1
|
Lange TE, Naji A, van der Hoeven R, Liang H, Zhou Y, Hammond GR, Hancock JF, Cho KJ. MTMR regulates KRAS function by controlling plasma membrane levels of phospholipids. J Cell Biol 2025; 224:e202403126. [PMID: 40314454 PMCID: PMC12047185 DOI: 10.1083/jcb.202403126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/08/2024] [Accepted: 10/18/2024] [Indexed: 05/03/2025] Open
Abstract
KRAS, a small GTPase involved in cell proliferation and differentiation, frequently gains activating mutations in human cancers. For KRAS to function, it must bind the plasma membrane (PM) via interactions between its membrane anchor and phosphatidylserine (PtdSer). Therefore, depleting PM PtdSer abrogates KRAS PM binding and activity. From a genome-wide siRNA screen to identify genes regulating KRAS PM localization, we identified a set of phosphatidylinositol (PI) 3-phosphatases: myotubularin-related proteins (MTMR) 2, 3, 4, and 7. Here, we show that silencing MTMR 2/3/4/7 disrupts KRAS PM interactions by reducing PM PI 4-phosphate (PI4P) levels, thereby disrupting the localization and operation of ORP5, a lipid transfer protein maintaining PM PtdSer enrichment. Concomitantly, silencing MTMR 2/3/4/7 elevates PM PI3P levels while reducing PM and total PtdSer levels. We also observed MTMR 2/3/4/7 expression is interdependent. We propose that the PI 3-phosphatase activity of MTMR is required for generating PM PI, necessary for PM PI4P synthesis, promoting the PM localization of PtdSer and KRAS.
Collapse
Affiliation(s)
- Taylor E. Lange
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Ali Naji
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ransome van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Gerald R.V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Kwang-jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
2
|
Lange TE, Naji A, van der Hoeven R, Liang H, Zhou Y, Hammond GRV, Hancock JF, Cho KJ. MTMR regulates KRAS function by controlling plasma membrane levels of phospholipids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.22.576612. [PMID: 38328115 PMCID: PMC10849561 DOI: 10.1101/2024.01.22.576612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
KRAS, a small GTPase involved in cell proliferation and differentiation, frequently gains activating mutations in human cancers. For KRAS to function, it must bind the plasma membrane (PM) via interactions between its membrane anchor and phosphatidylserine (PtdSer). Therefore, depleting PM PtdSer abrogates KRAS PM binding and activity. From a genome-wide siRNA screen to identify genes regulating KRAS PM localization, we identified a set of phosphatidylinositol (PI) 3-phosphatases: myotubularin-related proteins (MTMR) 2, 3, 4, and 7. Here, we show that silencing MTMR 2/3/4/7 disrupts KRAS PM interactions by reducing PM PI 4-phosphate (PI4P) levels, thereby disrupting the localization and operation of ORP5, a lipid transfer protein maintaining PM PtdSer enrichment. Concomitantly, silencing MTMR 2/3/4/7 elevates PM PI3P levels while reducing PM and total PtdSer levels. We also observed MTMR 2/3/4/7 expression is interdependent. We propose that the PI 3-phosphatase activity of MTMR is required for generating PM PI, necessary for PM PI4P synthesis, promoting the PM localization of PtdSer and KRAS. eTOC summary We discovered that silencing the phosphatidylinositol (PI) 3-phosphatase, MTMR , disrupts the PM localization of PtdSer and KRAS. We propose a model, where MTMR loss depletes PM PI needed for PM PI4P synthesis, an essential phospholipid for PM PtdSer enrichment, thereby impairing KRAS PM localization.
Collapse
|
3
|
Lun X, Wang Y, Zhao N, Yue Y, Meng F, Liu Q, Song X, Liang Y, Lu L. Metabolism and immune responses of striped hamsters to ectoparasite challenges: insights from transcriptomic analysis. Front Immunol 2024; 15:1516382. [PMID: 39723213 PMCID: PMC11669363 DOI: 10.3389/fimmu.2024.1516382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction The striped hamster, often parasitized by ectoparasites in nature, is an ideal model for studying host-ectoparasite molecular interactions. Investigating the response to ectoparasites under laboratory conditions helps elucidate the mechanism of host adaptations to ectoparasite pressure. Methods Using transcriptome sequencing, we analyzed gene expression in striped hamsters after short-term (3 days) and long-term (28 days) flea (Xenopsylla cheopis) parasitism. Differentially expressed genes (DEGs) were identified and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Hub genes were pinpointed using protein-protein interaction (PPI) network analysis and the MCODE in Cytoscape. Gene Set Enrichment Analysis (GSEA) was used to further clarify the functional pathways of these hub genes. Validation of DEGs was performed via RT-qPCR. Additionally, the concentrations of reactive oxygen species (ROS), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) were determined using specific enzyme-linked immunosorbent assay (ELISA) detection kits for hamsters. Results GO analysis revealed that during early parasitism, hosts primarily responded to the ectoparasites by adjusting the expression of genes related to metabolic functions. As parasitism persisted, the immune response became prominent, activating various immune pathways against ectoparasites. KEGG analysis confirmed the ongoing roles of metabolism and immunity. Notably, the chemical carcinogenesis - reactive oxygen species pathway was upregulated during flea parasitism, with downregulation of hub genes ATP5MC1 and ATP5MC2, highlighting the importance of mitochondrial function in oxidative stress. ELISA findings revealed that on day 3, flea parasitism groups showed elevated ROS expression and reduced SOD and CAT levels compared to the control group. By day 28, only SOD expression showed a significant decrease in both parasitism groups. Conclusion This study uncovered the dynamic changes in metabolism and immune responses of striped hamsters parasitized by Xenopsylla cheopis. Hosts adjust their physiological and immune states to optimize survival strategies during different ectoparasite stages, enhancing our understanding of host-ectoparasite interactions. This also paves the way for further research into how hosts regulate complex biological processes in response to ectoparasite challenges.
Collapse
Affiliation(s)
- Xinchang Lun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiguan Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, China
| | - Ning Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yujuan Yue
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fengxia Meng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuping Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Liang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liang Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
4
|
Paul K, Restoux G, Phocas F. Genome-wide detection of positive and balancing signatures of selection shared by four domesticated rainbow trout populations (Oncorhynchus mykiss). Genet Sel Evol 2024; 56:13. [PMID: 38389056 PMCID: PMC10882880 DOI: 10.1186/s12711-024-00884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Evolutionary processes leave footprints along the genome over time. Highly homozygous regions may correspond to positive selection of favorable alleles, while maintenance of heterozygous regions may be due to balancing selection phenomena. We analyzed data from 176 fish from four disconnected domestic rainbow trout populations that were genotyped using a high-density Axiom Trout genotyping 665K single nucleotide polymorphism array, including 20 from the US and 156 from three French lines. Using methods based on runs of homozygosity and extended haplotype homozygosity, we detected signatures of selection in these four populations. RESULTS Nine genomic regions that included 253 genes were identified as being under positive selection in all four populations Most were located on chromosome 2 but also on chromosomes 12, 15, 16, and 20. In addition, four heterozygous regions that contain 29 genes that are putatively under balancing selection were also shared by the four populations. These were located on chromosomes 10, 13, and 19. Regardless of the homozygous or heterozygous nature of the regions, in each region, we detected several genes that are highly conserved among vertebrates due to their critical roles in cellular and nuclear organization, embryonic development, or immunity. We identified new candidate genes involved in rainbow trout fitness, as well as 17 genes that were previously identified to be under positive selection, 10 of which in other fishes (auts2, atp1b3, zp4, znf135, igf-1α, brd2, col9a2, mrap2, pbx1, and emilin-3). CONCLUSIONS Using material from disconnected populations of different origins allowed us to draw a genome-wide map of signatures of positive selection that are shared between these rainbow trout populations, and to identify several regions that are putatively under balancing selection. These results provide a valuable resource for future investigations of the dynamics of genetic diversity and genome evolution during domestication.
Collapse
Affiliation(s)
- Katy Paul
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Gwendal Restoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
5
|
Rehl KM, Selvakumar J, Pitsch RL, Hoang D, Arumugam K, Harshman SW, Gorfe AA, Cho KJ. A new ferrocene derivative blocks K-Ras localization and function by oxidative modification at His95. Life Sci Alliance 2023; 6:e202302094. [PMID: 37666666 PMCID: PMC10477449 DOI: 10.26508/lsa.202302094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Ras proteins are membrane-bound GTPases that regulate essential cellular processes at the plasma membrane (PM). Constitutively active mutations of K-Ras, one of the three Ras isoforms in mammalian cells, are frequently found in human cancers. Ferrocene derivatives, which elevate cellular reactive oxygen species (ROS), have shown to block the growth of non-small cell lung cancers harboring oncogenic mutant K-Ras. Here, we tested a novel ferrocene derivative on the growth of pancreatic ductal adenocarcinoma and non-small cell lung cancer. Our compound, which elevated cellular ROS levels, inhibited the growth of K-Ras-driven cancers, and abrogated the PM binding and signaling of K-Ras in an isoform-specific manner. These effects were reversed upon antioxidant supplementation, suggesting a ROS-mediated mechanism. We further identified that K-Ras His95 residue plays an important role in this process, and it is putatively oxidized by cellular ROS. Together, our study demonstrates that the redox system directly regulates K-Ras/PM binding and signaling via oxidative modification at the His95, and proposes a role of oncogenic mutant K-Ras in the recently described antioxidant-induced growth and metastasis of K-Ras-driven cancers.
Collapse
Affiliation(s)
- Kristen M Rehl
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jayaraman Selvakumar
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Rhonda L Pitsch
- Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Don Hoang
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Kuppuswamy Arumugam
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Sean W Harshman
- Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
6
|
Rehl KM, Selvakumar J, Hoang D, Arumugam K, Gorfe AA, Cho KJ. A new ferrocene derivative blocks KRAS localization and function by oxidative modification at His95. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534499. [PMID: 37034642 PMCID: PMC10081197 DOI: 10.1101/2023.03.28.534499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ras proteins are membrane-bound GTPases that regulate essential cellular processes at the plasma membrane (PM). Constitutively active mutations of K-Ras, one of the three Ras isoforms in mammalian cells, are frequently found in human cancers. Ferrocene derivatives, which elevate cellular reactive oxygen species (ROS), have shown to block the growth of non-small cell lung cancers (NSCLCs) harboring oncogenic mutant K-Ras. Here, we developed and tested a novel ferrocene derivative on the growth of human pancreatic ductal adenocarcinoma (PDAC) and NSCLC. Our compound inhibited the growth of K-Ras-dependent PDAC and NSCLC and abrogated the PM binding and signaling of K-Ras, but not other Ras isoforms. These effects were reversed upon antioxidant supplementation, suggesting a ROS-mediated mechanism. We further identified K-Ras His95 residue in the G-domain as being involved in the ferrocene-induced K-Ras PM dissociation via oxidative modification. Together, our studies demonstrate that the redox system directly regulates K-Ras PM binding and signaling via oxidative modification at the His95, and proposes a role of oncogenic mutant K-Ras in the recently described antioxidant-induced metastasis in K-Ras-driven lung cancers.
Collapse
|
7
|
Vu NT, Kim M, Stephenson DJ, MacKnight HP, Chalfant CE. Ceramide Kinase Inhibition Drives Ferroptosis and Sensitivity to Cisplatin in Mutant KRAS Lung Cancer by Dysregulating VDAC-Mediated Mitochondria Function. Mol Cancer Res 2022; 20:1429-1442. [PMID: 35560154 PMCID: PMC9444881 DOI: 10.1158/1541-7786.mcr-22-0085] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
Abstract
Ceramide kinase (CERK) is the mammalian lipid kinase from which the bioactive sphingolipid, ceramide-1-phosphate (C1P), is derived. CERK has been implicated in several promalignant phenotypes with little known as to mechanistic underpinnings. In this study, the mechanism of how CERK inhibition decreases cell survival in mutant (Mut) KRAS non-small cell lung cancer (NSCLC), a major lung cancer subtype, was revealed. Specifically, NSCLC cells possessing a KRAS mutation were more responsive to inhibition, downregulation, and genetic ablation of CERK compared with those with wild-type (WT) KRAS regarding a reduction in cell survival. Inhibition of CERK induced ferroptosis in Mut KRAS NSCLC cells, which required elevating VDAC-regulated mitochondria membrane potential (MMP) and the generation of cellular reactive oxygen species (ROS). Importantly, through modulation of VDAC, CERK inhibition synergized with the first-line NSCLC treatment, cisplatin, in reducing cell survival and in vivo tumor growth. Further mechanistic studies indicated that CERK inhibition affected MMP and cell survival by limiting AKT activation and translocation to mitochondria, and thus, blocking VDAC phosphorylation and tubulin recruitment. IMPLICATIONS Our findings depict how CERK inhibition may serve as a new key point in combination therapeutic strategy for NSCLC, specifically precision therapeutics targeting NSCLC possessing a KRAS mutation.
Collapse
Affiliation(s)
- Ngoc T. Vu
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA,Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Vietnam
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Daniel J. Stephenson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA,Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, 22903
| | - H. Patrick MacKnight
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA,Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, 22903
| | - Charles E. Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA,Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, 22903,Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903,Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, 22903,Research Service, Richmond Veterans Administration Medical Center, Richmond VA, 23298,To whom correspondence should be addressed: Charles E. Chalfant, Professor, Department of Medicine, Division of Hematology & Oncology, P.O. Box 801398, University of Virginia, Charlottesville, VA, 22903, or
| |
Collapse
|
8
|
Tan X, Liu L, Liu X, Cui H, Liu R, Zhao G, Wen J. Large-Scale Whole Genome Sequencing Study Reveals Genetic Architecture and Key Variants for Breast Muscle Weight in Native Chickens. Genes (Basel) 2021; 13:genes13010003. [PMID: 35052342 PMCID: PMC8774586 DOI: 10.3390/genes13010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
Breast muscle weight (BrW) is one of the most important economic traits in chicken, and directional breeding for that results in both phenotypic and genetic changes. The Jingxing yellow chicken, including an original (without human-driven selection) line and a selected line (based on selection for increased intramuscular fat content), were used to dissect the genetic architecture and key variants associated with BrW. We detected 1069 high-impact single nucleotide polymorphisms (SNPs) with high conserved score and significant frequency difference between two lines. Based on the annotation result, the ECM-receptor interaction and fatty acid biosynthesis were enriched, and muscle-related genes, including MYOD1, were detected. By performing genome-wide association study for the BrW trait, we defined a major haplotype and two conserved SNPs that affected BrW. By integrated genomic and transcriptomic analysis, IGF2BP1 was identified as the crucial gene associated with BrW. In conclusion, these results offer a new insight into chicken directional selection and provide target genetic markers by which to improve chicken BrW.
Collapse
Affiliation(s)
- Xiaodong Tan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.T.); (X.L.); (H.C.); (R.L.); (G.Z.)
| | - Lu Liu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311302, China;
| | - Xiaojing Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.T.); (X.L.); (H.C.); (R.L.); (G.Z.)
| | - Huanxian Cui
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.T.); (X.L.); (H.C.); (R.L.); (G.Z.)
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.T.); (X.L.); (H.C.); (R.L.); (G.Z.)
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.T.); (X.L.); (H.C.); (R.L.); (G.Z.)
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.T.); (X.L.); (H.C.); (R.L.); (G.Z.)
- Correspondence:
| |
Collapse
|
9
|
Addiction to Golgi-resident PI4P synthesis in chromosome 1q21.3-amplified lung adenocarcinoma cells. Proc Natl Acad Sci U S A 2021; 118:2023537118. [PMID: 34155143 PMCID: PMC8237628 DOI: 10.1073/pnas.2023537118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A chromosome 1q21.3 region that is frequently amplified in diverse cancer types encodes phosphatidylinositol (PI)-4 kinase IIIβ (PI4KIIIβ), a key regulator of secretory vesicle biogenesis and trafficking. Chromosome 1q21.3-amplified lung adenocarcinoma (1q-LUAD) cells rely on PI4KIIIβ for Golgi-resident PI-4-phosphate (PI4P) synthesis, prosurvival effector protein secretion, and cell viability. Here, we show that 1q-LUAD cells subjected to prolonged PI4KIIIβ antagonist treatment acquire tolerance by activating an miR-218-5p-dependent competing endogenous RNA network that up-regulates PI4KIIα, which provides an alternative source of Golgi-resident PI4P that maintains prosurvival effector protein secretion and cell viability. These findings demonstrate an addiction to Golgi-resident PI4P synthesis in a genetically defined subset of cancers.
Collapse
|
10
|
Henkels KM, Rehl KM, Cho KJ. Blocking K-Ras Interaction With the Plasma Membrane Is a Tractable Therapeutic Approach to Inhibit Oncogenic K-Ras Activity. Front Mol Biosci 2021; 8:673096. [PMID: 34222333 PMCID: PMC8244928 DOI: 10.3389/fmolb.2021.673096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are membrane-bound small GTPases that promote cell proliferation, differentiation, and apoptosis. Consistent with this key regulatory role, activating mutations of Ras are present in ∼19% of new cancer cases in the United States per year. K-Ras is one of the three ubiquitously expressed isoforms in mammalian cells, and oncogenic mutations in this isoform account for ∼75% of Ras-driven cancers. Therefore, pharmacological agents that block oncogenic K-Ras activity would have great clinical utility. Most efforts to block oncogenic Ras activity have focused on Ras downstream effectors, but these inhibitors only show limited clinical benefits in Ras-driven cancers due to the highly divergent signals arising from Ras activation. Currently, four major approaches are being extensively studied to target K-Ras–driven cancers. One strategy is to block K-Ras binding to the plasma membrane (PM) since K-Ras requires the PM binding for its signal transduction. Here, we summarize recently identified molecular mechanisms that regulate K-Ras–PM interaction. Perturbing these mechanisms using pharmacological agents blocks K-Ras–PM binding and inhibits K-Ras signaling and growth of K-Ras–driven cancer cells. Together, these studies propose that blocking K-Ras–PM binding is a tractable strategy for developing anti–K-Ras therapies.
Collapse
Affiliation(s)
- Karen M Henkels
- Department of Biochemistry and Molecular Biology, School of Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Kristen M Rehl
- Department of Biochemistry and Molecular Biology, School of Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, School of Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
11
|
Zhuang Z, Yao M, Wong JYY, Liu Z, Huang T. Shared genetic etiology and causality between body fat percentage and cardiovascular diseases: a large-scale genome-wide cross-trait analysis. BMC Med 2021; 19:100. [PMID: 33910581 PMCID: PMC8082910 DOI: 10.1186/s12916-021-01972-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Accumulating evidences have suggested that high body fat percentage (BF%) often occurs in parallel with cardiovascular diseases (CVDs), implying a common etiology between them. However, the shared genetic etiology underlying BF% and CVDs remains unclear. METHODS Using large-scale genome-wide association study (GWAS) data, we investigated shared genetics between BF% (N = 100,716) and 10 CVD-related traits (n = 6968-977,323) with linkage disequilibrium score regression, multi-trait analysis of GWAS, and transcriptome-wide association analysis, and evaluated causal associations using Mendelian randomization. RESULTS We found strong positive genetic correlations between BF% and heart failure (HF) (Rg = 0.47, P = 1.27 × 10- 22) and coronary artery disease (CAD) (Rg = 0.22, P = 3.26 × 10- 07). We identified 5 loci and 32 gene-tissue pairs shared between BF% and HF, as well as 16 loci and 28 gene-tissue pairs shared between BF% and CAD. The loci were enriched in blood vessels and brain tissues, while the gene-tissue pairs were enriched in the nervous, cardiovascular, and exo-/endocrine system. In addition, we observed that BF% was causally related with a higher risk of HF (odds ratio 1.63 per 1-SD increase in BF%, P = 4.16 × 10-04) using a MR approach. CONCLUSIONS Our findings suggest that BF% and CVDs have shared genetic etiology and targeted reduction of BF% may improve cardiovascular outcomes. This work advances our understanding of the genetic basis underlying co-morbid obesity and CVDs and opens up a new way for early prevention of CVDs.
Collapse
Affiliation(s)
- Zhenhuang Zhuang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, China. 38 Xueyuan Road, Beijing, 100191, China
| | - Minhao Yao
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Zhonghua Liu
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China.
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, China. 38 Xueyuan Road, Beijing, 100191, China. .,Center for Intelligent Public Health, Academy for Artificial Intelligence, Peking University, Beijing, 100191, China. .,Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
12
|
Garrido CM, Henkels KM, Rehl KM, Liang H, Zhou Y, Gutterman JU, Cho KJ. Avicin G is a potent sphingomyelinase inhibitor and blocks oncogenic K- and H-Ras signaling. Sci Rep 2020; 10:9120. [PMID: 32499517 PMCID: PMC7272413 DOI: 10.1038/s41598-020-65882-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
K-Ras must interact primarily with the plasma membrane (PM) for its biological activity. Therefore, disrupting K-Ras PM interaction is a tractable approach to block oncogenic K-Ras activity. Here, we found that avicin G, a family of natural plant-derived triterpenoid saponins from Acacia victoriae, mislocalizes K-Ras from the PM and disrupts PM spatial organization of oncogenic K-Ras and H-Ras by depleting phosphatidylserine (PtdSer) and cholesterol contents, respectively, at the inner PM leaflet. Avicin G also inhibits oncogenic K- and H-Ras signal output and the growth of K-Ras-addicted pancreatic and non-small cell lung cancer cells. We further identified that avicin G perturbs lysosomal activity, and disrupts cellular localization and activity of neutral and acid sphingomyelinases (SMases), resulting in elevated cellular sphingomyelin (SM) levels and altered SM distribution. Moreover, we show that neutral SMase inhibitors disrupt the PM localization of K-Ras and PtdSer and oncogenic K-Ras signaling. In sum, this study identifies avicin G as a new potent anti-Ras inhibitor, and suggests that neutral SMase can be a tractable target for developing anti-K-Ras therapeutics.
Collapse
Affiliation(s)
- Christian M Garrido
- Department of Biochemistry and Molecular Biology, School of Boonshoft Medical School, Wright State University, Dayton, OH, 45435, United States
| | - Karen M Henkels
- Department of Biochemistry and Molecular Biology, School of Boonshoft Medical School, Wright State University, Dayton, OH, 45435, United States
| | - Kristen M Rehl
- Department of Biochemistry and Molecular Biology, School of Boonshoft Medical School, Wright State University, Dayton, OH, 45435, United States
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Jordan U Gutterman
- Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, United States
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, School of Boonshoft Medical School, Wright State University, Dayton, OH, 45435, United States.
| |
Collapse
|
13
|
First person – Taylor Miller. J Cell Sci 2019. [DOI: 10.1242/jcs.237115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Taylor Miller is first author on ‘Depletion of phosphatidylinositol 4-phosphate at the Golgi translocates K-Ras to mitochondria’, published in JCS. Taylor conducted the research described in this article while a research assistant in Kwang-Jin Cho's lab as part of the Department of Internal Medicine, University of Cincinnati. She is now a Research Assistant III in the lab of Susanne Wells at the Cincinnati Children's Hospital Medical Center, where her research interests lie in cell signaling and how it relates to tumorigenesis.
Collapse
|