1
|
Lv T, Li S, Li Q, Meng L, Yang J, Liu L, Lv C, Zhang P. The Role of RyR2 Mutations in Congenital Heart Diseases: Insights Into Cardiac Electrophysiological Mechanisms. J Cardiovasc Electrophysiol 2025; 36:683-692. [PMID: 39803791 DOI: 10.1111/jce.16569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/10/2024] [Accepted: 01/01/2025] [Indexed: 03/14/2025]
Abstract
Ryanodine receptor 2 (RyR2) protein, a calcium ion release channel in the sarcoplasmic reticulum (SR) of myocardial cells, plays a crucial role in regulating cardiac systolic and diastolic functions. Mutations in RyR2 and its dysfunction are implicated in various congenital heart diseases (CHDs). Studies have shown that mutations in the RYR2 gene, which encodes the RyR2 protein, are linked to several cardiac arrhythmias, including catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS), calcium release deficiency syndrome (CRDS), and atrial fibrillation (AF). Additionally, RyR2 mutations have been associated with multiple genetic cardiomyopathies, such as left ventricular non-compaction cardiomyopathy (LVNC), arrhythmogenic right ventricular cardiomyopathy (ARVC), hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Through various cell and animal models, researchers have developed mutant RyR2 models demonstrated that these mutations often lead to calcium dysregulation, typically resulting in either a gain or loss of function. This comprehensive review delves into the current understanding of RyR2 mutations and their impact on cardiac electrophysiology, focusing on the molecular mechanisms linking these mutations to arrhythmias and cardiomyopathies-an essential step in advancing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Tingting Lv
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Siyuan Li
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Qing Li
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lingbing Meng
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jing Yang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lianfeng Liu
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Changhua Lv
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Zhang XH, Tang FL, Trouten AM, Morad M. Attempts to Create Transgenic Mice Carrying the Q3924E Mutation in RyR2 Ca 2+ Binding Site. Cells 2024; 13:2051. [PMID: 39768143 PMCID: PMC11674951 DOI: 10.3390/cells13242051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Over 200 point mutations in the ryanodine receptor (RyR2) of the cardiac sarcoplasmic reticulum (SR) are known to be associated with cardiac arrhythmia. We have already reported on the calcium signaling phenotype of a point mutation in RyR2 Ca2+ binding site Q3925E expressed in human stem-cell-derived cardiomyocytes (hiPSC-CMs) that was found to be lethal in a 9-year-old girl. CRISPR/Cas9-gene-edited mutant cardiomyocytes carrying the RyR2-Q3925E mutation exhibited a loss of calcium-induced calcium release (CICR) and caffeine-triggered calcium release but continued to beat arrhythmically without generating significant SR Ca2+ release, consistent with a remodeling of the calcium signaling pathway. An RNAseq heat map confirmed significant changes in calcium-associated genes, supporting the possibility of remodeling. To determine the in situ cardiac phenotype in an animal model of this mutation, we generated a knock-in mouse model of RyR2-Q3924E+/- using the CRISPR/Cas9 technique. We obtained three homozygous and one chimera mice, but they all died before reaching 3 weeks of age, preventing the establishment of germline mutation transmission in their offspring. A histo-pathological analysis of the heart showed significant cardiac hypertrophy, suggesting the Q3924E-RyR2 mutation was lethal to the mice.
Collapse
Affiliation(s)
- Xiao-hua Zhang
- Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, USA;
| | - Fu-lei Tang
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Allison M. Trouten
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Martin Morad
- Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, USA;
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
3
|
Ryan T, Roberts JD. Stem cell models of inherited arrhythmias. NATURE CARDIOVASCULAR RESEARCH 2024; 3:420-430. [PMID: 39196215 DOI: 10.1038/s44161-024-00451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/29/2024] [Indexed: 08/29/2024]
Abstract
Inherited arrhythmias are a heterogeneous group of conditions that confer risk of sudden death. Many inherited arrhythmias have been linked to pathogenic genetic variants that result in ion channel dysfunction, although current genetic testing panels fail to identify variants in many patients, potentially secondary to their underlying substrates being oligogenic or polygenic. Here we review the current state of knowledge surrounding the cellular mechanisms of inherited arrhythmias generated from stem cell models with a focus on integrating genetic and mechanistic data. The utility and limitations of human induced pluripotent stem cell models in disease modeling and drug development are also explored with a particular focus on examples of pharmacogenetics and precision medicine. We submit that progress in understanding inherited arrhythmias is likely to be made by using human induced pluripotent stem cells to model probable polygenic cases as well as to interrogate the diverse and potentially complex molecular networks implicated by genome-wide association studies.
Collapse
Affiliation(s)
- Tammy Ryan
- McMaster University, Hamilton, Ontario, Canada.
| | - Jason D Roberts
- McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute and Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Qian Y, Zuo D, Xiong J, Yin Y, Qi R, Ma X, Yan A, Yang Y, Liu P, Zhang J, Tang K, Peng W, Xu Y, Liu Z. Arrhythmogenic mechanism of a novel ryanodine receptor mutation underlying sudden cardiac death. Europace 2023; 25:euad220. [PMID: 37466361 PMCID: PMC10374982 DOI: 10.1093/europace/euad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
AIMS The ryanodine receptor 2 (RyR2) is essential for cardiac muscle excitation-contraction coupling; dysfunctional RyR2 participates in the development of inherited arrhythmogenic cardiac disease. In this study, a novel RyR2 mutation A690E is identified from a patient with family inheritance of sudden cardiac death, and we aimed to investigate the pathogenic basis of the mutation. METHODS AND RESULTS We generated a mouse model that carried the A690E mutation. Mice were characterized by adrenergic-induced ventricular arrhythmias similar to clinical manifestation of the patient. Optical mapping studies revealed that isolated A690E hearts were prone to arrhythmogenesis and displayed frequency-dependence calcium transient alternans. Upon β-adrenoceptor challenge, the concordant alternans was shifted towards discordant alternans that favour triggering ectopic beats and Ca2+ re-entry; similar phenomenon was also found in the A690E cardiomyocytes. In addition, we found that A690E cardiomyocytes manifested abnormal Ca2+ release and electrophysiological disorders, including an increased sensitivity to cytosolic Ca2+, an elevated diastolic RyR2-mediated Ca2+ leak, and an imbalance between Ca2+ leak and reuptake. Structural analyses reveal that the mutation directly impacts RyR2-FK506 binding protein interaction. CONCLUSION In this study, we have identified a novel mutation in RyR2 that is associated with sudden cardiac death. By characterizing the function defects of mutant RyR2 in animal, whole heat, and cardiomyocytes, we demonstrated the pathogenic basis of the disease-causing mutation and provided a deeper mechanistic understanding of a life-threatening cardiac arrhythmia.
Collapse
Affiliation(s)
- Yunyun Qian
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Dongchuan Zuo
- Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, 1 Xianglin Road, Longmatan District, Luzhou 646000, China
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 182 Chunhui Road, Longmatan District, Luzhou 646000, China
| | - Jing Xiong
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Yihen Yin
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Ruxi Qi
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Xiaomin Ma
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - An Yan
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Yawen Yang
- Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, 1 Xianglin Road, Longmatan District, Luzhou 646000, China
| | - Ping Liu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 182 Chunhui Road, Longmatan District, Luzhou 646000, China
| | - Jingying Zhang
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
5
|
Richardson SJ, Thekkedam CG, Casarotto MG, Beard NA, Dulhunty AF. FKBP12 binds to the cardiac ryanodine receptor with negative cooperativity: implications for heart muscle physiology in health and disease. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220169. [PMID: 37122219 PMCID: PMC10150220 DOI: 10.1098/rstb.2022.0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Cardiac ryanodine receptors (RyR2) release the Ca2+ from intracellular stores that is essential for cardiac myocyte contraction. The ion channel opening is tightly regulated by intracellular factors, including the FK506 binding proteins, FKBP12 and FKBP12.6. The impact of these proteins on RyR2 activity and cardiac contraction is debated, with often apparently contradictory experimental results, particularly for FKBP12. The isoform that regulates RyR2 has generally been considered to be FKBP12.6, despite the fact that FKBP12 is the major isoform associated with RyR2 in some species and is bound in similar proportions to FKBP12.6 in others, including sheep and humans. Here, we show time- and concentration-dependent effects of adding FKBP12 to RyR2 channels that were partly depleted of FKBP12/12.6 during isolation. The added FKBP12 displaced most remaining endogenous FKBP12/12.6. The results suggest that FKBP12 activates RyR2 with high affinity and inhibits RyR2 with lower affinity, consistent with a model of negative cooperativity in FKBP12 binding to each of the four subunits in the RyR tetramer. The easy dissociation of some FKBP12/12.6 could dynamically alter RyR2 activity in response to changes in in vivo regulatory factors, indicating a significant role for FKBP12/12.6 in Ca2+ signalling and cardiac function in healthy and diseased hearts. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- S J Richardson
- John Curtin School of Medical Research, Australian National University, Canberra, Australia, Australian Capital Territory 2601, Australia
| | - C G Thekkedam
- John Curtin School of Medical Research, Australian National University, Canberra, Australia, Australian Capital Territory 2601, Australia
| | - M G Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, Australia, Australian Capital Territory 2601, Australia
| | - N A Beard
- John Curtin School of Medical Research, Australian National University, Canberra, Australia, Australian Capital Territory 2601, Australia
| | - A F Dulhunty
- John Curtin School of Medical Research, Australian National University, Canberra, Australia, Australian Capital Territory 2601, Australia
| |
Collapse
|
6
|
Hu D, Barajas-Martinez H, Zhang ZH, Duan HY, Zhao QY, Bao MW, Du YM, Burashnikov A, Monasky MM, Pappone C, Huang CX, Antzelevitch C, Jiang H. Advances in basic and translational research in atrial fibrillation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220174. [PMID: 37122214 PMCID: PMC10150218 DOI: 10.1098/rstb.2022.0174] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/08/2023] [Indexed: 05/02/2023] Open
Abstract
Atrial fibrillation (AF) is a very common cardiac arrhythmia with an estimated prevalence of 33.5 million patients globally. It is associated with an increased risk of death, stroke and peripheral embolism. Although genetic studies have identified a growing number of genes associated with AF, the definitive impact of these genetic findings is yet to be established. Several mechanisms, including electrical, structural and neural remodelling of atrial tissue, have been proposed to contribute to the development of AF. Despite over a century of exploration, the molecular and cellular mechanisms underlying AF have not been fully established. Current antiarrhythmic drugs are associated with a significant rate of adverse events and management of AF using ablation is not optimal, especially in cases of persistent AF. This review discusses recent advances in our understanding and management of AF, including new concepts of epidemiology, genetics and pathophysiological mechanisms. We review the current status of antiarrhythmic drug therapy for AF, new potential agents, as well as mechanism-based AF ablation. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, PA 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19104, USA
| | - Zhong-He Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Hong-Yi Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Qing-Yan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Ming-Wei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Yi-Mei Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Alexander Burashnikov
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, PA 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19104, USA
| | - Michelle M. Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan 20097, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan 20097, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, Milan 20097, Italy
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, PA 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19104, USA
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| |
Collapse
|
7
|
Abstract
Flecainide, a cardiac class 1C blocker of the surface membrane sodium channel (NaV1.5), has also been reported to reduce cardiac ryanodine receptor (RyR2)-mediated sarcoplasmic reticulum (SR) Ca2+ release. It has been introduced as a clinical antiarrhythmic agent for catecholaminergic polymorphic ventricular tachycardia (CPVT), a condition most commonly associated with gain-of-function RyR2 mutations. Current debate concerns both cellular mechanisms of its antiarrhythmic action and molecular mechanisms of its RyR2 actions. At the cellular level, it targets NaV1.5, RyR2, Na+/Ca2+ exchange (NCX), and additional proteins involved in excitation-contraction (EC) coupling and potentially contribute to the CPVT phenotype. This Viewpoint primarily addresses the various direct molecular actions of flecainide on isolated RyR2 channels in artificial lipid bilayers. Such studies demonstrate different, multifarious, flecainide binding sites on RyR2, with voltage-dependent binding in the channel pore or voltage-independent binding at distant peripheral sites. In contrast to its single NaV1.5 pore binding site, flecainide may bind to at least four separate inhibitory sites on RyR2 and one activation site. None of these binding sites have been specifically located in the linear RyR2 sequence or high-resolution structure. Furthermore, it is not clear which of the inhibitory sites contribute to flecainide's reduction of spontaneous Ca2+ release in cellular studies. A confounding observation is that flecainide binding to voltage-dependent inhibition sites reduces cation fluxes in a direction opposite to physiological Ca2+ flow from SR lumen to cytosol. This may suggest that, rather than directly blocking Ca2+ efflux, flecainide can reduce Ca2+ efflux by blocking counter currents through the pore which otherwise limit SR membrane potential change during systolic Ca2+ efflux. In summary, the antiarrhythmic effects of flecainide in CPVT seem to involve multiple components of EC coupling and multiple actions on RyR2. Their clarification may identify novel specific drug targets and facilitate flecainide's clinical utilization in CPVT.
Collapse
Affiliation(s)
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - James A. Fraser
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Angela F. Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| |
Collapse
|
8
|
Hu J, Gao X, Chen L, Zhou T, Du Z, Jiang J, Wei L, Zhang Z. A novel mutation in ryanodine receptor 2 ( RYR2) genes at c.12670G>T associated with focal epilepsy in a 3-year-old child. Front Pediatr 2022; 10:1022268. [PMID: 36340715 PMCID: PMC9627620 DOI: 10.3389/fped.2022.1022268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Ryanodine receptor 2 (RYR2) encodes a component of a calcium channel. RYR2 variants were well-reported to be associated with catecholaminergic polymorphic ventricular tachycardia (CPVT), but rarely reported in epilepsy cases. Here, we present a novel heterozygous mutation of RYR2 in a child with focal epilepsy. METHODS At the age of 2 years and 7 months, the patient experienced seizures, such as eye closure, tooth clenching, clonic jerking and hemifacial spasm, as well as abnormal electroencephalogram (EEG). Then, he was analyzed by whole-exome sequencing (WES). The mutations of both the proband and his parents were further confirmed by Sanger sequencing. The pathogenicity of the variant was further assessed by population-based variant frequency screening, evolutionary conservation comparison, and American Association for Medical Genetics and Genomics (ACMG) scoring. RESULTS WES sequencing revealed a novel heterozygous truncating mutation [c.12670G > T, p.(Glu4224*), NM_001035.3] in RYR2 gene of the proband. Sanger sequencing confirmed that this mutation was inherited from his mother. This novel variant was predicted to be damaging by different bioinformatics methods. Cardiac investigation showed that the proband had no structural abnormalities, but sinus tachycardia. CONCLUSION We proposed that RYR2 is a potential candidate gene for focal epilepsy, and epilepsy patients carried with RYR2 variants should be given more attention, even if they do not show cardiac abnormalities.
Collapse
Affiliation(s)
- Junji Hu
- Department of Neurology, Zibo Changguo Hospital, Zibo, China
| | - Xueping Gao
- Yinfeng Gene Technology Co., Ltd., Jinan, China
| | - Longchang Chen
- Department of Neurology, Zibo Changguo Hospital, Zibo, China
| | - Tianshu Zhou
- The First Clinical College, Hubei University of Medicine, Shiyan, China
| | - Zhaoli Du
- Yinfeng Gene Technology Co., Ltd., Jinan, China
| | | | - Lei Wei
- Department of Center for Reproductive Medicine, TaiHe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhijun Zhang
- Department of Center for Reproductive Medicine, TaiHe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
9
|
Lin DJ, Lee WS, Chien YC, Chen TY, Yang KT. The link between abnormalities of calcium handling proteins and catecholaminergic polymorphic ventricular tachycardia. Tzu Chi Med J 2021; 33:323-331. [PMID: 34760626 PMCID: PMC8532576 DOI: 10.4103/tcmj.tcmj_288_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 01/18/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT), a rare autosomal dominant or recessive disease, usually results in syncope or sudden cardiac death. Most CPVT patients do not show abnormal cardiac structure and electrocardiogram features and symptoms, usually onset during adrenergically mediated physiological conditions. CPVT tends to occur at a younger age and is not easy to be diagnosed and managed. The main cause of CPVT is associated with mishandling Ca2+ in cardiomyocytes. Intracellular Ca2+ is strictly controlled by a protein located in the sarcoplasm reticulum (SR), such as ryanodine receptor, histidine-rich Ca2+-binding protein, triadin, and junctin. Mutation in these proteins results in misfolding or malfunction of these proteins, thereby affecting their Ca2+-binding affinity, and subsequently disturbs Ca2+ homeostasis during excitation–contraction coupling (E-C coupling). Furthermore, transient disturbance of Ca2+ homeostasis increases membrane potential and causes Ca2+ store overload-induced Ca2+ release, which in turn leads to delayed after depolarization and arrhythmia. Previous studies have focused on the interaction between ryanodine receptors and protein kinase or phosphatase in the cytosol. However, recent studies showed the regulation signaling for ryanodine receptor not only from the cytosol but also within the SR. The changing of Ca2+ concentration is critical for protein interaction inside the SR which changes protein conformation to regulate the open probability of ryanodine receptors. Thus, it influences the threshold of Ca2+ released from the SR, making it easier to release Ca2+ during E-C coupling. In this review, we briefly discuss how Ca2+ handling protein variations affect the Ca2+ handling in CPVT.
Collapse
Affiliation(s)
- Ding-Jyun Lin
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Tsung-Yu Chen
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kun-Ta Yang
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
10
|
Sleiman Y, Lacampagne A, Meli AC. "Ryanopathies" and RyR2 dysfunctions: can we further decipher them using in vitro human disease models? Cell Death Dis 2021; 12:1041. [PMID: 34725342 PMCID: PMC8560800 DOI: 10.1038/s41419-021-04337-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/23/2022]
Abstract
The regulation of intracellular calcium (Ca2+) homeostasis is fundamental to maintain normal functions in many cell types. The ryanodine receptor (RyR), the largest intracellular calcium release channel located on the sarco/endoplasmic reticulum (SR/ER), plays a key role in the intracellular Ca2+ handling. Abnormal type 2 ryanodine receptor (RyR2) function, associated to mutations (ryanopathies) or pathological remodeling, has been reported, not only in cardiac diseases, but also in neuronal and pancreatic disorders. While animal models and in vitro studies provided valuable contributions to our knowledge on RyR2 dysfunctions, the human cell models derived from patients’ cells offer new hope for improving our understanding of human clinical diseases and enrich the development of great medical advances. We here discuss the current knowledge on RyR2 dysfunctions associated with mutations and post-translational remodeling. We then reviewed the novel human cellular technologies allowing the correlation of patient’s genome with their cellular environment and providing approaches for personalized RyR-targeted therapeutics.
Collapse
Affiliation(s)
- Yvonne Sleiman
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Albano C Meli
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
11
|
Salvage SC, Gallant EM, Fraser JA, Huang CLH, Dulhunty AF. Flecainide Paradoxically Activates Cardiac Ryanodine Receptor Channels under Low Activity Conditions: A Potential Pro-Arrhythmic Action. Cells 2021; 10:cells10082101. [PMID: 34440870 PMCID: PMC8394964 DOI: 10.3390/cells10082101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022] Open
Abstract
Cardiac ryanodine receptor (RyR2) mutations are implicated in the potentially fatal catecholaminergic polymorphic ventricular tachycardia (CPVT) and in atrial fibrillation. CPVT has been successfully treated with flecainide monotherapy, with occasional notable exceptions. Reported actions of flecainide on cardiac sodium currents from mice carrying the pro-arrhythmic homozygotic RyR2-P2328S mutation prompted our explorations of the effects of flecainide on their RyR2 channels. Lipid bilayer electrophysiology techniques demonstrated a novel, paradoxical increase in RyR2 activity. Preceding flecainide exposure, channels were mildly activated by 1 mM luminal Ca2+ and 1 µM cytoplasmic Ca2+, with open probabilities (Po) of 0.03 ± 0.01 (wild type, WT) or 0.096 ± 0.024 (P2328S). Open probability (Po) increased within 0.5 to 3 min of exposure to 0.5 to 5.0 µM cytoplasmic flecainide, then declined with higher concentrations of flecainide. There were no such increases in a subset of high Po channels with Po ≥ 0.08, although Po then declined with ≥5 µM (WT) or ≥50 µM flecainide (P2328S). On average, channels with Po < 0.08 were significantly activated by 0.5 to 10 µM of flecainide (WT) or 0.5 to 50 µM of flecainide (P2328S). These results suggest that flecainide can bind to separate activation and inhibition sites on RyR2, with activation dominating in lower activity channels and inhibition dominating in more active channels.
Collapse
Affiliation(s)
- Samantha C. Salvage
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; (S.C.S.); (J.A.F.); (C.L.-H.H.)
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Esther M. Gallant
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Acton 2601, Australia;
| | - James A. Fraser
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; (S.C.S.); (J.A.F.); (C.L.-H.H.)
| | - Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; (S.C.S.); (J.A.F.); (C.L.-H.H.)
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Angela F. Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Acton 2601, Australia;
- Correspondence:
| |
Collapse
|
12
|
Robinson K, Culley D, Waring S, Lamb GD, Easton C, Casarotto MG, Dulhunty AF. Peptide mimetic compounds can activate or inhibit cardiac and skeletal ryanodine receptors. Life Sci 2020; 260:118234. [PMID: 32791148 DOI: 10.1016/j.lfs.2020.118234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022]
Abstract
AIMS Our aim was to characterise the actions of novel BIT compounds with structures based on peptides and toxins that bind to significant regulatory sites on ryanodine receptor (RyR) Ca2+ release channels. RyRs, located in sarcoplasmic reticulum (SR) Ca2+ store membranes of striated muscle, are essential for muscle contraction. Although severe sometimes-deadly myopathies occur when the channels become hyperactive following genetic or acquired changes, specific inhibitors of RyRs are rare. MAIN METHODS The effect of BIT compounds was determined by spectrophotometric analysis of Ca2+ release from isolated SR vesicles, analysis of single RyR channel activity in artificial lipid bilayers and contraction of intact and skinned skeletal muscle fibres. KEY FINDINGS The inhibitory compounds reduced: (a) Ca2+ release from SR vesicles with IC50s of 1.1-2.5 μM, competing with activation by parent peptides and toxins; (b) single RyR ion channel activity with IC50s of 0.5-1.5 μM; (c) skinned fibre contraction. In contrast, activating BIT compounds increased Ca2+ release with an IC50 of 5.0 μM and channel activity with AC50s of 2 to 12 nM and enhanced skinned fibre contraction. Sub-conductance activity dominated channel activity with both inhibitors and activators. Effects of all compounds on skeletal and cardiac RyRs were similar and reversible. Competition experiments suggest that the BIT compounds bind to the regulatory helical domains of the RyRs that impact on channel gating mechanisms through long-range allosteric interactions. SIGNIFICANCE The BIT compounds are strong modulators of RyR activity and provide structural templates for novel research tools and drugs to combat muscle disease.
Collapse
Affiliation(s)
- Ken Robinson
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Dane Culley
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Sam Waring
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Graham D Lamb
- Physiology, Anatomy and Microbiology, Biochemistry and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Christopher Easton
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Marco G Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Angela F Dulhunty
- John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| |
Collapse
|
13
|
Saadeh K, Achercouk Z, Fazmin IT, Nantha Kumar N, Salvage SC, Edling CE, Huang CLH, Jeevaratnam K. Protein expression profiles in murine ventricles modeling catecholaminergic polymorphic ventricular tachycardia: effects of genotype and sex. Ann N Y Acad Sci 2020; 1478:63-74. [PMID: 32713021 DOI: 10.1111/nyas.14426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is associated with mutations in the cardiac ryanodine receptor (RyR2). These result in stress-induced ventricular arrhythmic episodes, with clinical symptoms and prognosis reported more severe in male than female patients. Murine homozygotic RyR2-P2328S (RyR2S/S ) hearts replicate the proarrhythmic CPVT phenotype of abnormal sarcoplasmic reticular Ca2+ leak and disrupted Ca2+ homeostasis. In addition, RyR2S/S hearts show decreased myocardial action potential conduction velocities (CV), all features implicated in arrhythmic trigger and substrate. The present studies explored for independent and interacting effects of RyR2S/S genotype and sex on expression levels of molecular determinants of Ca2+ homeostasis (CASQ2, FKBP12, SERCA2a, NCX1, and CaV 1.2) and CV (NaV 1.5, Connexin (Cx)-43, phosphorylated-Cx43, and TGF-β1) in mice. Expression levels of Ca2+ homeostasis proteins were not altered, hence implicating abnormal RyR2 function alone in disrupted cytosolic Ca2+ homeostasis. Furthermore, altered NaV 1.5, phosphorylated Cx43, and TGF-β1 expression were not implicated in the development of slowed CV. By contrast, decreased Cx43 expression correlated with slowed CV, in female, but not male, RyR2S/S mice. The CV changes may reflect acute actions of the increased cytosolic Ca2+ on NaV 1.5 and Cx43 function.
Collapse
Affiliation(s)
- Khalil Saadeh
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Zakaria Achercouk
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ibrahim T Fazmin
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Nakulan Nantha Kumar
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Samantha C Salvage
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte E Edling
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Christopher L-H Huang
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Graham B, Shaw MA, Hope IA. Single Amino Acid Changes in the Ryanodine Receptor in the Human Population Have Effects In Vivo on Caenorhabditis elegans Neuro-Muscular Function. Front Genet 2020; 11:37. [PMID: 32174957 PMCID: PMC7054344 DOI: 10.3389/fgene.2020.00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/13/2020] [Indexed: 01/21/2023] Open
Abstract
The ryanodine receptor mediates intracellular calcium ion release with excitation of nerve and muscle cells. Ryanodine receptor missense variants cause a number of myopathologies, such as malignant hyperthermia, and have been linked with various neuropathologies, including Alzheimer's disease. We characterized the consequences of ryanodine receptor variants in vivo. Eight Caenorhabditis elegans strains, with ryanodine receptor modifications equivalent to human myopathic RYR1 variants, were generated by genome editing. In humans, these variants are rare and confer sensitivity to the inhalational anaesthetic halothane when heterozygous. Increased sensitivity to halothane was found in both homozygous and heterozygous C. elegans. Close analysis revealed distinct subtle locomotion defects, due to the different single amino acid residue changes, even in the absence of the external triggering agent. Distinct pre- and postsynaptic consequences of the variants were characterized through the responses to cholinergic pharmacological agents. The range of phenotypes reflects the complexity of the regulatory inputs to the ryanodine receptor and the criticality of the calcium ion channel opening properties, in different cell types and with age. Ryanodine receptors with these single amino acid residue changes still function as calcium ion channels, but with altered properties which are likely to have subtle consequences for human carriers of such variants. The long-term consequences of subtly altered calcium ion signalling could be cumulative and may be focussed in the smaller nerve cells rather than the more robust muscle cells. It was important to assess phenotypes in vivo to properly appreciate consequences for a whole organism.
Collapse
Affiliation(s)
- Brittany Graham
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Marie-Anne Shaw
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds, United Kingdom
| | - Ian A. Hope
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
15
|
First person – Samantha Salvage. J Cell Sci 2019. [DOI: 10.1242/jcs.233916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Samantha Salvage is first author on ‘Ion channel gating in cardiac ryanodine receptors from the arrhythmic RyR2-P2328S mouse’, published in JCS. Samantha conducted the research described in this article while a postdoc with James A Fraser, Physiological Laboratory, University of Cambridge, UK and visiting postdoc with Angela F Dulhunty's lab at The Australian National University, Acton, Australia. She is now a postdoc in the lab of Antony P. Jackson at the Department of Biochemistry, University of Cambridge, UK, investigating cellular and molecular determinants of cardiac conduction and their implications for arrhythmogenesis.
Collapse
|