1
|
Milne SM, Edeen PT, Fay DS. TAT-1, a phosphatidylserine flippase, affects molting and regulates membrane trafficking in the epidermis of Caenorhabditis elegans. Genetics 2025; 229:iyae216. [PMID: 39722491 PMCID: PMC12086690 DOI: 10.1093/genetics/iyae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Membrane trafficking is a conserved process required for the import, export, movement, and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. Using a genetic approach, we identified reduction-of-function mutations in tat-1 that suppress nekl-associated molting defects. tat-1 encodes the C. elegans ortholog of mammalian ATP8A1/2, a phosphatidylserine flippase that promotes the asymmetric distribution of phosphatidylserine on the cytosolic leaflet of lipid membrane bilayers. CHAT-1 (human CDC50), a conserved chaperone, was required for the correct localization of TAT-1, and chat-1 inhibition strongly suppressed nekl defects. Using a phosphatidylserine sensor, we found that TAT-1 was required for the normal localization of phosphatidylserine at apical endosomes and that loss of TAT-1 led to aberrant endosomal morphologies. Consistent with these data, TAT-1 localized to early endosomes and to recycling endosomes marked with RME-1, the C. elegans ortholog of the human EPS15 homology domain-containing protein, EHD1. TAT-1, phosphatidylserine biosynthesis, and the phosphatidylserine-binding protein RFIP-2 (human RAB11-FIP2) were all required for the normal localization of RME-1 to apical endosomes. Consistent with these proteins functioning together, inhibition of RFIP-2 or RME-1 led to the partial suppression of nekl molting defects, as did inhibition of phosphatidylserine biosynthesis. We propose that TAT-1 flippase activity, in conjunction with RFIP-2, promotes the recruitment of RME-1 to apical recycling endosomes and that inhibition of TAT-1-RFIP-2-RME-1 can compensate for a reduction in NEKL activities.
Collapse
Affiliation(s)
- Shae M Milne
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| | - Philip T Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| |
Collapse
|
2
|
Milne SM, Edeen PT, Fay DS. TAT-1, a phosphatidylserine flippase, affects molting and regulates membrane trafficking in the epidermis of C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613099. [PMID: 39314363 PMCID: PMC11419146 DOI: 10.1101/2024.09.15.613099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Membrane trafficking is a conserved process required for the movement and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. We used a genetic approach to identify reduction-of-function mutations in tat-1 that suppress nekl -associated molting defects. tat-1 encodes the C. elegans ortholog of mammalian ATP8A1/2, a phosphatidylserine (PS) flippase that promotes the asymmetric distribution of PS to the cytosolic leaflet of lipid membrane bilayers. CHAT-1 (human CDC50), a conserved chaperone, was required for the correct localization of TAT-1, and chat-1 inhibition strongly suppressed nekl defects. Using a PS sensor, we found that TAT-1 was required for the normal localization of PS at apical endosomes and that loss of TAT-1 led to aberrant endosomal morphologies. Consistent with this, TAT-1 localized to early endosomes and to recycling endosomes marked with RME-1, the C. elegans ortholog of the human EPS15 homology (EH) domain-containing protein, EHD1. TAT-1, PS biosynthesis, and the PS-binding protein RFIP-2 (human RAB11-FIP2) were all required for the normal localization of RME-1 to apical endosomes. Consistent with these proteins functioning together, inhibition of RFIP-2 or RME-1 led to the partial suppression of nekl molting defects, as did the inhibition of PS biosynthesis. Using the auxin-inducible degron system, we found that depletion of NEKL-2 or NEKL-3 led to defects in RME-1 localization and that a reduction in TAT-1 function partially restored RME-1 localization in NEKL-3-depleted cells. ARTICLE SUMMARY Endocytosis is an essential process required for the movement of proteins and lipids within cells. NEKL-2 and NEKL-3, two evolutionarily conserved proteins in the nematode Caenorhabditis elegans , are important regulators of endocytosis. In the current study, the authors describe a new functional link between the NEKLs and several proteins with known roles in endocytosis including TAT-1, a conserved enzyme that moves lipids between the bilayers of cellular membranes. As previous work implicated NEKLs in developmental defects and cancer, the present study can provide new insights into how the misregulation of endocytosis affects human health and disease.
Collapse
|
3
|
Harders RH, Morthorst TH, Landgrebe LE, Lande AD, Fuglsang MS, Mortensen SB, Feteira-Montero V, Jensen HH, Wesseltoft JB, Olsen A. CED-6/GULP and components of the clathrin-mediated endocytosis machinery act redundantly to correctly display CED-1 on the cell membrane in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2024; 14:jkae088. [PMID: 38696649 PMCID: PMC11228867 DOI: 10.1093/g3journal/jkae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024]
Abstract
CED-1 (cell death abnormal) is a transmembrane receptor involved in the recognition of "eat-me" signals displayed on the surface of apoptotic cells and thus central for the subsequent engulfment of the cell corpse in Caenorhabditis elegans. The roles of CED-1 in engulfment are well established, as are its downstream effectors. The latter include the adapter protein CED-6/GULP and the ATP-binding cassette family homolog CED-7. However, how CED-1 is maintained on the plasma membrane in the absence of engulfment is currently unknown. Here, we show that CED-6 and CED-7 have a novel role in maintaining CED-1 correctly on the plasma membrane. We propose that the underlying mechanism is via endocytosis as CED-6 and CED-7 act redundantly with clathrin and its adaptor, the Adaptor protein 2 complex, in ensuring correct CED-1 localization. In conclusion, CED-6 and CED-7 impact other cellular processes than engulfment of apoptotic cells.
Collapse
Affiliation(s)
- Rikke Hindsgaul Harders
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Tine H Morthorst
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus, DK-8000, Denmark
| | - Line E Landgrebe
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus, DK-8000, Denmark
| | - Anna D Lande
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus, DK-8000, Denmark
| | - Marie Sikjær Fuglsang
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus, DK-8000, Denmark
| | - Stine Bothilde Mortensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Verónica Feteira-Montero
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Helene Halkjær Jensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Jonas Bruhn Wesseltoft
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Anders Olsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| |
Collapse
|
4
|
Heng BL, Wu FY, Tong XY, Zou GJ, Ouyang JM. Corn Silk Polysaccharide Reduces the Risk of Kidney Stone Formation by Reducing Oxidative Stress and Inhibiting COM Crystal Adhesion and Aggregation. ACS OMEGA 2024; 9:19236-19249. [PMID: 38708219 PMCID: PMC11064203 DOI: 10.1021/acsomega.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 05/07/2024]
Abstract
The aim of this study is to explore the inhibition of nanocalcium oxalate monohydrate (nano-COM) crystal adhesion and aggregation on the HK-2 cell surface after the protection of corn silk polysaccharides (CSPs) and the effect of carboxyl group (-COOH) content and polysaccharide concentration. METHOD HK-2 cells were damaged by 100 nm COM crystals to build an injury model. The cells were protected by CSPs with -COOH contents of 3.92% (CSP0) and 16.38% (CCSP3), respectively. The changes in the biochemical indexes of HK-2 cells and the difference in adhesion amount and aggregation degree of nano-COM on the cell surface before and after CSP protection were detected. RESULTS CSP0 and CCSP3 protection can obviously inhibit HK-2 cell damage caused by nano-COM crystals, restore cytoskeleton morphology, reduce intracellular ROS level, inhibit phosphoserine eversion, restore the polarity of the mitochondrial membrane potential, normalize the cell cycle process, and reduce the expression of adhesion molecules, OPN, Annexin A1, HSP90, HAS3, and CD44 on the cell surface. Finally, the adhesion and aggregation of nano-COM crystals on the cell surface were effectively inhibited. The carboxymethylated CSP3 exhibited a higher protective effect on cells than the original CSP0, and cell viability was further improved with the increase in polysaccharide concentration. CONCLUSIONS CSPs can protect HK-2 cells from calcium oxalate crystal damage and effectively reduce the adhesion and aggregation of nano-COM crystals on the cell surface, which is conducive to inhibiting the formation of calcium oxalate kidney stones.
Collapse
Affiliation(s)
- Bao-Li Heng
- Yingde
Center, Institute of Kidney Surgery, Jinan
University, Guangdong 510000, China
- Department
of Urology, People’s Hospital of
Yingde City, Yingde 513000, China
| | - Fan-Yu Wu
- Yingde
Center, Institute of Kidney Surgery, Jinan
University, Guangdong 510000, China
- Department
of Urology, People’s Hospital of
Yingde City, Yingde 513000, China
| | - Xin-Yi Tong
- Institute
of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Guo-Jun Zou
- Institute
of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute
of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Suehiro Y, Yoshina S, Motohashi T, Iwata S, Dejima K, Mitani S. Efficient collection of a large number of mutations by mutagenesis of DNA damage response defective animals. Sci Rep 2021; 11:7630. [PMID: 33828169 PMCID: PMC8027614 DOI: 10.1038/s41598-021-87226-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/24/2021] [Indexed: 02/01/2023] Open
Abstract
With the development of massive parallel sequencing technology, it has become easier to establish new model organisms that are ideally suited to the specific biological phenomena of interest. Considering the history of research using classical model organisms, we believe that the efficient construction and sharing of gene mutation libraries will facilitate the progress of studies using these new model organisms. Using C. elegans, we applied the TMP/UV mutagenesis method to animals lacking function in the DNA damage response genes atm-1 and xpc-1. This method produces genetic mutations three times more efficiently than mutagenesis of wild-type animals. Furthermore, we confirmed that the use of next-generation sequencing and the elimination of false positives through machine learning could automate the process of mutation identification with an accuracy of over 95%. Eventually, we sequenced the whole genomes of 488 strains and isolated 981 novel mutations generated by the present method; these strains have been made available to anyone who wants to use them. Since the targeted DNA damage response genes are well conserved and the mutagens used in this study are also effective in a variety of species, we believe that our method is generally applicable to a wide range of animal species.
Collapse
Affiliation(s)
- Yuji Suehiro
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Tomoko Motohashi
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Satoru Iwata
- Chubu University Center for Education in Laboratory Animal Research, Kasugai, Aichi, Japan
| | - Katsufumi Dejima
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Shinjuku, Tokyo, Japan.
| |
Collapse
|
6
|
Perez MA, Watts JL. Worms, Fat, and Death: Caenorhabditis elegans Lipid Metabolites Regulate Cell Death. Metabolites 2021; 11:metabo11020125. [PMID: 33672292 PMCID: PMC7926963 DOI: 10.3390/metabo11020125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/28/2022] Open
Abstract
Caenorhabditis elegans is well-known as the model organism used to elucidate the genetic pathways underlying the first described form of regulated cell death, apoptosis. Since then, C. elegans investigations have contributed to the further understanding of lipids in apoptosis, especially the roles of phosphatidylserines and phosphatidylinositols. More recently, studies in C. elegans have shown that dietary polyunsaturated fatty acids can induce the non-apoptotic, iron-dependent form of cell death, ferroptosis. In this review, we examine the roles of various lipids in specific aspects of regulated cell death, emphasizing recent work in C. elegans.
Collapse
|