [PMID: 31127277 PMCID: PMC6648352 DOI: 10.1093/nar/gkz455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/25/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Post-transcriptional regulons coordinate the expression of groups of genes in eukaryotic cells, yet relatively few have been characterized. Parasitic trypanosomatids are particularly good models for studies on such mechanisms because they exhibit almost exclusive polycistronic, and unregulated, transcription. Here, we identify the Trypanosoma brucei ZC3H39/40 RNA-binding proteins as regulators of the respiratome; the mitochondrial electron transport chain (complexes I-IV) and the FoF1-ATP synthase (complex V). A high-throughput RNAi screen initially implicated both ZC3H proteins in variant surface glycoprotein (VSG) gene silencing. This link was confirmed and both proteins were shown to form a cytoplasmic ZC3H39/40 complex. Transcriptome and mRNA-interactome analyses indicated that the impact on VSG silencing was indirect, while the ZC3H39/40 complex specifically bound and stabilized transcripts encoding respiratome-complexes. Quantitative proteomic analyses revealed specific positive control of >20 components from complexes I, II and V. Our findings establish a link between the mitochondrial respiratome and VSG gene silencing in bloodstream form T. brucei. They also reveal a major respiratome regulon controlled by the conserved trypanosomatid ZC3H39/40 RNA-binding proteins.
Collapse
Affiliation(s)
- Anna Trenaman
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lucy Glover
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sebastian Hutchinson
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
7
|
Abstract
In trypanosomes, RNA polymerase II transcription is polycistronic and individual mRNAs are excised by trans-splicing and polyadenylation. The lack of individual gene transcription control is compensated by control of mRNA processing, translation and degradation. Although the basic mechanisms of mRNA decay and translation are evolutionarily conserved, there are also unique aspects, such as the existence of six cap-binding translation initiation factor homologues, a novel decapping enzyme and an mRNA stabilizing complex that is recruited by RNA-binding proteins. High-throughput analyses have identified nearly a hundred regulatory mRNA-binding proteins, making trypanosomes valuable as a model system to investigate post-transcriptional regulation.
Collapse
Affiliation(s)
- Christine Clayton
- University of Heidelberg Center for Molecular Biology (ZMBH), Im Neuenheimer Feld 282, D69120 Heidelberg, Germany
| |
Collapse
|
8
|
Gouveia Roque C, Holt CE. Growth Cone Tctp Is Dynamically Regulated by Guidance Cues. Front Mol Neurosci 2018; 11:399. [PMID: 30459552 PMCID: PMC6232380 DOI: 10.3389/fnmol.2018.00399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
Translationally controlled tumor protein (Tctp) contributes to retinal circuitry formation by promoting axon growth and guidance, but it remains unknown to what extent axonal Tctp specifically influences axon development programs. Various genome-wide profiling studies have ranked tctp transcripts among the most enriched in the axonal compartment of distinct neuronal populations, including embryonic retinal ganglion cells (RGCs), suggesting its expression can be regulated locally and that this may be important during development. Here, we report that growth cone Tctp levels change rapidly in response to Netrin-1 and Ephrin-A1, two guidance cues encountered by navigating RGC growth cones. This regulation is opposite in effect, as we observed protein synthesis- and mTORC1-dependent increases in growth cone Tctp levels after acute treatment with Netrin-1, but a decline upon exposure to Ephrin-A1, an inhibitor of mTORC1. Live imaging with translation reporters further showed that Netrin-1-induced synthesis of Tctp in growth cones is driven by a short 3'untranslated region (3'UTR) tctp mRNA isoform. However, acute inhibition of de novo Tctp synthesis in axons did not perturb the advance of retinal projections through the optic tract in vivo, indicating that locally produced Tctp is not necessary for normal axon growth and guidance.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Jojic B, Amodeo S, Ochsenreiter T. The translationally controlled tumor protein TCTP is involved in cell cycle progression and heat stress response in the bloodstream form of Trypanosoma brucei. MICROBIAL CELL 2018; 5:460-468. [PMID: 30386790 PMCID: PMC6206406 DOI: 10.15698/mic2018.10.652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The translationally controlled tumor protein TCTP, is a universally conserved protein that seems to be of essential function in all systems tested so far. TCTP is involved in a multitude of cellular functions including cell cycle control, cell division, apoptosis and many more. The mechanism of how TCTP is involved in most of these functions remains elusive. Here we describe that TCTP is a cytoplasmic protein involved in cell cycle regulation and heat stress response in the bloodstream form of Trypanosoma brucei.
Collapse
Affiliation(s)
- Borka Jojic
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Simona Amodeo
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | |
Collapse
|