1
|
Kazi NH, Klink N, Gallant K, Kipka GM, Gersch M. Chimeric deubiquitinase engineering reveals structural basis for specific inhibition of the mitophagy regulator USP30. Nat Struct Mol Biol 2025:10.1038/s41594-025-01534-4. [PMID: 40325251 DOI: 10.1038/s41594-025-01534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 03/12/2025] [Indexed: 05/07/2025]
Abstract
The mitochondrial deubiquitinase ubiquitin-specific protease (USP) 30 negatively regulates PINK1-parkin-driven mitophagy. Whether enhanced mitochondrial quality control through inhibition of USP30 can protect dopaminergic neurons is currently being explored in a clinical trial for Parkinson's disease. However, the molecular basis for specific inhibition of USP30 by small molecules has remained elusive. Here we report the crystal structure of human USP30 in complex with a specific inhibitor, enabled by chimeric protein engineering. Our study uncovers how the inhibitor extends into a cryptic pocket facilitated by a compound-induced conformation of the USP30 switching loop. Our work underscores the potential of exploring induced pockets and conformational dynamics to obtain deubiquitinase inhibitors and identifies residues facilitating specific inhibition of USP30. More broadly, we delineate a conceptual framework for specific USP deubiquitinase inhibition based on a common ligandability hotspot in the Leu73 ubiquitin binding site and on diverse compound extensions. Collectively, our work establishes a generalizable chimeric protein-engineering strategy to aid deubiquitinase crystallization and enables structure-based drug design with relevance to neurodegeneration.
Collapse
Affiliation(s)
- Nafizul Haque Kazi
- Chemical Genomics Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Nikolas Klink
- Chemical Genomics Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Kai Gallant
- Chemical Genomics Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Gian-Marvin Kipka
- Chemical Genomics Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Malte Gersch
- Chemical Genomics Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
2
|
Vogel K, Isono E. Erasing marks: Functions of plant deubiquitylating enzymes in modulating the ubiquitin code. THE PLANT CELL 2024; 36:3057-3073. [PMID: 38656977 PMCID: PMC11371157 DOI: 10.1093/plcell/koae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Plant cells need to respond to environmental stimuli and developmental signals accurately and promptly. Ubiquitylation is a reversible posttranslational modification that enables the adaptation of cellular proteostasis to internal or external factors. The different topologies of ubiquitin linkages serve as the structural basis for the ubiquitin code, which can be interpreted by ubiquitin-binding proteins or readers in specific processes. The ubiquitylation status of target proteins is regulated by ubiquitylating enzymes or writers, as well as deubiquitylating enzymes (DUBs) or erasers. DUBs can remove ubiquitin molecules from target proteins. Arabidopsis (A. thaliana) DUBs belong to 7 protein families and exhibit a wide range of functions and play an important role in regulating selective protein degradation processes, including proteasomal, endocytic, and autophagic protein degradation. DUBs also shape the epigenetic landscape and modulate DNA damage repair processes. In this review, we summarize the current knowledge on DUBs in plants, their cellular functions, and the molecular mechanisms involved in the regulation of plant DUBs.
Collapse
Affiliation(s)
- Karin Vogel
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Erika Isono
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
- Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki 444-8585 Aichi, Japan
| |
Collapse
|
3
|
Keijzer N, Priyanka A, Stijf-Bultsma Y, Fish A, Gersch M, Sixma TK. Variety in the USP deubiquitinase catalytic mechanism. Life Sci Alliance 2024; 7:e202302533. [PMID: 38355287 PMCID: PMC10867860 DOI: 10.26508/lsa.202302533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
The ubiquitin-specific protease (USP) family of deubiquitinases (DUBs) controls cellular ubiquitin-dependent signaling events. This generates therapeutic potential, with active-site inhibitors in preclinical and clinical studies. Understanding of the USP active site is primarily guided by USP7 data, where the catalytic triad consists of cysteine, histidine, and a third residue (third critical residue), which polarizes the histidine through a hydrogen bond. A conserved aspartate (fourth critical residue) is directly adjacent to this third critical residue. Although both critical residues accommodate catalysis in USP2, these residues have not been comprehensively investigated in other USPs. Here, we quantitatively investigate their roles in five USPs. Although USP7 relies on the third critical residue for catalysis, this residue is dispensable in USP1, USP15, USP40, and USP48, where the fourth critical residue is vital instead. Furthermore, these residues vary in importance for nucleophilic attack. The diverging catalytic mechanisms of USP1 and USP7 are independent of substrate and retained in cells for USP1. This unexpected variety of catalytic mechanisms in this well-conserved protein family may generate opportunities for selective targeting of individual USPs.
Collapse
Affiliation(s)
- Niels Keijzer
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anu Priyanka
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Yvette Stijf-Bultsma
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Alexander Fish
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Malte Gersch
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Titia K Sixma
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
4
|
Abstract
Ubiquitination is an essential regulator of most, if not all, signalling pathways, and defects in cellular signalling are central to cancer initiation, progression and, eventually, metastasis. The attachment of ubiquitin signals by E3 ubiquitin ligases is directly opposed by the action of approximately 100 deubiquitinating enzymes (DUBs) in humans. Together, DUBs and E3 ligases coordinate ubiquitin signalling by providing selectivity for different substrates and/or ubiquitin signals. The balance between ubiquitination and deubiquitination is exquisitely controlled to ensure properly coordinated proteostasis and response to cellular stimuli and stressors. Not surprisingly, then, DUBs have been associated with all hallmarks of cancer. These relationships are often complex and multifaceted, highlighted by the implication of multiple DUBs in certain hallmarks and by the impact of individual DUBs on multiple cancer-associated pathways, sometimes with contrasting cancer-promoting and cancer-inhibiting activities, depending on context and tumour type. Although it is still understudied, the ever-growing knowledge of DUB function in cancer physiology will eventually identify DUBs that warrant specific inhibition or activation, both of which are now feasible. An integrated appreciation of the physiological consequences of DUB modulation in relevant cancer models will eventually lead to the identification of patient populations that will most likely benefit from DUB-targeted therapies.
Collapse
Affiliation(s)
- Grant Dewson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Pieter J A Eichhorn
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - David Komander
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
Liang Y, Zhong G, Ren M, Sun T, Li Y, Ye M, Ma C, Guo Y, Liu C. The Role of Ubiquitin-Proteasome System and Mitophagy in the Pathogenesis of Parkinson's Disease. Neuromolecular Med 2023; 25:471-488. [PMID: 37698835 DOI: 10.1007/s12017-023-08755-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is mainly in middle-aged people and elderly people, and the pathogenesis of PD is complex and diverse. The ubiquitin-proteasome system (UPS) is a master regulator of neural development and the maintenance of brain structure and function. Dysfunction of components and substrates of this UPS has been linked to neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Moreover, UPS can regulate α-synuclein misfolding and aggregation, mitophagy, neuroinflammation and oxidative stress to affect the development of PD. In the present study, we review the role of several related E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) on the pathogenesis of PD such as Parkin, CHIP, USP8, etc. On this basis, we summarize the connections and differences of different E3 ubiquitin ligases in the pathogenesis, and elaborate on the regulatory progress of different DUBs on the pathogenesis of PD. Therefore, we can better understand their relationships and provide feasible and valuable therapeutic clues for UPS-related PD treatment research.
Collapse
Affiliation(s)
- Yu Liang
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Guangshang Zhong
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Mingxin Ren
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Tingting Sun
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yangyang Li
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Ming Ye
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, 233000, China
| | - Caiyun Ma
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yu Guo
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| | - Changqing Liu
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China.
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
6
|
Lv T, Zhang B, Jiang C, Zeng Q, Yang J, Zhou Y. USP35 promotes hepatocellular carcinoma progression by protecting PKM2 from ubiquitination‑mediated degradation. Int J Oncol 2023; 63:113. [PMID: 37594129 PMCID: PMC10552738 DOI: 10.3892/ijo.2023.5561] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/30/2023] [Indexed: 08/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequently diagnosed primary liver cancer with a high mortality rate and imposes a huge burden on patients and society. Recently, ubiquitin‑specific protease 35 (USP35) was found to be involved in cell proliferation and mitosis, but its role in HCC remains largely unknown. The expression of USP35 in HCC and its association with patient prognosis in the study cohort and public databases was analyzed in the present study. The effects of USP35 on the malignant biological behavior of HCC were analyzed by cellular functional experiments. Mechanistically, the effect of USP35 deubiquitylation on the M2 splice isoform of pyruvate kinase (PKM2) and on the Warburg effect of tumor cells were verified by western blotting and ubiquitination assay. The results of the present study demonstrated that USP35 is highly expressed in HCC and its high expression is significantly associated with poor prognosis of patients with HCC. In the present study, it was also demonstrated that inhibiting the expression of USP35 can impair the malignant properties (proliferation, migration and invasion) of HCC tumor cells by elevating the ubiquitination level of PKM2, the deubiquitinated form of which is critical for glycolysis in tumor cells. The present study therefore indicated that USP35 may be a target in the treatment of HCC.
Collapse
Affiliation(s)
- Tao Lv
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network
- Departments of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bo Zhang
- Departments of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chenghao Jiang
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network
- Departments of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiwen Zeng
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network
| | - Jiayin Yang
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network
- Departments of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongjie Zhou
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network
| |
Collapse
|
7
|
Shin SC, Park J, Kim KH, Yoon JM, Cho J, Ha BH, Oh Y, Choo H, Song EJ, Kim EE. Structural and functional characterization of USP47 reveals a hot spot for inhibitor design. Commun Biol 2023; 6:970. [PMID: 37740002 PMCID: PMC10516900 DOI: 10.1038/s42003-023-05345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
USP47 is widely involved in tumor development, metastasis, and other processes while performing a more regulatory role in inflammatory responses, myocardial infarction, and neuronal development. In this study, we investigate the functional and biochemical properties of USP47, whereby depleting USP47 inhibited cancer cell growth in a p53-dependent manner-a phenomenon that enhances during the simultaneous knockdown of USP7. Full-length USP47 shows higher deubiquitinase activity than the catalytic domain. The crystal structures of the catalytic domain, in its free and ubiquitin-bound states, reveal that the misaligned catalytic triads, ultimately, become aligned upon ubiquitin-binding, similar to USP7, thereby becoming ready for catalysis. Yet, the composition and lengths of BL1, BL2, and BL3 of USP47 differ from those for USP7, and they contribute to the observed selectivity. Our study provides molecular details of USP47 regulation, substrate recognition, and the hotspots for drug discovery by targeting USP47.
Collapse
Affiliation(s)
- Sang Chul Shin
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Research Resources Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jinyoung Park
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Kyung Hee Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jung Min Yoon
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jinhong Cho
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Byung Hak Ha
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Yeonji Oh
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyunah Choo
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Korea
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
8
|
Wang S, Wang T, Zhang X, Cheng S, Chen C, Yang G, Wang F, Wang R, Zhang Q, Yang D, Zhang Y, Liu S, Qin H, Liu Q, Liu H. The deubiquitylating enzyme USP35 restricts regulated cell death to promote survival of renal clear cell carcinoma. Cell Death Differ 2023; 30:1757-1770. [PMID: 37173391 PMCID: PMC10307860 DOI: 10.1038/s41418-023-01176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The ubiquitin-proteasome system governs a wide spectrum of cellular events and offers therapeutic opportunities for pharmacological intervention in cancer treatment. Renal clear cell carcinoma represents the predominant histological subtype and accounts for the majority of cancer death related to kidney malignancies. Through a systematic survey in the association of human ubiquitin-specific proteases with patient prognosis of renal clear cell carcinoma and subsequent phenotypic validation, we uncovered the tumor-promoting role of USP35. Biochemical characterizations confirmed the stabilizing effects of USP35 towards multiple members of the IAP family in an enzymatic activity-dependent manner. USP35 silencing led to reduced expression levels of IAP proteins, which were accompanied with increased cellular apoptosis. Further transcriptomic analysis revealed that USP35 knockdown affected the expression levels of NRF2 downstream transcripts, which were conferred by compromised NRF2 abundance. USP35 functions to maintain NRF2 levels by catalyzing its deubiquitylation and thus antagonizing degradation. NRF2 reduction imposed by USP35 silencing rendered renal clear cell carcinoma cells increased sensitivity to ferroptosis induction. Finally, induced USP35 knockdown markedly attenuated xenograft formation of renal clear cell carcinoma in nude mice. Hence, our findings reveal a number of USP35 substrates and uncover the protecting roles of USP35 against both apoptosis and ferroptosis in renal clear cell carcinoma.
Collapse
Affiliation(s)
- Shanshan Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Taishu Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- National Institute of Biological Sciences, Beijing, China
| | - Xuehong Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shaoxuan Cheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chaoqun Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Guoheng Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Fuqiang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ruilin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qingqing Zhang
- Department of Pathology, Dalian Medical University, Dalian, China
| | - Dian Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuyan Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
9
|
Park J, Shin SC, Jin KS, Lim MJ, Kim Y, Kim EE, Song EJ. USP35 dimer prevents its degradation by E3 ligase CHIP through auto-deubiquitinating activity. Cell Mol Life Sci 2023; 80:112. [PMID: 37004621 PMCID: PMC11073304 DOI: 10.1007/s00018-023-04740-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 04/04/2023]
Abstract
Recently, a number of reports on the importance of USP35 in cancer have been published. However, very little is known about the exact mechanism by which USP35 activity is regulated. Here, we show the possible regulation of USP35 activity and the structural specificity affecting its function by analyzing various fragments of USP35. Interestingly, the catalytic domain of USP35 alone does not exhibit deubiquitinating activity; in contrast, the C-terminal domain and insertion region in the catalytic domain is required for full USP35 activity. Additionally, through its C-terminal domain, USP35 forms a homodimer that prevents USP35 degradation. CHIP bound to HSP90 interacts with and ubiquitinates USP35. However, when fully functional USP35 undergoes auto-deubiquitination, which attenuates CHIP-mediated ubiquitination. Finally, USP35 dimer is required for deubiquitination of the substrate Aurora B and regulation of faithful mitotic progression. The properties of USP35 identified in this study are a unique homodimer structure, regulation of deubiquitinating activity through this, and utilization of a novel E3 ligase involved in USP35 auto-deubiquitination, which adds another complexity to the regulation of deubiquitinating enzymes.
Collapse
Affiliation(s)
- Jinyoung Park
- Biomedical Research Division, Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Sang Chul Shin
- Research Resources Division, Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Kyungbuk, Korea
| | - Min Joon Lim
- Biomedical Research Division, Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Yeojin Kim
- Biomedical Research Division, Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Division, Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
10
|
Zheng J, Chen C, Guo C, Caba C, Tong Y, Wang H. The Pleiotropic Ubiquitin-Specific Peptidase 16 and Its Many Substrates. Cells 2023; 12:886. [PMID: 36980227 PMCID: PMC10047310 DOI: 10.3390/cells12060886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Ubiquitin-specific peptidase 16 (USP16) is a deubiquitinase that plays a role in the regulation of gene expression, cell cycle progression, and various other functions. It was originally identified as the major deubiquitinase for histone H2A and has since been found to deubiquitinate a range of other substrates, including proteins from both the cytoplasm and nucleus. USP16 is phosphorylated when cells enter mitosis and dephosphorylated during the metaphase/anaphase transition. While much of USP16 is localized in the cytoplasm, separating the enzyme from its substrates is considered an important regulatory mechanism. Some of the functions that USP16 has been linked to include DNA damage repair, immune disease, tumorigenesis, protein synthesis, coronary artery health, and male infertility. The strong connection to immune response and the fact that multiple oncogene products are substrates of USP16 suggests that USP16 may be a potential therapeutic target for the treatment of certain human diseases.
Collapse
Affiliation(s)
- Jiahuan Zheng
- Department of Internal Medicine, Division of Hematology, Oncology, and Palliative Care, Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Chunxu Chen
- Department of Bioengineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Hengbin Wang
- Department of Internal Medicine, Division of Hematology, Oncology, and Palliative Care, Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
11
|
Rennie ML, Arkinson C, Chaugule VK, Walden H. Cryo-EM reveals a mechanism of USP1 inhibition through a cryptic binding site. SCIENCE ADVANCES 2022; 8:eabq6353. [PMID: 36170365 PMCID: PMC9519042 DOI: 10.1126/sciadv.abq6353] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Repair of DNA damage is critical to genomic integrity and frequently disrupted in cancers. Ubiquitin-specific protease 1 (USP1), a nucleus-localized deubiquitinase, lies at the interface of multiple DNA repair pathways and is a promising drug target for certain cancers. Although multiple inhibitors of this enzyme, including one in phase 1 clinical trials, have been established, their binding mode is unknown. Here, we use cryo-electron microscopy to study an assembled enzyme-substrate-inhibitor complex of USP1 and the well-established inhibitor, ML323. Achieving 2.5-Å resolution, with and without ML323, we find an unusual binding mode in which the inhibitor disrupts part of the hydrophobic core of USP1. The consequent conformational changes in the secondary structure lead to subtle rearrangements in the active site that underlie the mechanism of inhibition. These structures provide a platform for structure-based drug design targeting USP1.
Collapse
Affiliation(s)
- Martin L. Rennie
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Connor Arkinson
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Viduth K. Chaugule
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
12
|
Xu G, Su H, Lu L, Liu X, Zhao L, Tang B, Ming Z. Structural insights into the catalytic mechanism and ubiquitin recognition of USP34. J Mol Biol 2022; 434:167634. [PMID: 35588869 DOI: 10.1016/j.jmb.2022.167634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Abstract
Ubiquitination, an important posttranslational modification, participates in virtually all aspects of cellular functions and is reversed by deubiquitinating enzymes (DUBs). Ubiquitin-specific protease 34 (USP34) plays an essential role in cancer, neurodegenerative diseases, and osteogenesis. Despite its functional importance, how USP34 recognizes ubiquitin and catalyzes deubiquitination remains structurally uncharacterized. Here, we report the crystal structures of the USP34 catalytic domain in free state and after binding with ubiquitin. In the free state, USP34 adopts an inactive conformation, which contains a misaligned catalytic histidine in the triad. Comparison of USP34 structures before and after ubiquitin binding reveals a structural basis for ubiquitin recognition and elucidates a mechanism by which the catalytic triad is realigned. Transition from an open inactive state to a relatively closed active state is coupled to a process by which the "fingertips" of USP34 intimately grip ubiquitin, and this has not been reported before. Our structural and biochemical analyses provide important insights into the catalytic mechanism and ubiquitin recognition of USP34.
Collapse
Affiliation(s)
- Guolyu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P.R. China
| | - Huizhao Su
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Lining Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P.R. China
| | - Xiaomeng Liu
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Liang Zhao
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P.R. China.
| |
Collapse
|
13
|
On the Study of Deubiquitinases: Using the Right Tools for the Job. Biomolecules 2022; 12:biom12050703. [PMID: 35625630 PMCID: PMC9139131 DOI: 10.3390/biom12050703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Deubiquitinases (DUBs) have been the subject of intense scrutiny in recent years. Many of their diverse enzymatic mechanisms are well characterized in vitro; however, our understanding of these enzymes at the cellular level lags due to the lack of quality tool reagents. DUBs play a role in seemingly every biological process and are central to many human pathologies, thus rendering them very desirable and challenging therapeutic targets. This review aims to provide researchers entering the field of ubiquitination with knowledge of the pharmacological modulators and tool molecules available to study DUBs. A focus is placed on small molecule inhibitors, ubiquitin variants (UbVs), and activity-based probes (ABPs). Leveraging these tools to uncover DUB biology at the cellular level is of particular importance and may lead to significant breakthroughs. Despite significant drug discovery efforts, only approximately 15 chemical probe-quality small molecule inhibitors have been reported, hitting just 6 of about 100 DUB targets. UbV technology is a promising approach to rapidly expand the library of known DUB inhibitors and may be used as a combinatorial platform for structure-guided drug design.
Collapse
|
14
|
Cao J, Wu D, Wu G, Wang Y, Ren T, Wang Y, Lv Y, Sun W, Wang J, Qian C, He L, Yang K, Li H, Gu H. USP35, regulated by estrogen and AKT, promotes breast tumorigenesis by stabilizing and enhancing transcriptional activity of estrogen receptor α. Cell Death Dis 2021; 12:619. [PMID: 34131114 PMCID: PMC8206120 DOI: 10.1038/s41419-021-03904-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022]
Abstract
Although endocrine therapies targeting estrogen receptor α (ERα) are effective in managing ER positive (+) breast cancer, many patients have primary resistance or develop resistance to endocrine therapies. In addition, ER+ breast cancer with PIK3CA activating mutations and 11q13-14 amplification have poor survival with unclear mechanism. We uncovered that higher expression of deubiquitinase USP35, located in 11q14.1, was associated with ER+ breast cancer and poor survival. Estrogen enhanced USP35 protein levels by downregulating USP35-targeting miRNA-140-3p and miRNA-26a-5p. USP35 promoted the growth of ER+ breast cancer in vitro and in vivo, and reduced the sensitivity of ER+ breast cancer cells to endocrine therapies such as tamoxifen and fulvestrant. Mechanistically, USP35 enhanced ERα stability by interacting and deubiquitinating ERα, and transcriptional activity of ERα by interacting with ERα in DNA regions containing estrogen response element. In addition, AKT, a key effector of PI3K, phosphorylated USP35 at Serine613, which promoted USP35 nuclear translocation, ERα transcriptional activity, and the growth of ER+ breast cancer cells. Our data indicate that USP35 and ERα form a positive feedback loop in promoting the growth of ER+ breast cancer. USP35 may be a treatment target for ER+ breast cancer with endocrine resistance or with PIK3CA mutations or hyperactivation of the PI3K pathway.
Collapse
Affiliation(s)
- Jiawei Cao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Du Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guang Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yaqi Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tianhao Ren
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yang Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yingshuai Lv
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei Sun
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jieyi Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Changrui Qian
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Licai He
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Kaiyan Yang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Hongzhi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Haihua Gu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
15
|
Ubiquitin-Specific Protease 29 Regulates Cdc25A-Mediated Tumorigenesis. Int J Mol Sci 2021; 22:ijms22115766. [PMID: 34071237 PMCID: PMC8198132 DOI: 10.3390/ijms22115766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Cell division cycle 25A (Cdc25A) is a dual-specificity phosphatase that is overexpressed in several cancer cells and promotes tumorigenesis. In normal cells, Cdc25A expression is regulated tightly, but the changes in expression patterns in cancer cells that lead to tumorigenesis are unknown. In this study, we showed that ubiquitin-specific protease 29 (USP29) stabilized Cdc25A protein expression in cancer cell lines by protecting it from ubiquitin-mediated proteasomal degradation. The presence of USP29 effectively blocked polyubiquitination of Cdc25A and extended its half-life. CRISPR-Cas9-mediated knockdown of USP29 in HeLa cells resulted in cell cycle arrest at the G0/G1 phase. We also showed that USP29 knockdown hampered Cdc25A-mediated cell proliferation, migration, and invasion of cancer cells in vitro. Moreover, NSG nude mice transplanted with USP29-depleted cells significantly reduced the size of the tumors, whereas the reconstitution of Cdc25A in USP29-depleted cells significantly increased the tumor size. Altogether, our results implied that USP29 promoted cell cycle progression and oncogenic transformation by regulating protein turnover of Cdc25A.
Collapse
|
16
|
Basar MA, Beck DB, Werner A. Deubiquitylases in developmental ubiquitin signaling and congenital diseases. Cell Death Differ 2021; 28:538-556. [PMID: 33335288 PMCID: PMC7862630 DOI: 10.1038/s41418-020-00697-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Metazoan development from a one-cell zygote to a fully formed organism requires complex cellular differentiation and communication pathways. To coordinate these processes, embryos frequently encode signaling information with the small protein modifier ubiquitin, which is typically attached to lysine residues within substrates. During ubiquitin signaling, a three-step enzymatic cascade modifies specific substrates with topologically unique ubiquitin modifications, which mediate changes in the substrate's stability, activity, localization, or interacting proteins. Ubiquitin signaling is critically regulated by deubiquitylases (DUBs), a class of ~100 human enzymes that oppose the conjugation of ubiquitin. DUBs control many essential cellular functions and various aspects of human physiology and development. Recent genetic studies have identified mutations in several DUBs that cause developmental disorders. Here we review principles controlling DUB activity and substrate recruitment that allow these enzymes to regulate ubiquitin signaling during development. We summarize key mechanisms of how DUBs control embryonic and postnatal differentiation processes, highlight developmental disorders that are caused by mutations in particular DUB members, and describe our current understanding of how these mutations disrupt development. Finally, we discuss how emerging tools from human disease genetics will enable the identification and study of novel congenital disease-causing DUBs.
Collapse
Affiliation(s)
- Mohammed A Basar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David B Beck
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Thevenon D, Seffouh I, Pillet C, Crespo-Yanez X, Fauvarque MO, Taillebourg E. A Nucleolar Isoform of the Drosophila Ubiquitin Specific Protease dUSP36 Regulates MYC-Dependent Cell Growth. Front Cell Dev Biol 2020; 8:506. [PMID: 32637412 PMCID: PMC7316882 DOI: 10.3389/fcell.2020.00506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
The c-Myc oncogene is a transcription factor that regulates the expression of a very large set of genes mainly involved in cell growth and proliferation. It is overexpressed in more than 70% of human cancers, illustrating the importance of keeping its levels and activity under control. The ubiquitin proteasome system is a major regulator of MYC levels in humans as well as in model organisms such as Drosophila melanogaster. Although the E3 ligases that promote MYC ubiquitination have been largely investigated, the identity and the role of the deubiquitinating enzymes, which counteract their action is only beginning to be unraveled. Using isoform-specific CRISPR-Cas9 mutagenesis, we show that the Drosophila homolog of the Ubiquitin Specific Protease USP36 has different isoforms with specific sub-cellular localizations and that the nucleolar dUSP36-D isoform is specifically required for cell and organismal growth. We also demonstrate that this isoform interacts with dMYC and the E3 ligase AGO and regulates their stability and ubiquitination levels. Furthermore, we show that dUSP36 is ubiquitinated by AGO and is able to self-deubiquitinate. Finally, we provide in vivo evidence supporting the functional relevance of these regulatory relationships. Together these results reveal that dMYC, AGO and dUSP36 form a tripartite, evolutionary conserved complex that acts as a regulatory node to control dMYC protein levels.
Collapse
|
18
|
Wang L, Qi H, Tang Y, Shen HM. Post-translational Modifications of Key Machinery in the Control of Mitophagy. Trends Biochem Sci 2020; 45:58-75. [DOI: 10.1016/j.tibs.2019.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
|
19
|
Pinto-Fernández A, Davis S, Schofield AB, Scott HC, Zhang P, Salah E, Mathea S, Charles PD, Damianou A, Bond G, Fischer R, Kessler BM. Comprehensive Landscape of Active Deubiquitinating Enzymes Profiled by Advanced Chemoproteomics. Front Chem 2019; 7:592. [PMID: 31555637 PMCID: PMC6727631 DOI: 10.3389/fchem.2019.00592] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Enzymes that bind and process ubiquitin, a small 76-amino-acid protein, have been recognized as pharmacological targets in oncology, immunological disorders, and neurodegeneration. Mass spectrometry technology has now reached the capacity to cover the proteome with enough depth to interrogate entire biochemical pathways including those that contain DUBs and E3 ligase substrates. We have recently characterized the breast cancer cell (MCF7) deep proteome by detecting and quantifying ~10,000 proteins, and within this data set, we can detect endogenous expression of 65 deubiquitylating enzymes (DUBs), whereas matching transcriptomics detected 78 DUB mRNAs. Since enzyme activity provides another meaningful layer of information in addition to the expression levels, we have combined advanced mass spectrometry technology, pre-fractionation, and more potent/selective ubiquitin active-site probes with propargylic-based electrophiles to profile 74 DUBs including distinguishable isoforms for 5 DUBs in MCF7 crude extract material. Competition experiments with cysteine alkylating agents and pan-DUB inhibitors combined with probe labeling revealed the proportion of active cellular DUBs directly engaged with probes by label-free quantitative (LFQ) mass spectrometry. This demonstrated that USP13, 39, and 40 are non-reactive to probe, indicating restricted enzymatic activity under these cellular conditions. Our extended chemoproteomics workflow increases depth of covering the active DUBome, including isoform-specific resolution, and provides the framework for more comprehensive cell-based small-molecule DUB selectivity profiling.
Collapse
Affiliation(s)
- Adán Pinto-Fernández
- University of Oxford, Oxford, United Kingdom.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon Davis
- University of Oxford, Oxford, United Kingdom.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Abigail B Schofield
- University of Oxford, Oxford, United Kingdom.,Christ Church, University of Oxford, Oxford, United Kingdom
| | - Hannah C Scott
- University of Oxford, Oxford, United Kingdom.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ping Zhang
- University of Oxford, Oxford, United Kingdom.,Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Eidarus Salah
- University of Oxford, Oxford, United Kingdom.,Department of Chemistry, University of Oxford, Oxford, United Kingdom.,Structural Genomics Consortium (United Kingdom), Oxford, United Kingdom
| | - Sebastian Mathea
- Structural Genomics Consortium (United Kingdom), Oxford, United Kingdom.,Institute of Pharmaceutical Chemistry, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Philip D Charles
- University of Oxford, Oxford, United Kingdom.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andreas Damianou
- University of Oxford, Oxford, United Kingdom.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gareth Bond
- University of Oxford, Oxford, United Kingdom.,Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- University of Oxford, Oxford, United Kingdom.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- University of Oxford, Oxford, United Kingdom.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Woo B, Baek KH. Regulatory interplay between deubiquitinating enzymes and cytokines. Cytokine Growth Factor Rev 2019; 48:40-51. [PMID: 31208841 PMCID: PMC7108389 DOI: 10.1016/j.cytogfr.2019.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Abstract
Deubiquitinating enzymes (DUBs) are cysteine protease proteins that reverse the ubiquitination by removing ubiquitins from the target protein. With over 100 DUBs identified and categorized into at least 7 families, many DUBs interact with one or more cytokines, influencing cellular processes, such as antiviral responses, inflammatory responses, apoptosis, etc. While some DUBs influence cytokine pathway or production, some DUBs are cytokine-inducible. In this article, we summarize a list of DUBs, their interaction with cytokines, target proteins and mechanisms of action.
Collapse
Affiliation(s)
- Bean Woo
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do, 13488, Republic of Korea; University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
21
|
Clague MJ, Urbé S, Komander D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 2019; 20:338-352. [DOI: 10.1038/s41580-019-0099-1] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
First person – Pawel Leznicki. J Cell Sci 2018. [DOI: 10.1242/jcs.219741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Pawel Leznicki is the first author on ‘Expansion of DUB functionality generated by alternative isoforms – USP35, a case study’, published in Journal of Cell Science. Pawel conducted the research in this article while in Yogesh Kulathu's lab at the University of Dundee, UK. He is now a research associate in the lab of Stephen High at the University of Manchester, UK, investigating protein biogenesis processes and their quality control.
Collapse
|