1
|
Moore Zajic EL, Zhao R, McKinney MC, Yi K, Wood C, Trainor PA. Cell extrusion drives neural crest cell delamination. Proc Natl Acad Sci U S A 2025; 122:e2416566122. [PMID: 40063802 PMCID: PMC11929498 DOI: 10.1073/pnas.2416566122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/17/2025] [Indexed: 03/15/2025] Open
Abstract
Neural crest cells (NCC) comprise a heterogeneous population of cells with variable potency that contribute to nearly every tissue and organ throughout the body. Considered unique to vertebrates, NCC are transiently generated within the dorsolateral region of the neural plate or neural tube during neurulation. Their delamination and migration are crucial for embryo development as NCC differentiation is influenced by their final resting locations. Previous work in avian and aquatic species revealed that NCC delaminate via an epithelial-mesenchymal transition (EMT), which transforms these progenitor cells from static polarized epithelial cells into migratory mesenchymal cells with fluid front and back polarity. However, the cellular and molecular mechanisms facilitating NCC delamination in mammals are poorly understood. Through time-lapse imaging of NCC delamination in mouse embryos, we identified a subset of cells that exit the neuroepithelium as isolated round cells, which then halt for a short period prior to acquiring the mesenchymal migratory morphology classically associated with delaminating NCC. High-magnification imaging and protein localization analyses of the cytoskeleton, together with measurements of pressure and tension of delaminating NCC and neighboring neuroepithelial cells, revealed that round NCC are extruded from the neuroepithelium prior to completion of EMT. Furthermore, cranial NCC are extruded through activation of the mechanosensitive ion channel, PIEZO1. Our results support a model in which cell density, pressure, and tension in the neuroepithelium result in activation of the live cell extrusion pathway and delamination of a subpopulation of NCC in parallel with EMT, which has implications for cell delamination in development and disease.
Collapse
Affiliation(s)
| | - Ruonan Zhao
- Stowers Institute for Medical Research, Kansas City, MO64110
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS66160
| | | | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO64110
| | | | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO64110
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS66160
| |
Collapse
|
2
|
Hippee CE, Durnell LA, Kaufman JW, Murray E, Singh BK, Sinn PL. Epithelial-to-mesenchymal transition and live cell extrusion contribute to measles virus release from human airway epithelia. J Virol 2025; 99:e0122024. [PMID: 39791903 PMCID: PMC11852777 DOI: 10.1128/jvi.01220-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Measles virus (MeV) is a highly contagious respiratory virus transmitted via aerosols. To understand how MeV exits the airways of an infected host, we use unpassaged primary cultures of human airway epithelial cells (HAE). MeV typically remains cell-associated in HAE and forms foci of infection, termed infectious centers, by directly spreading cell-to-cell. We previously described the phenomenon in which infectious centers detach en masse from HAE and remain viable. Here, we investigate the mechanism of this cellular detachment. Via immunostaining, we observed loss of tight junction and cell adhesion proteins within infectious centers. These morphological changes indicate activation of epithelial-to-mesenchymal transition (EMT). EMT can contribute to wound healing in respiratory epithelia by mobilizing nearby cells. Inhibiting TGF-β, and thus EMT, reduced infectious center detachment. Compared with uninfected cells, MeV-infected cells also expressed increased levels of sphingosine kinase 1 (SK1), a regulator of live cell extrusion. Live cell extrusion encourages cells to detach from respiratory epithelia by contracting the actomyosin of neighboring cells. Inhibition or induction of live cell extrusion impacted infectious center detachment rates. Thus, these two related pathways contributed to infectious center detachment in HAE. Detached infectious centers contained high titers of virus that may be protected from the environment, allowing the virus to live on surfaces longer and infect more hosts.IMPORTANCEMeasles virus (MeV) is an extremely contagious respiratory pathogen that continues to cause large, disruptive outbreaks each year. Here, we examine mechanisms of detachment of MeV-infected cells. MeV spreads cell-to-cell in human airway epithelial cells (HAE) to form groups of infected cells, termed "infectious centers". We reported that infectious centers ultimately detach from HAE as a unit, carrying high titers of virus. Viral particles within cells may be more protected from environmental conditions, such as ultraviolet radiation and desiccation. We identified two host pathways, epithelial-to-mesenchymal transition and live cell extrusion, that contribute to infectious center detachment. Perturbing these pathways altered the kinetics of infectious center detachment. These pathways influence one another and contribute to epithelial wound healing, suggesting that infectious center detachment may be a usurped consequence of the host's response to infection that benefits MeV by increasing its transmissibility between hosts.
Collapse
Affiliation(s)
- Camilla E. Hippee
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Lorellin A. Durnell
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Justin W. Kaufman
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Eileen Murray
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Brajesh K. Singh
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Patrick L. Sinn
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Tan M, Song B, Zhao X, Du J. The role and mechanism of compressive stress in tumor. Front Oncol 2024; 14:1459313. [PMID: 39351360 PMCID: PMC11439826 DOI: 10.3389/fonc.2024.1459313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Recent research has revealed the important role of mechanical forces in the initiation and progression of tumors. The interplay between mechanical and biochemical cues affects the function and behavior of tumor cells during the development of solid tumors, especially their metastatic potential. The compression force generated by excessive cell proliferation and the tumor microenvironment widely regulates the progression of solid tumor disease. Tumor cells can sense alterations in compressive stress through diverse mechanosensitive components and adapt their mechanical characteristics accordingly to adapt to environmental changes. Here, we summarize the current role of compressive stress in regulating tumor behavior and its biophysical mechanism from the mechanobiological direction.
Collapse
Affiliation(s)
- Min Tan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Bingqi Song
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xinbin Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Jing Du
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
4
|
Gan WJ, Giri R, Begun J, Abud HE, Hardeman EC, Gunning PW, Yap AS, Noordstra I. A truncation mutant of adenomatous polyposis coli impairs apical cell extrusion through elevated epithelial tissue tension. Cytoskeleton (Hoboken) 2024. [PMID: 38984538 DOI: 10.1002/cm.21893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/21/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Tissue tension encompasses the mechanical forces exerted on solid tissues within animal bodies, originating from various sources such as cellular contractility, interactions with neighboring cells and the extracellular matrix. Emerging evidence indicates that an imbalance in such forces can influence structural organization, homeostasis, and potentially contribute to disease. For instance, heightened tissue tension can impede apical cell extrusion, leading to the retention of apoptotic or transformed cells. In this study, we investigate the potential role of adenomatous polyposis coli (APC) in modulating tissue tension. Our findings reveal that expression of an APC truncation mutant elevates epithelial tension via the RhoA/ROCK pathway. This elevation induces morphological alterations and hampers apoptotic cell extrusion in cultured epithelial cells and organoids, both of which could be mitigated by pharmacologically restoring the tissue tension. This raises the possibility that APC mutations may exert pathogenetic effects by altering tissue mechanics.
Collapse
Affiliation(s)
- Wan J Gan
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Rabina Giri
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jakob Begun
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Edna C Hardeman
- Faculty of Medicine and Health, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter W Gunning
- Faculty of Medicine and Health, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Alpha S Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
5
|
Melo S, Guerrero P, Moreira Soares M, Bordin JR, Carneiro F, Carneiro P, Dias MB, Carvalho J, Figueiredo J, Seruca R, Travasso RDM. The ECM and tissue architecture are major determinants of early invasion mediated by E-cadherin dysfunction. Commun Biol 2023; 6:1132. [PMID: 37938268 PMCID: PMC10632478 DOI: 10.1038/s42003-023-05482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
Germline mutations of E-cadherin cause Hereditary Diffuse Gastric Cancer (HDGC), a highly invasive cancer syndrome characterised by the occurrence of diffuse-type gastric carcinoma and lobular breast cancer. In this disease, E-cadherin-defective cells are detected invading the adjacent stroma since very early stages. Although E-cadherin loss is well established as a triggering event, other determinants of the invasive process persist largely unknown. Herein, we develop an experimental strategy that comprises in vitro extrusion assays using E-cadherin mutants associated to HDGC, as well as mathematical models epitomising epithelial dynamics and its interaction with the extracellular matrix (ECM). In vitro, we verify that E-cadherin dysfunctional cells detach from the epithelial monolayer and extrude basally into the ECM. Through phase-field modelling we demonstrate that, aside from loss of cell-cell adhesion, increased ECM attachment further raises basal extrusion efficiency. Importantly, by combining phase-field and vertex model simulations, we show that the cylindrical structure of gastric glands strongly promotes the cell's invasive ability. Moreover, we validate our findings using a dissipative particle dynamics simulation of epithelial extrusion. Overall, we provide the first evidence that cancer cell invasion is the outcome of defective cell-cell linkages, abnormal interplay with the ECM, and a favourable 3D tissue structure.
Collapse
Affiliation(s)
- Soraia Melo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal
| | - Pilar Guerrero
- Departamento de Matemáticas and Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Carlos III de Madrid, Leganés, Spain
| | - Maurício Moreira Soares
- Oslo Center for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - José Rafael Bordin
- Department of Physics, Institute of Physics and Mathematics, Federal University of Pelotas, Capão do Leão, Rio Grande do Sul, Brazil
| | - Fátima Carneiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Carneiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal
| | - Maria Beatriz Dias
- CISUC, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
| | - João Carvalho
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Joana Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal.
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Raquel Seruca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rui D M Travasso
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
6
|
Schepis A, Kumar S, Kappe SHI. Malaria parasites harness Rho GTPase signaling and host cell membrane ruffling for productive invasion of hepatocytes. Cell Rep 2023; 42:111927. [PMID: 36640315 DOI: 10.1016/j.celrep.2022.111927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/06/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Plasmodium sporozoites are the motile forms of the malaria parasites that infect hepatocytes. The initial invasion of hepatocytes is thought to be actively driven by sporozoites, but host cell processes might also play a role. Sporozoite invasion triggers a host plasma membrane invagination that forms a vacuole around the intracellular parasite, which is critical for subsequent intracellular parasite replication. Using fast live confocal microscopy, we observed that the initial interactions between sporozoites and hepatocytes induce plasma membrane ruffles and filopodia extensions. Importantly, we find that these host cell processes facilitate invasion and that Rho GTPase signaling, which regulates membrane ruffling and filopodia extension, is critical for productive infection. Interestingly, sporozoite cell traversal stimulates these processes, suggesting that it increases hepatocyte susceptibility to productive infection. Our study identifies host cell signaling events involved in plasma membrane dynamics as a critical host component of successful malaria parasite infection of hepatocytes.
Collapse
Affiliation(s)
- Antonino Schepis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
7
|
Litovka NI, Zhitnyak IY, Gloushankova NA. Epithelial–Mesenchymal Transition of Breast Cancer Cells Induced by Activation of the Transcription Factor Snail1. BIOCHEMISTRY (MOSCOW) 2023; 88:22-34. [PMID: 37068870 DOI: 10.1134/s0006297923010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Cancer cells use the program of epithelial-mesenchymal transition (EMT) for initiation of the invasion-metastasis cascade. Using confocal and video-microscopy, reorganization of the cytoskeleton was studied in the MCF-7 breast cancer cells undergoing Snail1-induced EMT. We used the line of MCF-7 cells stably expressing tetOff SNAI1 construct (MCF-7-SNAI1 cells). After tetracycline washout and Snail1 activation MCF-7-SNAI1 cells underwent EMT and acquired a migratory phenotype while retaining expression of E-cadherin. We identified five variants of the mesenchymal phenotype, differing in cell morphology and migration velocity. Migrating cells had high degree of plasticity, which allowed them to quickly change both the phenotype and migration velocity. The changes of the phenotype of MCF-7-SNAI1 cells are based on the Arp2/3-mediated branched actin network polymerization in lamellipodia, myosin-based contractility in the zone behind the nucleus, redistribution of adhesive proteins from cell-cell contacts to the leading edge, and reorganization of intermediate keratin filaments.
Collapse
Affiliation(s)
- Nikita I Litovka
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Irina Y Zhitnyak
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Natalya A Gloushankova
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| |
Collapse
|
8
|
Fasciano AC, Dasanayake GS, Estes MK, Zachos NC, Breault DT, Isberg RR, Tan S, Mecsas J. Yersinia pseudotuberculosis YopE prevents uptake by M cells and instigates M cell extrusion in human ileal enteroid-derived monolayers. Gut Microbes 2022; 13:1988390. [PMID: 34793276 PMCID: PMC8604394 DOI: 10.1080/19490976.2021.1988390] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many pathogens use M cells to access the underlying Peyer's patches and spread to systemic sites via the lymph as demonstrated by ligated loop murine intestinal models. However, the study of interactions between M cells and microbial pathogens has stalled due to the lack of cell culture systems. To overcome this obstacle, we use human ileal enteroid-derived monolayers containing five intestinal cell types including M cells to study the interactions between the enteric pathogen, Yersinia pseudotuberculosis (Yptb), and M cells. The Yptb type three secretion system (T3SS) effector Yops inhibit host defenses including phagocytosis and are critical for colonization of the intestine and Peyer's patches. Therefore, it is not understood how Yptb traverses through M cells to breach the epithelium. By growing Yptb under two physiological conditions that mimic the early infectious stage (low T3SS-expression) or host-adapted stage (high T3SS-expression), we found that large numbers of Yptb specifically associated with M cells, recapitulating murine studies. Transcytosis through M cells was significantly higher by Yptb expressing low levels of T3SS, because YopE and YopH prevented Yptb uptake. YopE also caused M cells to extrude from the epithelium without inducing cell-death or disrupting monolayer integrity. Sequential infection with early infectious stage Yptb reduced host-adapted Yptb association with M cells. These data underscore the strength of enteroids as a model by discovering that Yops impede M cell function, indicating that early infectious stage Yptb more effectively penetrates M cells while the host may defend against M cell penetration of host-adapted Yptb.
Collapse
Affiliation(s)
- Alyssa C. Fasciano
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, USA
| | - Gaya S. Dasanayake
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, USA
| | - Nicholas C. Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - David T. Breault
- Division of Endocrinology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Ralph R. Isberg
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, USA,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA
| | - Joan Mecsas
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, USA,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA,CONTACT Joan Mecsas Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA
| |
Collapse
|
9
|
Gentile A, Bensimon-Brito A, Priya R, Maischein HM, Piesker J, Guenther S, Gunawan F, Stainier DYR. The EMT transcription factor Snai1 maintains myocardial wall integrity by repressing intermediate filament gene expression. eLife 2021; 10:e66143. [PMID: 34152269 PMCID: PMC8216718 DOI: 10.7554/elife.66143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
The transcription factor Snai1, a well-known regulator of epithelial-to-mesenchymal transition, has been implicated in early cardiac morphogenesis as well as in cardiac valve formation. However, a role for Snai1 in regulating other aspects of cardiac morphogenesis has not been reported. Using genetic, transcriptomic, and chimeric analyses in zebrafish, we find that Snai1b is required in cardiomyocytes for myocardial wall integrity. Loss of snai1b increases the frequency of cardiomyocyte extrusion away from the cardiac lumen. Extruding cardiomyocytes exhibit increased actomyosin contractility basally as revealed by enrichment of p-myosin and α-catenin epitope α-18, as well as disrupted intercellular junctions. Transcriptomic analysis of wild-type and snai1b mutant hearts revealed the dysregulation of intermediate filament genes, including desmin b (desmb) upregulation. Cardiomyocyte-specific desmb overexpression caused increased cardiomyocyte extrusion, recapitulating the snai1b mutant phenotype. Altogether, these results indicate that Snai1 maintains the integrity of the myocardial epithelium, at least in part by repressing desmb expression.
Collapse
Affiliation(s)
- Alessandra Gentile
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
| | - Anabela Bensimon-Brito
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
| | - Rashmi Priya
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
| | - Hans-Martin Maischein
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
| | - Janett Piesker
- Max Planck Institute for Heart and Lung Research, Microscopy Service GroupBad NauheimGermany
| | - Stefan Guenther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
- Max Planck Institute for Heart and Lung Research, Bioinformatics and Deep Sequencing PlatformBad NauheimGermany
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
| | - Didier YR Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
| |
Collapse
|