1
|
Chakraborty A, Peterson NG, King JS, Gross RT, Pla MM, Thennavan A, Zhou KC, DeLuca S, Bursac N, Bowles DE, Wolf MJ, Fox DT. Conserved chamber-specific polyploidy maintains heart function in Drosophila. Development 2023; 150:dev201896. [PMID: 37526609 PMCID: PMC10482010 DOI: 10.1242/dev.201896] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Developmentally programmed polyploidy (whole-genome duplication) of cardiomyocytes is common across evolution. Functions of such polyploidy are essentially unknown. Here, in both Drosophila larvae and human organ donors, we reveal distinct polyploidy levels in cardiac organ chambers. In Drosophila, differential growth and cell cycle signal sensitivity leads the heart chamber to reach a higher ploidy/cell size relative to the aorta chamber. Cardiac ploidy-reduced animals exhibit reduced heart chamber size, stroke volume and cardiac output, and acceleration of circulating hemocytes. These Drosophila phenotypes mimic human cardiomyopathies. Our results identify productive and likely conserved roles for polyploidy in cardiac chambers and suggest that precise ploidy levels sculpt many developing tissues. These findings of productive cardiomyocyte polyploidy impact efforts to block developmental polyploidy to improve heart injury recovery.
Collapse
Affiliation(s)
- Archan Chakraborty
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nora G. Peterson
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Juliet S. King
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ryan T. Gross
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | | | - Aatish Thennavan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Kevin C. Zhou
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Sophia DeLuca
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Nenad Bursac
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Dawn E. Bowles
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Matthew J. Wolf
- Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Donald T. Fox
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
2
|
Chakraborty A, Peterson NG, King JS, Gross RT, Pla MM, Thennavan A, Zhou KC, DeLuca S, Bursac N, Bowles DE, Wolf MJ, Fox DT. Conserved Chamber-Specific Polyploidy Maintains Heart Function in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528086. [PMID: 36798187 PMCID: PMC9934670 DOI: 10.1101/2023.02.10.528086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developmentally programmed polyploidy (whole-genome-duplication) of cardiomyocytes is common across evolution. Functions of such polyploidy are essentially unknown. Here, we reveal roles for precise polyploidy levels in cardiac tissue. We highlight a conserved asymmetry in polyploidy level between cardiac chambers in Drosophila larvae and humans. In Drosophila , differential Insulin Receptor (InR) sensitivity leads the heart chamber to reach a higher ploidy/cell size relative to the aorta chamber. Cardiac ploidy-reduced animals exhibit reduced heart chamber size, stroke volume, cardiac output, and acceleration of circulating hemocytes. These Drosophila phenotypes mimic systemic human heart failure. Using human donor hearts, we reveal asymmetry in nuclear volume (ploidy) and insulin signaling between the left ventricle and atrium. Our results identify productive and likely conserved roles for polyploidy in cardiac chambers and suggest precise ploidy levels sculpt many developing tissues. These findings of productive cardiomyocyte polyploidy impact efforts to block developmental polyploidy to improve heart injury recovery.
Collapse
|
3
|
Dehnen L, Janz M, Verma JK, Psathaki OE, Langemeyer L, Fröhlich F, Heinisch JJ, Meyer H, Ungermann C, Paululat A. A trimeric metazoan Rab7 GEF complex is crucial for endocytosis and scavenger function. J Cell Sci 2020; 133:jcs247080. [PMID: 32499409 DOI: 10.1242/jcs.247080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Endosome biogenesis in eukaryotic cells is critical for nutrient uptake and plasma membrane integrity. Early endosomes initially contain Rab5, which is replaced by Rab7 on late endosomes prior to their fusion with lysosomes. Recruitment of Rab7 to endosomes requires the Mon1-Ccz1 guanine-nucleotide-exchange factor (GEF). Here, we show that full function of the Drosophila Mon1-Ccz1 complex requires a third stoichiometric subunit, termed Bulli (encoded by CG8270). Bulli localises to Rab7-positive endosomes, in agreement with its function in the GEF complex. Using Drosophila nephrocytes as a model system, we observe that absence of Bulli results in (i) reduced endocytosis, (ii) Rab5 accumulation within non-acidified enlarged endosomes, (iii) defective Rab7 localisation and (iv) impaired endosomal maturation. Moreover, longevity of animals lacking bulli is affected. Both the Mon1-Ccz1 dimer and a Bulli-containing trimer display Rab7 GEF activity. In summary, this suggests a key role for Bulli in the Rab5 to Rab7 transition during endosomal maturation rather than a direct influence on the GEF activity of Mon1-Ccz1.
Collapse
Affiliation(s)
- Lena Dehnen
- Department of Biology and Chemistry, Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Maren Janz
- Department of Biology and Chemistry, Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Jitender Kumar Verma
- Department of Biology and Chemistry, Biochemistry, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Olympia Ekaterini Psathaki
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility Osnabrück (iBiOs), University of Osnabrück, 49076 Osnabrück, Germany
| | - Lars Langemeyer
- Department of Biology and Chemistry, Biochemistry, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Florian Fröhlich
- Department of Biology and Chemistry, Molecular Membrane Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Jürgen J Heinisch
- Department of Biology and Chemistry, Genetics, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Heiko Meyer
- Department of Biology and Chemistry, Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology and Chemistry, Biochemistry, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Achim Paululat
- Department of Biology and Chemistry, Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| |
Collapse
|
4
|
Kimata Y. APC/C Ubiquitin Ligase: Coupling Cellular Differentiation to G1/G0 Phase in Multicellular Systems. Trends Cell Biol 2019; 29:591-603. [DOI: 10.1016/j.tcb.2019.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/27/2022]
|