1
|
Karova K, Polcanova Z, Knight L, Suchankova S, Nieuwenhuis B, Holota R, Herynek V, Machova Urdzikova L, Turecek R, Kwok JC, van den Herik J, Verhaagen J, Eva R, Fawcett JW, Jendelova P. Hyperactive delta isoform of PI3 kinase enables long-distance regeneration of adult rat corticospinal tract. Mol Ther 2025; 33:752-770. [PMID: 39748509 PMCID: PMC11852985 DOI: 10.1016/j.ymthe.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/19/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
Neurons in the CNS lose regenerative potential with maturity, leading to minimal corticospinal tract (CST) axon regrowth after spinal cord injury (SCI). In young rodents, knockdown of PTEN, which antagonizes PI3K signaling by hydrolyzing PIP3, promotes axon regeneration following SCI. However, this effect diminishes in adults, potentially due to lower PI3K activation leading to reduced PIP3. This study explores whether increased PIP3 generation can promote long-distance regeneration in adults. We used a hyperactive PI3K, PI3Kδ (PIK3CD), to boost PIP3 levels in mature cortical neurons and assessed CST regeneration after SCI. Adult rats received AAV1-PIK3CD and AAV1-eGFP, or AAV1-eGFP alone, in the sensorimotor cortex concurrent with a C4 dorsal SCI. Transduced neurons showed increased pS6 levels, indicating elevated PI3K/Akt/mTOR signaling. CST regeneration, confirmed with retrograde tracing, was evaluated up to 16 weeks post injury. At 12 weeks, ∼100 axons were present at lesion sites, doubling to 200 by 16 weeks, with regeneration indices of 0.1 and 0.2, respectively. Behavioral tests showed significant improvements in paw reaching, grip strength, and ladder-rung walking in PIK3CD-treated rats, corroborated by electrophysiological recordings of cord dorsum potentials and distal flexor muscle electromyography. Thus, PI3Kδ upregulation in adult cortical neurons enhances axonal regeneration and functional recovery post SCI.
Collapse
Affiliation(s)
- Kristyna Karova
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic.
| | - Zuzana Polcanova
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic
| | - Lydia Knight
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic
| | - Stepanka Suchankova
- Institute of Experimental Medicine CAS, Department of Auditory Neuroscience, Videnska 1083, 142 20 Prague, Czech Republic
| | - Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Radovan Holota
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic; Institute of Biology and Ecology, Faculty of Science, P.J. Safarik University in Kosice, Srobarova 2, Kosice 041 54, Slovak Republic
| | - Vit Herynek
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovska 3, 120 00 Prague, Czech Republic
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic
| | - Rostislav Turecek
- Institute of Experimental Medicine CAS, Department of Auditory Neuroscience, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jessica C Kwok
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; Institute of Experimental Medicine CAS, Centre for Reconstructive Neuroscience, Videnska 1083, 14220 Prague, Czech Republic
| | - Joelle van den Herik
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Richard Eva
- Kings College London, Wolfson Sensory Pain and Regeneration Centre (SPaRC), Guy's Campus, London Bridge, London SE1 1UL, UK
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Institute of Experimental Medicine CAS, Centre for Reconstructive Neuroscience, Videnska 1083, 14220 Prague, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
2
|
Sandhu A, Lyu X, Wan X, Meng X, Tang NH, Gonzalez G, Syed IN, Chen L, Jin Y, Chisholm AD. The microtubule regulator EFA-6 forms cortical foci dependent on its intrinsically disordered region and interactions with tubulins. Cell Rep 2024; 43:114776. [PMID: 39305484 PMCID: PMC11972086 DOI: 10.1016/j.celrep.2024.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The EFA6 protein family, originally identified as Sec7 guanine nucleotide exchange factors, has also been found to regulate cortical microtubule (MT) dynamics. Here, we find that in the mature C. elegans epidermal epithelium, EFA-6 forms punctate foci in specific regions of the apical cortex, dependent on its intrinsically disordered region (IDR). The EFA-6 IDR can form biomolecular condensates in vitro. In genetic screens for mutants with altered GFP::EFA-6 localization, we identified a gain-of-function (gf) mutation in α-tubulin tba-1 that induces ectopic EFA-6 foci in multiple cell types. Lethality of tba-1(gf) is partially suppressed by loss of function in efa-6. The ability of TBA-1(gf) to trigger ectopic EFA-6 foci requires β-tubulin TBB-2 and the chaperon EVL-20/Arl2. tba-1(gf)-induced EFA-6 foci display slower turnover, contain the MT-associated protein TAC-1/TACC, and require the EFA-6 MT elimination domain (MTED). Our results reveal functionally important crosstalk between cellular tubulins and cortical MT regulators in vivo.
Collapse
Affiliation(s)
- Anjali Sandhu
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Xiaohui Lyu
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Xinghaoyun Wan
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Xuefeng Meng
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Ngang Heok Tang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Gilberto Gonzalez
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ishana N Syed
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Andrew D Chisholm
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
3
|
Hilton BJ, Griffin JM, Fawcett JW, Bradke F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat Rev Neurosci 2024; 25:649-667. [PMID: 39164450 DOI: 10.1038/s41583-024-00849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Collapse
Affiliation(s)
- Brett J Hilton
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia.
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
4
|
Wu W, Zhang J, Chen Y, Chen Q, Liu Q, Zhang F, Li S, Wang X. Genes in Axonal Regeneration. Mol Neurobiol 2024; 61:7431-7447. [PMID: 38388774 DOI: 10.1007/s12035-024-04049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
This review explores the molecular and genetic underpinnings of axonal regeneration and functional recovery post-nerve injury, emphasizing its significance in reversing neurological deficits. It presents a systematic exploration of the roles of various genes in axonal regrowth across peripheral and central nerve injuries. Initially, it highlights genes and gene families critical for axonal growth and guidance, delving into their roles in regeneration. It then examines the regenerative microenvironment, focusing on the role of glial cells in neural repair through dedifferentiation, proliferation, and migration. The concept of "traumatic microenvironments" within the central nervous system (CNS) and peripheral nervous system (PNS) is discussed, noting their impact on regenerative capacities and their importance in therapeutic strategy development. Additionally, the review delves into axonal transport mechanisms essential for accurate growth and reinnervation, integrating insights from proteomics, genome-wide screenings, and gene editing advancements. Conclusively, it synthesizes these insights to offer a comprehensive understanding of axonal regeneration's molecular orchestration, aiming to inform effective nerve injury therapies and contribute to regenerative neuroscience.
Collapse
Affiliation(s)
- Wenshuang Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qianyan Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fuchao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
5
|
Sandhu A, Lyu X, Wan X, Meng X, Tang NH, Gonzalez G, Syed IN, Chen L, Jin Y, Chisholm AD. The microtubule regulator EFA-6 forms spatially restricted cortical foci dependent on its intrinsically disordered region and interactions with tubulins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.14.588158. [PMID: 38645057 PMCID: PMC11030407 DOI: 10.1101/2024.04.14.588158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Microtubules (MTs) are dynamic components of the cytoskeleton and play essential roles in morphogenesis and maintenance of tissue and cell integrity. Despite recent advances in understanding MT ultrastructure, organization, and growth control, how cells regulate MT organization at the cell cortex remains poorly understood. The EFA-6/EFA6 proteins are recently identified membrane-associated proteins that inhibit cortical MT dynamics. Here, combining visualization of endogenously tagged C. elegans EFA-6 with genetic screening, we uncovered tubulin-dependent regulation of EFA-6 patterning. In the mature epidermal epithelium, EFA-6 forms punctate foci in specific regions of the apical cortex, dependent on its intrinsically disordered region (IDR). We further show the EFA-6 IDR is sufficient to form biomolecular condensates in vitro. In screens for mutants with altered GFP::EFA-6 localization, we identified a novel gain-of-function (gf) mutation in an α-tubulin tba-1 that induces ectopic EFA-6 foci in multiple cell types. tba-1(gf) animals exhibit temperature-sensitive embryonic lethality, which is partially suppressed by efa-6(lf), indicating the interaction between tubulins and EFA-6 is important for normal development. TBA-1(gf) shows reduced incorporation into filamentous MTs but has otherwise mild effects on cellular MT organization. The ability of TBA-1(gf) to trigger ectopic EFA-6 foci formation requires β-tubulin TBB-2 and the chaperon EVL-20/Arl2. The tba-1(gf)-induced EFA-6 foci display slower turnover, contain the MT-associated protein TAC-1/TACC, and require the EFA-6 MTED. Our results reveal a novel crosstalk between cellular tubulins and cortical MT regulators in vivo.
Collapse
Affiliation(s)
- Anjali Sandhu
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Xiaohui Lyu
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Xinghaoyun Wan
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Xuefeng Meng
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Ngang Heok Tang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Gilberto Gonzalez
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ishana N. Syed
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Andrew D. Chisholm
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| |
Collapse
|
6
|
Steele-Nicholson LJ, Andrews MR. Axon-Targeting Motifs: Mechanisms and Applications of Enhancing Axonal Localisation of Transmembrane Proteins. Cells 2022; 11:cells11060937. [PMID: 35326388 PMCID: PMC8946247 DOI: 10.3390/cells11060937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Neuronal polarity established in developing neurons ensures proper function in the mature nervous system. As functionally distinct cellular compartments, axons and dendrites often require different subsets of proteins to maintain synaptic transmission and overall order. Although neurons in the mature CNS do not regenerate throughout life, their interactions with their extracellular environment are dynamic. The axon remains an overall protected area of the neuron where only certain proteins have access throughout the lifespan of the cell. This is in comparison to the somatodendritic compartment, where although it too has a specialised subset of proteins required for its maintenance, many proteins destined for the axonal compartment must first be trafficked through the former. Recent research has shown that axonal proteins contain specific axon-targeting motifs that permit access to the axonal compartment as well as downstream targeting to the axonal membrane. These motifs target proteins to the axonal compartment by a variety of mechanisms including: promoting segregation into axon-targeted secretory vesicles, increasing interaction with axonal kinesins and enhancing somatodendritic endocytosis. In this review, we will discuss axon-targeting motifs within the context of established neuron trafficking mechanisms. We will also include examples of how these motifs have been applied to target proteins to the axonal compartment to improve both tools for the study of axon biology, and for use as potential therapeutics for axonopathies.
Collapse
Affiliation(s)
- Lloyd J. Steele-Nicholson
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK;
- Centre for Human Development, Stem Cells and Regeneration, School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Melissa R. Andrews
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK;
- Centre for Human Development, Stem Cells and Regeneration, School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Correspondence:
| |
Collapse
|
7
|
Ikeshima-Kataoka H, Sugimoto C, Tsubokawa T. Integrin Signaling in the Central Nervous System in Animals and Human Brain Diseases. Int J Mol Sci 2022; 23:ijms23031435. [PMID: 35163359 PMCID: PMC8836133 DOI: 10.3390/ijms23031435] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
The integrin family is involved in various biological functions, including cell proliferation, differentiation and migration, and also in the pathogenesis of disease. Integrins are multifunctional receptors that exist as heterodimers composed of α and β subunits and bind to various ligands, including extracellular matrix (ECM) proteins; they are found in many animals, not only vertebrates (e.g., mouse, rat, and teleost fish), but also invertebrates (e.g., planarian flatworm, fruit fly, nematodes, and cephalopods), which are used for research on genetics and social behaviors or as models for human diseases. In the present paper, we describe the results of a phylogenetic tree analysis of the integrin family among these species. We summarize integrin signaling in teleost fish, which serves as an excellent model for the study of regenerative systems and possesses the ability for replacing missing tissues, especially in the central nervous system, which has not been demonstrated in mammals. In addition, functions of astrocytes and reactive astrocytes, which contain neuroprotective subpopulations that act in concert with the ECM proteins tenascin C and osteopontin via integrin are also reviewed. Drug development research using integrin as a therapeutic target could result in breakthroughs for the treatment of neurodegenerative diseases and brain injury in mammals.
Collapse
Affiliation(s)
- Hiroko Ikeshima-Kataoka
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Correspondence:
| | - Chikatoshi Sugimoto
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| | - Tatsuya Tsubokawa
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| |
Collapse
|
8
|
Bu S, Yong WL, Lim BJW, Kondo S, Yu F. A systematic analysis of microtubule-destabilizing factors during dendrite pruning in Drosophila. EMBO Rep 2021; 22:e52679. [PMID: 34338441 DOI: 10.15252/embr.202152679] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
It has long been thought that microtubule disassembly, one of the earliest cellular events, contributes to neuronal pruning and neurodegeneration in development and disease. However, how microtubule disassembly drives neuronal pruning remains poorly understood. Here, we conduct a systematic investigation of various microtubule-destabilizing factors and identify exchange factor for Arf6 (Efa6) and Stathmin (Stai) as new regulators of dendrite pruning in ddaC sensory neurons during Drosophila metamorphosis. We show that Efa6 is both necessary and sufficient to regulate dendrite pruning. Interestingly, Efa6 and Stai facilitate microtubule turnover and disassembly prior to dendrite pruning without compromising the minus-end-out microtubule orientation in dendrites. Moreover, our pharmacological and genetic manipulations strongly support a key role of microtubule disassembly in promoting dendrite pruning. Thus, this systematic study highlights the importance of two selective microtubule destabilizers in dendrite pruning and substantiates a causal link between microtubule disassembly and neuronal pruning.
Collapse
Affiliation(s)
- Shufeng Bu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Wei Lin Yong
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Bryan Jian Wei Lim
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Wiatr K, Marczak Ł, Pérot JB, Brouillet E, Flament J, Figiel M. Broad Influence of Mutant Ataxin-3 on the Proteome of the Adult Brain, Young Neurons, and Axons Reveals Central Molecular Processes and Biomarkers in SCA3/MJD Using Knock-In Mouse Model. Front Mol Neurosci 2021; 14:658339. [PMID: 34220448 PMCID: PMC8248683 DOI: 10.3389/fnmol.2021.658339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/01/2021] [Indexed: 01/11/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3/MJD) is caused by CAG expansion mutation resulting in a long polyQ domain in mutant ataxin-3. The mutant protein is a special type of protease, deubiquitinase, which may indicate its prominent impact on the regulation of cellular proteins levels and activity. Yet, the global model picture of SCA3 disease progression on the protein level, molecular pathways in the brain, and neurons, is largely unknown. Here, we investigated the molecular SCA3 mechanism using an interdisciplinary research paradigm combining behavioral and molecular aspects of SCA3 in the knock-in ki91 model. We used the behavior, brain magnetic resonance imaging (MRI) and brain tissue examination to correlate the disease stages with brain proteomics, precise axonal proteomics, neuronal energy recordings, and labeling of vesicles. We have demonstrated that altered metabolic and mitochondrial proteins in the brain and the lack of weight gain in Ki91 SCA3/MJD mice is reflected by the failure of energy metabolism recorded in neonatal SCA3 cerebellar neurons. We have determined that further, during disease progression, proteins responsible for metabolism, cytoskeletal architecture, vesicular, and axonal transport are disturbed, revealing axons as one of the essential cell compartments in SCA3 pathogenesis. Therefore we focus on SCA3 pathogenesis in axonal and somatodendritic compartments revealing highly increased axonal localization of protein synthesis machinery, including ribosomes, translation factors, and RNA binding proteins, while the level of proteins responsible for cellular transport and mitochondria was decreased. We demonstrate the accumulation of axonal vesicles in neonatal SCA3 cerebellar neurons and increased phosphorylation of SMI-312 positive adult cerebellar axons, which indicate axonal dysfunction in SCA3. In summary, the SCA3 disease mechanism is based on the broad influence of mutant ataxin-3 on the neuronal proteome. Processes central in our SCA3 model include disturbed localization of proteins between axonal and somatodendritic compartment, early neuronal energy deficit, altered neuronal cytoskeletal structure, an overabundance of various components of protein synthesis machinery in axons.
Collapse
Affiliation(s)
- Kalina Wiatr
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Jean-Baptiste Pérot
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Julien Flament
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
10
|
EFA6 in Axon Regeneration, as a Microtubule Regulator and as a Guanine Nucleotide Exchange Factor. Cells 2021; 10:cells10061325. [PMID: 34073530 PMCID: PMC8226579 DOI: 10.3390/cells10061325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Axon regeneration after injury is a conserved biological process that involves a large number of molecular pathways, including rapid calcium influx at injury sites, retrograde injury signaling, epigenetic transition, transcriptional reprogramming, polarized transport, and cytoskeleton reorganization. Despite the numerous efforts devoted to understanding the underlying cellular and molecular mechanisms of axon regeneration, the search continues for effective target molecules for improving axon regeneration. Although there have been significant historical efforts towards characterizing pro-regenerative factors involved in axon regeneration, the pursuit of intrinsic inhibitors is relatively recent. EFA6 (exchange factor for ARF6) has been demonstrated to inhibit axon regeneration in different organisms. EFA6 inhibition could be a promising therapeutic strategy to promote axon regeneration and functional recovery after axon injury. This review summarizes the inhibitory role on axon regeneration through regulating microtubule dynamics and through affecting ARF6 (ADP-ribosylation factor 6) GTPase-mediated integrin transport.
Collapse
|
11
|
Axonal Organelles as Molecular Platforms for Axon Growth and Regeneration after Injury. Int J Mol Sci 2021; 22:ijms22041798. [PMID: 33670312 PMCID: PMC7918155 DOI: 10.3390/ijms22041798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Investigating the molecular mechanisms governing developmental axon growth has been a useful approach for identifying new strategies for boosting axon regeneration after injury, with the goal of treating debilitating conditions such as spinal cord injury and vision loss. The picture emerging is that various axonal organelles are important centers for organizing the molecular mechanisms and machinery required for growth cone development and axon extension, and these have recently been targeted to stimulate robust regeneration in the injured adult central nervous system (CNS). This review summarizes recent literature highlighting a central role for organelles such as recycling endosomes, the endoplasmic reticulum, mitochondria, lysosomes, autophagosomes and the proteasome in developmental axon growth, and describes how these organelles can be targeted to promote axon regeneration after injury to the adult CNS. This review also examines the connections between these organelles in developing and regenerating axons, and finally discusses the molecular mechanisms within the axon that are required for successful axon growth.
Collapse
|
12
|
Partisani M, Baron CL, Ghossoub R, Fayad R, Pagnotta S, Abélanet S, Macia E, Brau F, Lacas-Gervais S, Benmerah A, Luton F, Franco M. EFA6A, an exchange factor for Arf6, regulates early steps in ciliogenesis. J Cell Sci 2021; 134:237326. [PMID: 33483367 DOI: 10.1242/jcs.249565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Ciliogenesis is a coordinated process initiated by the recruitment and fusion of pre-ciliary vesicles at the distal appendages of the mother centriole through mechanisms that remain unclear. Here, we report that EFA6A (also known as PSD), an exchange factor for the small G protein Arf6, is involved in early stage of ciliogenesis by promoting the fusion of distal appendage vesicles forming the ciliary vesicle. EFA6A is present in the vicinity of the mother centriole before primary cilium assembly and prior to the arrival of Arl13B-containing vesicles. During ciliogenesis, EFA6A initially accumulates at the mother centriole and later colocalizes with Arl13B along the ciliary membrane. EFA6A depletion leads to the inhibition of ciliogenesis, the absence of centrosomal Rab8-positive structures and the accumulation of Arl13B-positive vesicles around the distal appendages. Our results uncover a novel fusion machinery, comprising EFA6A, Arf6 and Arl13B, that controls the coordinated fusion of ciliary vesicles docked at the distal appendages of the mother centriole.
Collapse
Affiliation(s)
- Mariagrazia Partisani
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275 CNRS-Université Côte d'Azur, 660, route des lucioles, 06560 Valbonne, France
| | - Carole L Baron
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275 CNRS-Université Côte d'Azur, 660, route des lucioles, 06560 Valbonne, France
| | - Rania Ghossoub
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Racha Fayad
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275 CNRS-Université Côte d'Azur, 660, route des lucioles, 06560 Valbonne, France
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée (CCMA), Université Côte d'Azur Parc Valrose, 06103 Nice cedex 2, France
| | - Sophie Abélanet
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275 CNRS-Université Côte d'Azur, 660, route des lucioles, 06560 Valbonne, France
| | - Eric Macia
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275 CNRS-Université Côte d'Azur, 660, route des lucioles, 06560 Valbonne, France
| | - Frédéric Brau
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275 CNRS-Université Côte d'Azur, 660, route des lucioles, 06560 Valbonne, France
| | - Sandra Lacas-Gervais
- Centre Commun de Microscopie Appliquée (CCMA), Université Côte d'Azur Parc Valrose, 06103 Nice cedex 2, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, F-75015, Paris, France
| | - Frédéric Luton
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275 CNRS-Université Côte d'Azur, 660, route des lucioles, 06560 Valbonne, France
| | - Michel Franco
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275 CNRS-Université Côte d'Azur, 660, route des lucioles, 06560 Valbonne, France
| |
Collapse
|
13
|
Protrudin functions from the endoplasmic reticulum to support axon regeneration in the adult CNS. Nat Commun 2020; 11:5614. [PMID: 33154382 PMCID: PMC7645621 DOI: 10.1038/s41467-020-19436-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Adult mammalian central nervous system axons have intrinsically poor regenerative capacity, so axonal injury has permanent consequences. One approach to enhancing regeneration is to increase the axonal supply of growth molecules and organelles. We achieved this by expressing the adaptor molecule Protrudin which is normally found at low levels in non-regenerative neurons. Elevated Protrudin expression enabled robust central nervous system regeneration both in vitro in primary cortical neurons and in vivo in the injured adult optic nerve. Protrudin overexpression facilitated the accumulation of endoplasmic reticulum, integrins and Rab11 endosomes in the distal axon, whilst removing Protrudin’s endoplasmic reticulum localization, kinesin-binding or phosphoinositide-binding properties abrogated the regenerative effects. These results demonstrate that Protrudin promotes regeneration by functioning as a scaffold to link axonal organelles, motors and membranes, establishing important roles for these cellular components in mediating regeneration in the adult central nervous system. Increasing the supply of growth machinery to axons is a potential strategy for promoting repair after injury. Here the authors demonstrate that the endoplasmic reticulum adaptor molecule Protrudin provides cellular components that support axonal regeneration in the adult CNS.
Collapse
|
14
|
Nieuwenhuis B, Eva R. ARF6 and Rab11 as intrinsic regulators of axon regeneration. Small GTPases 2020; 11:392-401. [PMID: 29772958 PMCID: PMC6124649 DOI: 10.1080/21541248.2018.1457914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/21/2018] [Indexed: 10/28/2022] Open
Abstract
Adult central nervous system (CNS) axons do not regenerate after injury because of extrinsic inhibitory factors, and a low intrinsic capacity for axon growth. Developing CNS neurons have a better regenerative ability, but lose this with maturity. This mini-review summarises recent findings which suggest one reason for regenerative failure is the selective distribution of growth machinery away from axons as CNS neurons mature. These studies demonstrate roles for the small GTPases ARF6 and Rab11 as intrinsic regulators of polarised transport and axon regeneration. ARF6 activation prevents the axonal transport of integrins in Rab11 endosomes in mature CNS axons. Decreasing ARF6 activation permits axonal transport, and increases regenerative ability. The findings suggest new targets for promoting axon regeneration after CNS injury.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Richard Eva
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| |
Collapse
|
15
|
Nieuwenhuis B, Barber AC, Evans RS, Pearson CS, Fuchs J, MacQueen AR, van Erp S, Haenzi B, Hulshof LA, Osborne A, Conceicao R, Khatib TZ, Deshpande SS, Cave J, Ffrench‐Constant C, Smith PD, Okkenhaug K, Eickholt BJ, Martin KR, Fawcett JW, Eva R. PI 3-kinase delta enhances axonal PIP 3 to support axon regeneration in the adult CNS. EMBO Mol Med 2020; 12:e11674. [PMID: 32558386 PMCID: PMC7411663 DOI: 10.15252/emmm.201911674] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
Peripheral nervous system (PNS) neurons support axon regeneration into adulthood, whereas central nervous system (CNS) neurons lose regenerative ability after development. To better understand this decline whilst aiming to improve regeneration, we focused on phosphoinositide 3-kinase (PI3K) and its product phosphatidylinositol (3,4,5)-trisphosphate (PIP3 ). We demonstrate that adult PNS neurons utilise two catalytic subunits of PI3K for axon regeneration: p110α and p110δ. However, in the CNS, axonal PIP3 decreases with development at the time when axon transport declines and regenerative competence is lost. Overexpressing p110α in CNS neurons had no effect; however, expression of p110δ restored axonal PIP3 and increased regenerative axon transport. p110δ expression enhanced CNS regeneration in both rat and human neurons and in transgenic mice, functioning in the same way as the hyperactivating H1047R mutation of p110α. Furthermore, viral delivery of p110δ promoted robust regeneration after optic nerve injury. These findings establish a deficit of axonal PIP3 as a key reason for intrinsic regeneration failure and demonstrate that native p110δ facilitates axon regeneration by functioning in a hyperactive fashion.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Amanda C Barber
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Rachel S Evans
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Craig S Pearson
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Joachim Fuchs
- Institute of BiochemistryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Amy R MacQueen
- Laboratory of Lymphocyte Signalling and DevelopmentBabraham InstituteCambridgeUK
| | - Susan van Erp
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUK
| | - Barbara Haenzi
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Lianne A Hulshof
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Andrew Osborne
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Raquel Conceicao
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Tasneem Z Khatib
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Sarita S Deshpande
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Joshua Cave
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | | | | | | | - Britta J Eickholt
- Institute of BiochemistryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Keith R Martin
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVic.Australia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVic.Australia
| | - James W Fawcett
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Centre of Reconstructive NeuroscienceInstitute of Experimental MedicineCzech Academy of SciencesPragueCzech Republic
| | - Richard Eva
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
16
|
Nieuwenhuis B, Haenzi B, Hilton S, Carnicer-Lombarte A, Hobo B, Verhaagen J, Fawcett JW. Optimization of adeno-associated viral vector-mediated transduction of the corticospinal tract: comparison of four promoters. Gene Ther 2020; 28:56-74. [PMID: 32576975 PMCID: PMC7902269 DOI: 10.1038/s41434-020-0169-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
Adeno-associated viral vectors are widely used as vehicles for gene transfer to the nervous system. The promoter and viral vector serotype are two key factors that determine the expression dynamics of the transgene. A previous comparative study has demonstrated that AAV1 displays efficient transduction of layer V corticospinal neurons, but the optimal promoter for transgene expression in corticospinal neurons has not been determined yet. In this paper, we report a side-by-side comparison between four commonly used promoters: the short CMV early enhancer/chicken β actin (sCAG), human cytomegalovirus (hCMV), mouse phosphoglycerate kinase (mPGK) and human synapsin (hSYN) promoter. Reporter constructs with each of these promoters were packaged in AAV1, and were injected in the sensorimotor cortex of rats and mice in order to transduce the corticospinal tract. Transgene expression levels and the cellular transduction profile were examined after 6 weeks. The AAV1 vectors harbouring the hCMV and sCAG promoters resulted in transgene expression in neurons, astrocytes and oligodendrocytes. The mPGK and hSYN promoters directed the strongest transgene expression. The mPGK promoter did drive expression in cortical neurons and oligodendrocytes, while transduction with AAV harbouring the hSYN promoter resulted in neuron-specific expression, including perineuronal net expressing interneurons and layer V corticospinal neurons. This promoter comparison study contributes to improve transgene delivery into the brain and spinal cord. The optimized transduction of the corticospinal tract will be beneficial for spinal cord injury research.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK. .,Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Sam Hilton
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Alejandro Carnicer-Lombarte
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Barbara Hobo
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.,Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
17
|
Zhang J, Su G, Wu Q, Liu J, Tian Y, Liu X, Zhou J, Gao J, Chen W, Chen D, Zhang Z. Rab11-mediated recycling endosome role in nervous system development and neurodegenerative diseases. Int J Neurosci 2020; 131:1012-1018. [PMID: 32329391 DOI: 10.1080/00207454.2020.1761354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
STUDY Membrane trafficking process is significant for the complex and precise regulatory of the nervous system. Rab11, as a small GTPase of the Rab superfamily, controls endocytic vesicular trafficking to the cell surface after sorting in recycling endosome (RE), coordinating with its receptors to maintain neurological function. MATERIALS AND METHODS This article reviewed the literature of Rab11 in nervous system. RESULTS Rab11-positive vesicles targeted transport growth-related molecules, such as integrins, protrudin, tropomyosin receptor kinase (Trk) A/B receptor and AMPA receptor (AMPAR) to membrane surface to promote the regeneration capacity of axon and dendrites and maintain synaptic plasticity. In addition, many studies have shown that the expression of Rab11 is decreased in multiple neurodegenerative diseases, which is highly correlated with the process of production, transport and clearance of disease-related pathological proteins. And overexpression or increased activity of Rab11 can greatly improve the defect of membrane trafficking and slow down the disease process. CONCLUSION With increasing research efforts on Rab11-dependent membrane trafficking mechanisms, a potential target for nerve regeneration and neurodegenerative diseases will be provided.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Qionghui Wu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jifei Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ye Tian
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaoyan Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Juanping Zhou
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Juan Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Wei Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Deyi Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
18
|
Qu Y, Hahn I, Lees M, Parkin J, Voelzmann A, Dorey K, Rathbone A, Friel CT, Allan VJ, Okenve-Ramos P, Sanchez-Soriano N, Prokop A. Efa6 protects axons and regulates their growth and branching by inhibiting microtubule polymerisation at the cortex. eLife 2019; 8:e50319. [PMID: 31718774 PMCID: PMC6884004 DOI: 10.7554/elife.50319] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Cortical collapse factors affect microtubule (MT) dynamics at the plasma membrane. They play important roles in neurons, as suggested by inhibition of axon growth and regeneration through the ARF activator Efa6 in C. elegans, and by neurodevelopmental disorders linked to the mammalian kinesin Kif21A. How cortical collapse factors influence axon growth is little understood. Here we studied them, focussing on the function of Drosophila Efa6 in experimentally and genetically amenable fly neurons. First, we show that Drosophila Efa6 can inhibit MTs directly without interacting molecules via an N-terminal 18 amino acid motif (MT elimination domain/MTED) that binds tubulin and inhibits microtubule growth in vitro and cells. If N-terminal MTED-containing fragments are in the cytoplasm they abolish entire microtubule networks of mouse fibroblasts and whole axons of fly neurons. Full-length Efa6 is membrane-attached, hence primarily blocks MTs in the periphery of fibroblasts, and explorative MTs that have left axonal bundles in neurons. Accordingly, loss of Efa6 causes an increase of explorative MTs: in growth cones they enhance axon growth, in axon shafts they cause excessive branching, as well as atrophy through perturbations of MT bundles. Efa6 over-expression causes the opposite phenotypes. Taken together, our work conceptually links molecular and sub-cellular functions of cortical collapse factors to axon growth regulation and reveals new roles in axon branching and in the prevention of axonal atrophy. Furthermore, the MTED delivers a promising tool that can be used to inhibit MTs in a compartmentalised fashion when fusing it to specifically localising protein domains.
Collapse
Affiliation(s)
- Yue Qu
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological SciencesThe University of ManchesterManchesterUnited Kingdom
| | - Ines Hahn
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological SciencesThe University of ManchesterManchesterUnited Kingdom
| | - Meredith Lees
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological SciencesThe University of ManchesterManchesterUnited Kingdom
| | - Jill Parkin
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological SciencesThe University of ManchesterManchesterUnited Kingdom
| | - André Voelzmann
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological SciencesThe University of ManchesterManchesterUnited Kingdom
| | - Karel Dorey
- Faculty of Biology, Medicine and Health, School of Medical SciencesThe University of ManchesterManchesterUnited Kingdom
| | - Alex Rathbone
- School of Life Sciences, Faculty of Medicine and Health SciencesThe University of NottinghamNottinghamUnited Kingdom
| | - Claire T Friel
- School of Life Sciences, Faculty of Medicine and Health SciencesThe University of NottinghamNottinghamUnited Kingdom
| | - Victoria J Allan
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological SciencesThe University of ManchesterManchesterUnited Kingdom
| | - Pilar Okenve-Ramos
- Department of Cellular and Molecular Physiology,Institute of Translational MedicineUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Natalia Sanchez-Soriano
- Department of Cellular and Molecular Physiology,Institute of Translational MedicineUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological SciencesThe University of ManchesterManchesterUnited Kingdom
| |
Collapse
|
19
|
Fawcett JW. The Struggle to Make CNS Axons Regenerate: Why Has It Been so Difficult? Neurochem Res 2019; 45:144-158. [PMID: 31388931 PMCID: PMC6942574 DOI: 10.1007/s11064-019-02844-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
Axon regeneration in the CNS is inhibited by many extrinsic and intrinsic factors. Because these act in parallel, no single intervention has been sufficient to enable full regeneration of damaged axons in the adult mammalian CNS. In the external environment, NogoA and CSPGs are strongly inhibitory to the regeneration of adult axons. CNS neurons lose intrinsic regenerative ability as they mature: embryonic but not mature neurons can grow axons for long distances when transplanted into the adult CNS, and regeneration fails with maturity in in vitro axotomy models. The causes of this loss of regeneration include partitioning of neurons into axonal and dendritic fields with many growth-related molecules directed specifically to dendrites and excluded from axons, changes in axonal signalling due to changes in expression and localization of receptors and their ligands, changes in local translation of proteins in axons, and changes in cytoskeletal dynamics after injury. Also with neuronal maturation come epigenetic changes in neurons, with many of the transcription factor binding sites that drive axon growth-related genes becoming inaccessible. The overall aim for successful regeneration is to ensure that the right molecules are expressed after axotomy and to arrange for them to be transported to the right place in the neuron, including the damaged axon tip.
Collapse
Affiliation(s)
- James W Fawcett
- John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
- Centre of Reconstructive Neuroscience, Institute for Experimental Medicine ASCR, Prague, Czech Republic.
| |
Collapse
|
20
|
Saegusa S, Fukaya M, Kakegawa W, Tanaka M, Katsumata O, Sugawara T, Hara Y, Itakura M, Okubo T, Sato T, Yuzaki M, Sakagami H. Mice lacking EFA6C/Psd2, a guanine nucleotide exchange factor for Arf6, exhibit lower Purkinje cell synaptic density but normal cerebellar motor functions. PLoS One 2019; 14:e0216960. [PMID: 31095630 PMCID: PMC6522047 DOI: 10.1371/journal.pone.0216960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/01/2019] [Indexed: 11/18/2022] Open
Abstract
ADP ribosylation factor 6 (Arf6) is a small GTPase that regulates various neuronal events including formation of the axon, dendrites and dendritic spines, and synaptic plasticity through actin cytoskeleton remodeling and endosomal trafficking. EFA6C, also known as Psd2, is a guanine nucleotide exchange factor for Arf6 that is preferentially expressed in the cerebellar cortex of adult mice, particularly in Purkinje cells. However, the roles of EFA6C in cerebellar development and functions remain unknown. In this study, we generated global EFA6C knockout (KO) mice using the CRISPR/Cas9 system and investigated their cerebellar phenotypes by histological and behavioral analyses. Histological analyses revealed that EFA6C KO mice exhibited normal gross anatomy of the cerebellar cortex, in terms of the thickness and cellularity of each layer, morphology of Purkinje cells, and distribution patterns of parallel fibers, climbing fibers, and inhibitory synapses. Electron microscopic observation of the cerebellar molecular layer revealed that the density of asymmetric synapses of Purkinje cells was significantly lower in EFA6C KO mice compared with wild-type control mice. However, behavioral analyses using accelerating rotarod and horizontal optokinetic response tests failed to detect any differences in motor coordination, learning or adaptation between the control and EFA6C KO mice. These results suggest that EFA6C plays ancillary roles in cerebellar development and motor functions.
Collapse
Affiliation(s)
- Shintaro Saegusa
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Manabu Tanaka
- Bio-imaging Center, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Osamu Katsumata
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Tadashi Okubo
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Toshiya Sato
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
21
|
Wang T, Li B, Yuan X, Cui L, Wang Z, Zhang Y, Yu M, Xiu Y, Zhang Z, Li W, Wang F, Guo X, Zhao X, Chen X. MiR-20a Plays a Key Regulatory Role in the Repair of Spinal Cord Dorsal Column Lesion via PDZ-RhoGEF/RhoA/GAP43 Axis in Rat. Cell Mol Neurobiol 2019; 39:87-98. [PMID: 30426336 PMCID: PMC11469850 DOI: 10.1007/s10571-018-0635-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/08/2018] [Indexed: 12/24/2022]
Abstract
Spinal cord injury (SCI) causes sensory dysfunctions such as paresthesia, dysesthesia, and chronic neuropathic pain. MiR-20a facilitates the axonal outgrowth of the cortical neurons. However, the role of miR-20a in the axonal outgrowth of primary sensory neurons and spinal cord dorsal column lesion (SDCL) is yet unknown. Therefore, the role of miR-20a post-SDCL was investigated in rat. The NF-200 immunofluorescence staining was applied to observe whether axonal outgrowth of dorsal root ganglion (DRG) neurons could be altered by miR-20a or PDZ-RhoGEF modulation in vitro. The expression of miR-20a was quantized with RT-PCR. Western blotting analyzed the expression of PDZ-RhoGEF/RhoA/GAP43 axis after miR-20a or PDZ-RhoGEF was modulated. The spinal cord sensory conduction function was assessed by somatosensory-evoked potentials and tape removal test. The results demonstrated that the expression of miR-20a decreased in a time-dependent manner post-SDCL. The regulation of miR-20a modulated the axonal growth and the expression of PDZ-RhoGEF/RhoA/GAP43 axis in vitro. The in vivo regulation of miR-20a altered the expression of miR-20a-PDZ-RhoGEF/RhoA/GAP43 axis and promoted the recovery of ascending sensory function post-SDCL. The results indicated that miR-20a/PDZ-RhoGEF/RhoA/GAP43 axis is associated with the pathophysiological process of SDCL. Thus, targeting the miR-20a/PDZ-RhoGEF /RhoA/GAP43 axis served as a novel strategy in promoting the sensory function recovery post-SCI.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Orthopedics, The 266th Hospital of the Chinese People's Liberation Army, Chengde, 067000, Hebei, People's Republic of China
| | - Bo Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Xin Yuan
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Libin Cui
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Zhijie Wang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, People's Republic of China
| | - Yanjun Zhang
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Mei Yu
- Leukemia Center, Peking Union of Medical College, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences, Tianjin, 30020, People's Republic of China
| | - Yucai Xiu
- Department of Orthopedics, The 266th Hospital of the Chinese People's Liberation Army, Chengde, 067000, Hebei, People's Republic of China
| | - Zheng Zhang
- Department of Orthopedics, The 266th Hospital of the Chinese People's Liberation Army, Chengde, 067000, Hebei, People's Republic of China
| | - Wenhua Li
- Department of Orthopedics, The 266th Hospital of the Chinese People's Liberation Army, Chengde, 067000, Hebei, People's Republic of China
| | - Fengyan Wang
- Department of Orthopedics, The 266th Hospital of the Chinese People's Liberation Army, Chengde, 067000, Hebei, People's Republic of China
| | - Xiaoling Guo
- Department of Neurology, The 266th Hospital of the Chinese People's Liberation Army, Chengde, 067000, Hebei, People's Republic of China.
| | - Xiangyang Zhao
- Department of General Surgery, The 266th Hospital of the Chinese People's Liberation Army, Chengde, 067000, Hebei, People's Republic of China.
| | - Xueming Chen
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 100020, People's Republic of China.
| |
Collapse
|
22
|
Abstract
Membrane trafficking processes are presumably vital for axonal regeneration after injury, but mechanistic understanding in this regard has been sparse. A recent loss-of-function screen had been carried out for factors important for axonal regeneration by cultured cortical neurons and the results suggested that the activity of a number of Rab GTPases might act to restrict axonal regeneration. A loss of Rab27b, in particular, is shown to enhance axonal regeneration in vitro, as well as in C. elegans and mouse central nervous system injury models in vivo. Possible mechanisms underlying this new finding, which has important academic and translational implication, are discussed.
Collapse
|
23
|
Fawcett JW, Verhaagen J. Intrinsic Determinants of Axon Regeneration. Dev Neurobiol 2018; 78:890-897. [PMID: 30345655 DOI: 10.1002/dneu.22637] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/16/2018] [Accepted: 09/16/2018] [Indexed: 12/21/2022]
Abstract
The failure of axons to regenerate in the damaged mammalian CNS is the main impediment to functional recovery. There are many molecules and structures in the environment of the injured nervous system that can inhibit regeneration, but even when these are removed or replaced with a permissive environment, most CNS neurons exhibit little regeneration of their axons. This contrasts with the extensive and vigorous axon growth that may occur when embryonic neurons are transplanted into the adult CNS. In the peripheral nervous system, the axons usually respond to axotomy with a vigorous regenerative response accompanied by a regenerative program of gene expression, usually referred to as the regeneration-associated gene (RAG) program. These different responses to axotomy in the mature and immature CNS and the PNS lead to the concept of the intrinsic regenerative response of axons. Analysis of the many mechanisms and issues that affect the intrinsic regenerative response is the topic of this special issue of Developmental Neurobiology. The review articles highlight the control of expression of growth and regeneration-associated genes, emphasizing the role of epigenetic mechanisms. The reviews also discuss changes within axons that lead to the developmental loss of regenerative ability. This is caused by changes in axonal transport and trafficking, in the cytoskeleton and in signaling pathways.
Collapse
Affiliation(s)
- James W Fawcett
- John van Geest Centre for Brain Repair, Department Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | - Joost Verhaagen
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105 BA, The Netherlands
| |
Collapse
|
24
|
Curcio M, Bradke F. Axon Regeneration in the Central Nervous System: Facing the Challenges from the Inside. Annu Rev Cell Dev Biol 2018; 34:495-521. [DOI: 10.1146/annurev-cellbio-100617-062508] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
After an injury in the adult mammalian central nervous system (CNS), lesioned axons fail to regenerate. This failure to regenerate contrasts with axons’ remarkable potential to grow during embryonic development and after an injury in the peripheral nervous system (PNS). Several intracellular mechanisms—including cytoskeletal dynamics, axonal transport and trafficking, signaling and transcription of regenerative programs, and epigenetic modifications—control axon regeneration. In this review, we describe how manipulation of intrinsic mechanisms elicits a regenerative response in different organisms and how strategies are implemented to form the basis of a future regenerative treatment after CNS injury.
Collapse
Affiliation(s)
- Michele Curcio
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany;,
| | - Frank Bradke
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany;,
| |
Collapse
|
25
|
Petrova V, Eva R. The Virtuous Cycle of Axon Growth: Axonal Transport of Growth-Promoting Machinery as an Intrinsic Determinant of Axon Regeneration. Dev Neurobiol 2018; 78:898-925. [PMID: 29989351 DOI: 10.1002/dneu.22608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 02/02/2023]
Abstract
Injury to the brain and spinal cord has devastating consequences because adult central nervous system (CNS) axons fail to regenerate. Injury to the peripheral nervous system (PNS) has a better prognosis, because adult PNS neurons support robust axon regeneration over long distances. CNS axons have some regenerative capacity during development, but this is lost with maturity. Two reasons for the failure of CNS regeneration are extrinsic inhibitory molecules, and a weak intrinsic capacity for growth. Extrinsic inhibitory molecules have been well characterized, but less is known about the neuron-intrinsic mechanisms which prevent axon re-growth. Key signaling pathways and genetic/epigenetic factors have been identified which can enhance regenerative capacity, but the precise cellular mechanisms mediating their actions have not been characterized. Recent studies suggest that an important prerequisite for regeneration is an efficient supply of growth-promoting machinery to the axon; however, this appears to be lacking from non-regenerative axons in the adult CNS. In the first part of this review, we summarize the evidence linking axon transport to axon regeneration. We discuss the developmental decline in axon regeneration capacity in the CNS, and comment on how this is paralleled by a similar decline in the selective axonal transport of regeneration-associated receptors such as integrins and growth factor receptors. In the second part, we discuss the mechanisms regulating selective polarized transport within neurons, how these relate to the intrinsic control of axon regeneration, and whether they can be targeted to enhance regenerative capacity. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Veselina Petrova
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 OPY, United Kingdom
| | - Richard Eva
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 OPY, United Kingdom
| |
Collapse
|
26
|
Nieuwenhuis B, Haenzi B, Andrews MR, Verhaagen J, Fawcett JW. Integrins promote axonal regeneration after injury of the nervous system. Biol Rev Camb Philos Soc 2018; 93:1339-1362. [PMID: 29446228 PMCID: PMC6055631 DOI: 10.1111/brv.12398] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/23/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Integrins are cell surface receptors that form the link between extracellular matrix molecules of the cell environment and internal cell signalling and the cytoskeleton. They are involved in several processes, e.g. adhesion and migration during development and repair. This review focuses on the role of integrins in axonal regeneration. Integrins participate in spontaneous axonal regeneration in the peripheral nervous system through binding to various ligands that either inhibit or enhance their activation and signalling. Integrin biology is more complex in the central nervous system. Integrins receptors are transported into growing axons during development, but selective polarised transport of integrins limits the regenerative response in adult neurons. Manipulation of integrins and related molecules to control their activation state and localisation within axons is a promising route towards stimulating effective regeneration in the central nervous system.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
| | | | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
- Centre for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVrije Universiteit Amsterdam1081 HVAmsterdamThe Netherlands
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Centre of Reconstructive NeuroscienceInstitute of Experimental Medicine142 20Prague 4Czech Republic
| |
Collapse
|
27
|
Nascimento AI, Mar FM, Sousa MM. The intriguing nature of dorsal root ganglion neurons: Linking structure with polarity and function. Prog Neurobiol 2018; 168:86-103. [PMID: 29729299 DOI: 10.1016/j.pneurobio.2018.05.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 11/26/2022]
Abstract
Dorsal root ganglion (DRG) neurons are the first neurons of the sensory pathway. They are activated by a variety of sensory stimuli that are then transmitted to the central nervous system. An important feature of DRG neurons is their unique morphology where a single process -the stem axon- bifurcates into a peripheral and a central axonal branch, with different functions and cellular properties. Distinctive structural aspects of the two DRG neuron branches may have important implications for their function in health and disease. However, the link between DRG axonal branch structure, polarity and function has been largely neglected in the field, and relevant information is rather scattered across the literature. In particular, ultrastructural differences between the two axonal branches are likely to account for the higher transport and regenerative ability of the peripheral DRG neuron axon when compared to the central one. Nevertheless, the cell intrinsic factors contributing to this central-peripheral asymmetry are still unknown. Here we critically review the factors that may underlie the functional asymmetry between the peripheral and central DRG axonal branches. Also, we discuss the hypothesis that DRG neurons may assemble a structure resembling the axon initial segment that may be responsible, at least in part, for their polarity and electrophysiological features. Ultimately, we suggest that the clarification of the axonal ultrastructure of DRG neurons using state-of-the-art techniques will be crucial to understand the physiology of this peculiar cell type.
Collapse
Affiliation(s)
- Ana Isabel Nascimento
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar-ICBAS, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fernando Milhazes Mar
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Mónica Mendes Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| |
Collapse
|
28
|
Gumy LF, Hoogenraad CC. Local mechanisms regulating selective cargo entry and long-range trafficking in axons. Curr Opin Neurobiol 2018; 51:23-28. [PMID: 29510294 DOI: 10.1016/j.conb.2018.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/14/2018] [Indexed: 02/02/2023]
Abstract
The polarized long-distance transport of neuronal cargoes depends on the presence of functional and structural axonal subcompartments. Given the heterogeneity of neuronal cargoes, selective sorting and entry occurs in the proximal axon where multiple subcellular specializations such as the axon initial segment, the pre-axonal exclusion zone, the MAP2 pre-axonal filtering zone and the Tau diffusion barrier provide different levels of regulation. Cargoes allowed to pass through the proximal axon spread into the more distal parts. Recent findings show that diverse cargo distributions along the axon depend on the compartmentalized organization of the cytoskeleton and the local regulation of multiple motor proteins by microtubule associated proteins. In this review, we focus on the local mechanisms that control cargo motility and discuss how they play a role in the overall circulation of axonal cargoes.
Collapse
Affiliation(s)
- Laura F Gumy
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
29
|
Nieuwenhuis B, Eva R. Linking axon transport to regeneration using in vitro laser axotomy. Neural Regen Res 2018; 13:410-412. [PMID: 29623918 PMCID: PMC5900496 DOI: 10.4103/1673-5374.228716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Richard Eva
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Correspondence to: Richard Eva, .
| |
Collapse
|
30
|
First person – Richard Eva. J Cell Sci 2017. [DOI: 10.1242/jcs.211680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Richard Eva is the first author on ‘EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment’, published in Journal of Cell Science. Richard is a research associate in the laboratory of Prof. James Fawcett, investigating the intrinsic mechanisms preventing brain and spinal cord axons from regenerating after injury in order to identify novel strategies for enhancing repair.
Collapse
|