1
|
Rubio LS, Mohajan S, Gross DS. Heat Shock Factor 1 forms nuclear condensates and restructures the yeast genome before activating target genes. eLife 2024; 12:RP92464. [PMID: 39405097 PMCID: PMC11479590 DOI: 10.7554/elife.92464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
In insects and mammals, 3D genome topology has been linked to transcriptional states yet whether this link holds for other eukaryotes is unclear. Using both ligation proximity and fluorescence microscopy assays, we show that in Saccharomyces cerevisiae, Heat Shock Response (HSR) genes dispersed across multiple chromosomes and under the control of Heat Shock Factor (Hsf1) rapidly reposition in cells exposed to acute ethanol stress and engage in concerted, Hsf1-dependent intergenic interactions. Accompanying 3D genome reconfiguration is equally rapid formation of Hsf1-containing condensates. However, in contrast to the transience of Hsf1-driven intergenic interactions that peak within 10-20 min and dissipate within 1 hr in the presence of 8.5% (v/v) ethanol, transcriptional condensates are stably maintained for hours. Moreover, under the same conditions, Pol II occupancy of HSR genes, chromatin remodeling, and RNA expression are detectable only later in the response and peak much later (>1 hr). This contrasts with the coordinate response of HSR genes to thermal stress (39°C) where Pol II occupancy, transcription, histone eviction, intergenic interactions, and formation of Hsf1 condensates are all rapid yet transient (peak within 2.5-10 min and dissipate within 1 hr). Therefore, Hsf1 forms condensates, restructures the genome and transcriptionally activates HSR genes in response to both forms of proteotoxic stress but does so with strikingly different kinetics. In cells subjected to ethanol stress, Hsf1 forms condensates and repositions target genes before transcriptionally activating them.
Collapse
Affiliation(s)
- Linda S Rubio
- Department of Biochemistry and Molecular Biology Louisiana State University Health Sciences CenterShreveportUnited States
| | - Suman Mohajan
- Department of Biochemistry and Molecular Biology Louisiana State University Health Sciences CenterShreveportUnited States
| | - David S Gross
- Department of Biochemistry and Molecular Biology Louisiana State University Health Sciences CenterShreveportUnited States
| |
Collapse
|
2
|
Rubio LS, Mohajan S, Gross DS. Heat Shock Factor 1 forms nuclear condensates and restructures the yeast genome before activating target genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.28.560064. [PMID: 37808805 PMCID: PMC10557744 DOI: 10.1101/2023.09.28.560064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In insects and mammals, 3D genome topology has been linked to transcriptional states yet whether this link holds for other eukaryotes is unclear. Using both ligation proximity and fluorescence microscopy assays, we show that in Saccharomyces cerevisiae, Heat Shock Response (HSR) genes dispersed across multiple chromosomes and under the control of Heat Shock Factor (Hsf1) rapidly reposition in cells exposed to acute ethanol stress and engage in concerted, Hsf1-dependent intergenic interactions. Accompanying 3D genome reconfiguration is equally rapid formation of Hsf1-containing condensates. However, in contrast to the transience of Hsf1-driven intergenic interactions that peak within 10-20 min and dissipate within 1 h in the presence of 8.5% (v/v) ethanol, transcriptional condensates are stably maintained for hours. Moreover, under the same conditions, Pol II occupancy of HSR genes, chromatin remodeling, and RNA expression are detectable only later in the response and peak much later (>1 h). This contrasts with the coordinate response of HSR genes to thermal stress (39°C) where Pol II occupancy, transcription, histone eviction, intergenic interactions, and formation of Hsf1 condensates are all rapid yet transient (peak within 2.5-10 min and dissipate within 1 h). Therefore, Hsf1 forms condensates, restructures the genome and transcriptionally activates HSR genes in response to both forms of proteotoxic stress but does so with strikingly different kinetics. In cells subjected to ethanol stress, Hsf1 forms condensates and repositions target genes before transcriptionally activating them.
Collapse
Affiliation(s)
- Linda S. Rubio
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - Suman Mohajan
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - David S. Gross
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| |
Collapse
|
3
|
Ando R, Ishikawa Y, Kamada Y, Izawa S. Contribution of the yeast bi-chaperone system in the restoration of the RNA helicase Ded1 and translational activity under severe ethanol stress. J Biol Chem 2023; 299:105472. [PMID: 37979914 PMCID: PMC10746526 DOI: 10.1016/j.jbc.2023.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Preexposure to mild stress often improves cellular tolerance to subsequent severe stress. Severe ethanol stress (10% v/v) causes persistent and pronounced translation repression in Saccharomyces cerevisiae. However, it remains unclear whether preexposure to mild stress can mitigate translation repression in yeast cells under severe ethanol stress. We found that the translational activity of yeast cells pretreated with 6% (v/v) ethanol was initially significantly repressed under subsequent 10% ethanol but was then gradually restored even under severe ethanol stress. We also found that 10% ethanol caused the aggregation of Ded1, which plays a key role in translation initiation as a DEAD-box RNA helicase. Pretreatment with 6% ethanol led to the gradual disaggregation of Ded1 under subsequent 10% ethanol treatment in wild-type cells but not in fes1Δhsp104Δ cells, which are deficient in Hsp104 with significantly reduced capacity for Hsp70. Hsp104 and Hsp70 are key components of the bi-chaperone system that play a role in yeast protein quality control. fes1Δhsp104Δ cells did not restore translational activity under 10% ethanol, even after pretreatment with 6% ethanol. These results indicate that the regeneration of Ded1 through the bi-chaperone system leads to the gradual restoration of translational activity under continuous severe stress. This study provides new insights into the acquired tolerance of yeast cells to severe ethanol stress and the resilience of their translational activity.
Collapse
Affiliation(s)
- Ryoko Ando
- Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | - Yu Ishikawa
- Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | | | - Shingo Izawa
- Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
4
|
Kingma E, Diepeveen ET, Iñigo de la Cruz L, Laan L. Pleiotropy drives evolutionary repair of the responsiveness of polarized cell growth to environmental cues. Front Microbiol 2023; 14:1076570. [PMID: 37520345 PMCID: PMC10382278 DOI: 10.3389/fmicb.2023.1076570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
The ability of cells to translate different extracellular cues into different intracellular responses is vital for their survival in unpredictable environments. In Saccharomyces cerevisiae, cell polarity is modulated in response to environmental signals which allows cells to adopt varying morphologies in different external conditions. The responsiveness of cell polarity to extracellular cues depends on the integration of the molecular network that regulates polarity establishment with networks that signal environmental changes. The coupling of molecular networks often leads to pleiotropic interactions that can make it difficult to determine whether the ability to respond to external signals emerges as an evolutionary response to environmental challenges or as a result of pleiotropic interactions between traits. Here, we study how the propensity of the polarity network of S. cerevisiae to evolve toward a state that is responsive to extracellular cues depends on the complexity of the environment. We show that the deletion of two genes, BEM3 and NRP1, disrupts the ability of the polarity network to respond to cues that signal the onset of the diauxic shift. By combining experimental evolution with whole-genome sequencing, we find that the restoration of the responsiveness to these cues correlates with mutations in genes involved in the sphingolipid synthesis pathway and that these mutations frequently settle in evolving populations irrespective of the complexity of the selective environment. We conclude that pleiotropic interactions make a significant contribution to the evolution of networks that are responsive to extracellular cues.
Collapse
|
5
|
Septin Defects Favour Symmetric Inheritance of the Budding Yeast Deceptive Courtship Memory. Int J Mol Sci 2023; 24:ijms24033003. [PMID: 36769325 PMCID: PMC9917509 DOI: 10.3390/ijms24033003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Mnemons are prion-like elements that encode cellular memories of past cellular adaptations and do not spread to progenies during cell divisions. During the deceptive courtship in budding yeast, the Whi3 mnemon (Whi3mnem) condenses into a super-assembly to encode a mating pheromone refractory state established in the mother cell. Whi3mnem is confined to the mother cell such that their daughter cells have the ability to respond to the mating pheromone. Confinement of Whi3mnem involves its association with the endoplasmic reticulum membranes and the compartmentalization of these membranes by the lateral membrane diffusion barrier at the bud neck, the limit between the mother cell and the bud. However, during the first cell division after the establishment of the pheromone refractory state, this adaptation is more likely to be inherited by the daughter cell than in subsequent cell divisions. Here, we show that the first cell division is associated with larger daughter cells and cytokinesis defects, traits that are not observed in subsequent cell divisions. The cytoskeletal septin protein shows aberrant localisation in these divisions and the septin-dependent endoplasmic reticulum membrane diffusion barrier is weakened. Overall, these data suggest that cytokinesis defects associated with prolonged cell division can alter the confinement and inheritance pattern of a cellular memory.
Collapse
|
6
|
Furutani N, Izawa S. Adaptability of wine yeast to ethanol-induced protein denaturation. FEMS Yeast Res 2022; 22:6831633. [PMID: 36385376 DOI: 10.1093/femsyr/foac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
This year marks the 200th anniversary of the birth of Dr Louis Pasteur (1822-1895), who revealed that alcoholic fermentation is performed by yeast cells. Subsequently, details of the mechanisms of alcoholic fermentation and glycolysis in yeast cells have been elucidated. However, the mechanisms underlying the high tolerance and adaptability of yeast cells to ethanol are not yet fully understood. This review presents the response and adaptability of yeast cells to ethanol-induced protein denaturation. Herein, we describe the adverse effects of severe ethanol stress on intracellular proteins and the responses of yeast cells. Furthermore, recent findings on the acquired resistance of wine yeast cells to severe ethanol stress that causes protein denaturation are discussed, not only under laboratory conditions, but also during the fermentation process at 15°C to mimic the vinification process of white wine.
Collapse
Affiliation(s)
- Noboru Furutani
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| |
Collapse
|
7
|
Actin dynamics in protein homeostasis. Biosci Rep 2022; 42:231720. [PMID: 36043949 PMCID: PMC9469105 DOI: 10.1042/bsr20210848] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cell homeostasis is maintained in all organisms by the constant adjustment of cell constituents and organisation to account for environmental context. Fine-tuning of the optimal balance of proteins for the conditions, or protein homeostasis, is critical to maintaining cell homeostasis. Actin, a major constituent of the cytoskeleton, forms many different structures which are acutely sensitive to the cell environment. Furthermore, actin structures interact with and are critically important for the function and regulation of multiple factors involved with mRNA and protein production and degradation, and protein regulation. Altogether, actin is a key, if often overlooked, regulator of protein homeostasis across eukaryotes. In this review, we highlight these roles and how they are altered following cell stress, from mRNA transcription to protein degradation.
Collapse
|
8
|
Nguyet VTA, Furutani N, Ando R, Izawa S. Acquired resistance to severe ethanol stress-induced inhibition of proteasomal proteolysis in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2022; 1866:130241. [PMID: 36075516 DOI: 10.1016/j.bbagen.2022.130241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Although the budding yeast, Saccharomyces cerevisiae, produces ethanol via alcoholic fermentation, high-concentration ethanol is harmful to yeast cells. Severe ethanol stress (> 9% v/v) inhibits protein synthesis and increases the level of intracellular protein aggregates. However, its effect on proteolysis in yeast cells remains largely unknown. METHODS We examined the effects of ethanol on proteasomal proteolysis in yeast cells through the cycloheximide-chase analysis of short-lived proteins. We also assayed protein degradation in the auxin-inducible degron system and the ubiquitin-independent degradation of Spe1 under ethanol stress conditions. RESULTS We demonstrated that severe ethanol stress strongly inhibited the degradation of the short-lived proteins Rim101 and Gic2. Severe ethanol stress also inhibited protein degradation in the auxin-inducible degron system (Paf1-AID*-6FLAG) and the ubiquitin-independent degradation of Spe1. Proteasomal degradation of these proteins, which was inhibited by severe ethanol stress, resumed rapidly once the ethanol was removed. These results suggested that proteasomal proteolysis in yeast cells is reversibly inhibited by severe ethanol stress. Furthermore, yeast cells pretreated with mild ethanol stress (6% v/v) showed proteasomal proteolysis even with 10% (v/v) ethanol, indicating that yeast cells acquired resistance to proteasome inhibition caused by severe ethanol stress. However, yeast cells failed to acquire sufficient resistance to severe ethanol stress-induced proteasome inhibition when new protein synthesis was blocked with cycloheximide during pretreatment, or when Rpn4 was lost. CONCLUSIONS AND GENERAL SIGNIFICANCE Our results provide novel insights into the adverse effects of severe ethanol stress on proteasomal proteolysis and ethanol adaptability in yeast.
Collapse
Affiliation(s)
- Vo Thi Anh Nguyet
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Noboru Furutani
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ryoko Ando
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
9
|
Zhang N, Shang Y, Wang F, Wang D, Hong J. Influence of prefoldin subunit 4 on the tolerance of Kluyveromyces marxianus to lignocellulosic biomass-derived inhibitors. Microb Cell Fact 2021; 20:224. [PMID: 34906148 PMCID: PMC8672639 DOI: 10.1186/s12934-021-01715-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Kluyveromyces marxianus is a potentially excellent host for microbial cell factories using lignocellulosic biomass, due to its thermotolerance, high growth rate, and wide substrate spectrum. However, its tolerance to inhibitors derived from lignocellulosic biomass pretreatment needs to be improved. The prefoldin complex assists the folding of cytoskeleton which relates to the stress tolerance, moreover, several subunits of prefoldin have been verified to be involved in gene expression regulation. With the presence of inhibitors, the expression of a gene coding the subunit 4 of prefoldin (KmPFD4), a possible transcription factor, was significantly changed. Therefore, KmPFD4 was selected to evaluate its functions in inhibitors tolerance. RESULTS In this study, the disruption of the prefoldin subunit 4 gene (KmPFD4) led to increased concentration of intracellular reactive oxygen species (ROS) and disturbed the assembly of actin and tubulin in the presence of inhibitors, resulting in reduced inhibitor tolerance. Nuclear localization of KmPFD4 indicated that it could regulate gene expression. Transcriptomic analysis showed that upregulated gene expression related to ROS elimination, ATP production, and NAD+ synthesis, which is a response to the presence of inhibitors, disappeared in KmPFD4-disrupted cells. Thus, KmPFD4 impacts inhibitor tolerance by maintaining integration of the cytoskeleton and directly or indirectly affecting the expression of genes in response to inhibitors. Finally, overexpression of KmPFD4 enhanced ethanol fermentation with a 46.27% improvement in productivity in presence of the inhibitors. CONCLUSION This study demonstrated that KmPFD4 plays a positive role in the inhibitor tolerance and can be applied for the development of inhibitor-tolerant platform strains.
Collapse
Affiliation(s)
- Nini Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Yingying Shang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Feier Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Dongmei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China.
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China.
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui, 230026, People's Republic of China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China.
| |
Collapse
|
10
|
Acquired Resistance to Severe Ethanol Stress in Saccharomyces cerevisiae Protein Quality Control. Appl Environ Microbiol 2021; 87:AEM.02353-20. [PMID: 33361368 DOI: 10.1128/aem.02353-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Acute severe ethanol stress (10% [vol/vol]) damages proteins and causes the intracellular accumulation of insoluble proteins in Saccharomyces cerevisiae On the other hand, a pretreatment with mild stress increases tolerance to subsequent severe stress, which is called acquired stress resistance. It currently remains unclear whether the accumulation of insoluble proteins under severe ethanol stress may be mitigated by increasing protein quality control (PQC) activity in cells pretreated with mild stress. In the present study, we examined the induction of resistance to severe ethanol stress in PQC and confirmed that a pretreatment with 6% (vol/vol) ethanol or mild thermal stress at 37°C significantly reduced insoluble protein levels and the aggregation of Lsg1, which is prone to denaturation and aggregation by stress, in yeast cells under 10% (vol/vol) ethanol stress. The induction of this stress resistance required the new synthesis of proteins; the expression of proteins comprising the bichaperone system (Hsp104, Ssa3, and Fes1), Sis1, and Hsp42 was upregulated during the pretreatment and maintained under subsequent severe ethanol stress. Since the pretreated cells of deficient mutants in the bichaperone system (fes1Δ hsp104Δ and ssa2Δ ssa3Δ ssa4Δ) failed to sufficiently reduce insoluble protein levels and Lsg1 aggregation, the enhanced activity of the bichaperone system appears to be important for the induction of adequate stress resistance. In contrast, the importance of proteasomes and aggregases (Btn2 and Hsp42) in the induction of stress resistance has not been confirmed. These results provide further insights into the PQC activity of yeast cells under severe ethanol stress, including the brewing process.IMPORTANCE Although the budding yeast S. cerevisiae, which is used in the production of alcoholic beverages and bioethanol, is highly tolerant of ethanol, high concentrations of ethanol are also stressful to the yeast and cause various adverse effects, including protein denaturation. A pretreatment with mild stress improves the ethanol tolerance of yeast cells; however, it currently remains unclear whether it increases PQC activity and reduces the levels of denatured proteins. In the present study, we found that a pretreatment with mild ethanol upregulated the expression of proteins involved in PQC and mitigated the accumulation of insoluble proteins, even under severe ethanol stress. These results provide novel insights into ethanol tolerance and the adaptive capacity of yeast. They may also contribute to research on the physiology of yeast cells during the brewing process, in which the concentration of ethanol gradually increases.
Collapse
|