1
|
Qian M, Liang X, Zeng Q, Zhang C, He N, Ma J. SMU1 Knockdown Suppresses Gastric Carcinoma Growth, Migration, and Invasion and Modulates the Cell Cycle. Cancer Control 2024; 31:10732748241281716. [PMID: 39236066 PMCID: PMC11378178 DOI: 10.1177/10732748241281716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
INTRODUCTION The role of SMU1 in DNA replication and RNA splicing is well-established, yet its specific function and dysregulated mechanisms in gastric cancer (GC) remain inadequately elucidated. This study seeks to investigate the potential oncogenic and progression-promoting effects of SMU1 in GC, with the ultimate goal of informing novel approaches for treatment and diagnosis. METHODS The study investigated the expression levels of SMU1 in GC and adjacent normal tissues by analyzing data from the TCGA (27 tissue pairs) and GEO (47 tissue pairs) databases. Immunohistochemistry was used to examine 277 tumor tissue and adjacent non-tumor tissue spots from GC tissue chips, along with relevant follow-up information. The study further assessed the proliferation, invasion, and migration capabilities of cells by manipulating SMU1 expression levels and conducting various assays, including CCK-8, EdU incorporation, colony formation, transwells, flow cytometry, and subcutaneous tumorigenesis assays. RESULTS Our study revealed a significant upregulation of SMU1 mRNA and protein levels in GC tissues compared to adjacent tissues. Univariate and multivariate Cox analysis demonstrated that elevated levels of SMU1 were independent prognostic factors for GC prognosis (P = 0.036). Additionally, median survival analysis indicated a significant association between high SMU1 expression and poor prognosis in GC patients (P = 0.0002). In experiments conducted both in vivo and in vitro, it was determined that elevated levels of SMU1 can enhance the proliferation, invasion, and migration of GC cells, whereas suppression of SMU1 can impede the progression of GC by modulating the G1/S checkpoint of the cell cycle. CONCLUSIONS Our research introduces the novel idea that SMU1 could serve as a prognostic marker for GC progression, influencing cell proliferation through cell cycle activation. These results offer valuable insights into the understanding, diagnosis, and management of gastric carcinoma.
Collapse
Affiliation(s)
- Meirui Qian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Xue Liang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Qingmei Zeng
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Chen Zhang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Nan He
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jing Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
2
|
Distinct Epileptogenic Mechanisms Associated with Seizures in Wolf-Hirschhorn Syndrome. Mol Neurobiol 2022; 59:3159-3169. [DOI: 10.1007/s12035-022-02792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
|
3
|
Bacheva AV, Gotmanova NN, Belogurov AA, Kudriaeva AA. Control of Genome through Variative Nature of Histone-Modifying Ubiquitin Ligases. BIOCHEMISTRY (MOSCOW) 2021; 86:S71-S95. [PMID: 33827401 DOI: 10.1134/s0006297921140066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Covalent attachment of ubiquitin residue is not only the proteasomal degradation signal, but also a widespread posttranslational modification of cellular proteins in eukaryotes. One of the most important targets of the regulatory ubiquitination are histones. Localization of ubiquitin residue in different regions of the nucleosome attracts a strictly determined set of cellular factors with varied functionality. Depending on the type of histone and the particular lysine residue undergoing modification, histone ubiquitination can lead both to transcription activation and to gene repression, as well as contribute to DNA repair via different mechanisms. An extremely interesting feature of the family of RING E3 ubiquitin ligases catalyzing histone ubiquitination is the striking structural diversity of the domains providing high specificity of modification very similar initial targets. It is obvious that further elucidation of peculiarities of the ubiquitination system involved in histone modification, as well as understanding of physiological role of this process in the maintenance of homeostasis of both single cells and the entire organism, will substantially expand the possibilities of treating a number of socially significant diseases.
Collapse
Affiliation(s)
- Anna V Bacheva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Alexey A Belogurov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Anna A Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
4
|
Wang J, Dubiel D, Wu Y, Cheng Y, Wolf DA, Dubiel W. CSN7B defines a variant COP9 signalosome complex with distinct function in DNA damage response. Cell Rep 2021; 34:108662. [PMID: 33503427 DOI: 10.1016/j.celrep.2020.108662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/23/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mammalian COP9 signalosome (CSN) exists as two variant complexes containing either CSN7A or CSN7B paralogs of unknown functional specialization. Constructing knockout cells, we found that CSN7A and CSN7B have overlapping functions in the deneddylation of cullin-RING ubiquitin ligases. Nevertheless, CSNCSN7B has a unique function in DNA double-strand break (DSB) sensing, being selectively required for ataxia telangiectasia mutated (ATM)-dependent formation of NBS1S343p and γH2AX as well as DNA-damage-induced apoptosis triggered by mitomycin C and ionizing radiation. Live-cell microscopy revealed rapid recruitment of CSN7B but not CSN7A to DSBs. Resistance of CSN7B knockout cells to DNA damage is explained by the failure to deneddylate an upstream DSB signaling component, causing a switch in DNA repair pathway choice with increased utilization of non-homologous end joining over homologous recombination. In mice, CSN7B knockout tumors are resistant to DNA-damage-inducing chemotherapy, thus providing an explanation for the poor prognosis of tumors with low CSN7B expression.
Collapse
Affiliation(s)
- Jing Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
| | - Dawadschargal Dubiel
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Yanmeng Wu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
| | - Yabin Cheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
| | - Dieter A Wolf
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China.
| | - Wolfgang Dubiel
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China; Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| |
Collapse
|
5
|
Epigenetic modification and a role for the E3 ligase RNF40 in cancer development and metastasis. Oncogene 2020; 40:465-474. [PMID: 33199825 PMCID: PMC7819849 DOI: 10.1038/s41388-020-01556-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
Abstract
RNF40 (OMIM: 607700) is a really interesting new gene (RING) finger E3 ubiquitin ligase containing multiple coiled-coil domains and a C-terminal RING finger motif, which engage in protein–DNA and protein–protein interactions. RNF40 encodes a polypeptide of 1001 amino acids with a predicted molecular mass of 113,678 Da. RNF40 and its paralog RNF20 form a stable heterodimer complex that can monoubiquitylate histone H2B at lysine 120 as well as other nonhistone proteins. Cancer is a major public health problem and the second leading cause of death. Through its protein ubiquitylation activity, RNF40 acts as a tumor suppressor or oncogene to play major epigenetic roles in cancer development, progression, and metastasis, highlighting the essential function of RNF40 and the importance of studying it. In this review, we summarize current knowledge about RNF40 gene structure and the role of RNF40 in histone H2B monoubiquitylation, DNA damage repair, apoptosis, cancer development, and metastasis. We also underscore challenges in applying this information to cancer prognosis and prevention and highlight the urgent need for additional investigations of RNF40 as a potential target for cancer therapeutics.
Collapse
|
6
|
The functional analysis of Cullin 7 E3 ubiquitin ligases in cancer. Oncogenesis 2020; 9:98. [PMID: 33130829 PMCID: PMC7603503 DOI: 10.1038/s41389-020-00276-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023] Open
Abstract
Cullin (CUL) proteins have critical roles in development and cancer, however few studies on CUL7 have been reported due to its characteristic molecular structure. CUL7 forms a complex with the ROC1 ring finger protein, and only two F-box proteins Fbxw8 and Fbxw11 have been shown to bind to CUL7. Interestingly, CUL7 can interact with its substrates by forming a novel complex that is independent of these two F-box proteins. The biological implications of CUL-ring ligase 7 (CRL7) suggest that the CRL7 may not only perform a proteolytic function but may also play a non-proteolytic role. Among the existing studied CRL7-based E3 ligases, CUL7 exerts both tumor promotion and suppression in a context-dependent manner. Currently, the mechanism of CUL7 in cancer remains unclear, and no studies have addressed potential therapies targeting CUL7. Consistent with the roles of the various CRL7 adaptors exhibit, targeting CRL7 might be an effective strategy for cancer prevention and treatment. We systematically describe the recent major advances in understanding the role of the CUL7 E3 ligase in cancer and further summarize its potential use in clinical therapy.
Collapse
|
7
|
Jang SM, Redon CE, Thakur BL, Bahta MK, Aladjem MI. Regulation of cell cycle drivers by Cullin-RING ubiquitin ligases. Exp Mol Med 2020; 52:1637-1651. [PMID: 33005013 PMCID: PMC8080560 DOI: 10.1038/s12276-020-00508-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
The last decade has revealed new roles for Cullin-RING ubiquitin ligases (CRLs) in a myriad of cellular processes, including cell cycle progression. In addition to CRL1, also named SCF (SKP1-Cullin 1-F box protein), which has been known for decades as an important factor in the regulation of the cell cycle, it is now evident that all eight CRL family members are involved in the intricate cellular pathways driving cell cycle progression. In this review, we summarize the structure of CRLs and their functions in driving the cell cycle. We focus on how CRLs target key proteins for degradation or otherwise alter their functions to control the progression over the various cell cycle phases leading to cell division. We also summarize how CRLs and the anaphase-promoting complex/cyclosome (APC/C) ligase complex closely cooperate to govern efficient cell cycle progression.
Collapse
Affiliation(s)
- Sang-Min Jang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA.
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Meriam K Bahta
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA.
| |
Collapse
|
8
|
Pan ZQ. Cullin-RING E3 Ubiquitin Ligase 7 in Growth Control and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:285-296. [PMID: 31898234 PMCID: PMC8343956 DOI: 10.1007/978-981-15-1025-0_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CRL7Fbxw8 is an E3 ubiquitin ligase complex, containing cullin7 (CUL7) as a scaffold, the F-box protein Fbxw8 as a substrate receptor, the Skp1 adaptor, and the ROC1/Rbx1 RING finger protein for working with E2 enzyme to facilitate ubiquitin transfer. This chapter provides an update on studies linking CRL7Fbxw8 to hereditary human growth retardation disease, as at least 64 cul7 germ line mutations were found in patients with autosomal recessive 3-M syndrome. CRL7Fbxw8 interacts with two additional 3-M associated proteins OBSL1 and CCDC8, leading to subcellular localization of the E3 complex to regions including plasma membrane, centrosome, and Golgi. At least ten mammalian cellular proteins were identified or implicated as CRL7Fbxw8 substrates. Discussion focuses on the possible impact of CRL7Fbxw8-mediated proteolytic or non-proteolytic pathways in growth control and cancer.
Collapse
Affiliation(s)
- Zhen-Qiang Pan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Wang P, Yan F, Li Z, Yu Y, Parnell SE, Xiong Y. Impaired plasma membrane localization of ubiquitin ligase complex underlies 3-M syndrome development. J Clin Invest 2019; 129:4393-4407. [PMID: 31343991 DOI: 10.1172/jci129107] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
3-M primordial dwarfism is an inherited disease characterized by severe pre- and postnatal growth retardation and by mutually exclusive mutations in three genes, CUL7, OBSL1, and CCDC8. The mechanism underlying 3-M dwarfism is not clear. We showed here that CCDC8, derived from a retrotransposon Gag protein in placental mammals, exclusively localized on the plasma membrane and was phosphorylated by CK2 and GSK3. Phosphorylation of CCDC8 resulted in its binding first with OBSL1, and then CUL7, leading to the membrane assembly of the 3-M E3 ubiquitin ligase complex. We identified LL5β, a plasma membrane protein that regulates cell migration, as a substrate of 3-M ligase. Wnt inhibition of CCDC8 phosphorylation or patient-derived mutations in 3-M genes disrupted membrane localization of the 3-M complex and accumulated LL5β. Deletion of Ccdc8 in mice impaired trophoblast migration and placental development, resulting in intrauterine growth restriction and perinatal lethality. These results identified a mechanism regulating cell migration and placental development that underlies the development of 3-M dwarfism.
Collapse
Affiliation(s)
- Pu Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Zhijun Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Yanbao Yu
- J. Craig Venter Institute, Rockville, Maryland, USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies.,Department of Cell Biology and Physiology
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA.,Department of Biochemistry and Biophysics, and.,Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Destabilization of the human RED-SMU1 splicing complex as a basis for host-directed antiinfluenza strategy. Proc Natl Acad Sci U S A 2019; 116:10968-10977. [PMID: 31076555 DOI: 10.1073/pnas.1901214116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
New therapeutic strategies targeting influenza are actively sought due to limitations in current drugs available. Host-directed therapy is an emerging concept to target host functions involved in pathogen life cycles and/or pathogenesis, rather than pathogen components themselves. From this perspective, we focused on an essential host partner of influenza viruses, the RED-SMU1 splicing complex. Here, we identified two synthetic molecules targeting an α-helix/groove interface essential for RED-SMU1 complex assembly. We solved the structure of the SMU1 N-terminal domain in complex with RED or bound to one of the molecules identified to disrupt this complex. We show that these compounds inhibiting RED-SMU1 interaction also decrease endogenous RED-SMU1 levels and inhibit viral mRNA splicing and viral multiplication, while preserving cell viability. Overall, our data demonstrate the potential of RED-SMU1 destabilizing molecules as an antiviral therapy that could be active against a wide range of influenza viruses and be less prone to drug resistance.
Collapse
|
11
|
First person – Varun Jayeshkumar Shah. J Cell Sci 2018. [DOI: 10.1242/jcs.217794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Varun Jayeshkumar Shah is the first author on ‘CRL7SMU1 E3 ligase complex-driven H2B ubiquitination functions in sister chromatid cohesion by regulating SMC1 expression’, published in Journal of Cell Science. Varun is a PhD student in the lab of Dr Subbareddy Maddika at the Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India, investigating the role of LisH-domain-containing proteins in the assembly of multi-subunit E3 ligase complexes.
Collapse
|