1
|
Janker L, Schuster D, Bortel P, Hagn G, Meier-Menches SM, Mohr T, Mader JC, Slany A, Bileck A, Brunmair J, Madl C, Unger L, Hennlich B, Weitmayr B, Del Favero G, Pils D, Pukrop T, Pfisterer N, Feichtenschlager T, Gerner C. Multiomics-empowered Deep Phenotyping of Ulcerative Colitis Identifies Biomarker Signatures Reporting Functional Remission States. J Crohns Colitis 2023; 17:1514-1527. [PMID: 36961872 PMCID: PMC10588787 DOI: 10.1093/ecco-jcc/jjad052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 03/25/2023]
Abstract
INTRODUCTION Ulcerative colitis [UC] is a chronic disease with rising incidence and unclear aetiology. Deep molecular phenotyping by multiomics analyses may provide novel insights into disease processes and characteristic features of remission states. METHODS UC pathomechanisms were assessed by proteome profiling of human tissue specimens, obtained from five distinct colon locations for each of the 12 patients included in the study. Systemic disease-associated alterations were evaluated thanks to a cross-sectional setting of mass spectrometry-based multiomics analyses comprising proteins, metabolites, and eicosanoids of plasma obtained from UC patients during acute episodes and upon remission, in comparison with healthy controls. RESULTS Tissue proteome profiling indicated colitis-associated activation of neutrophils, macrophages, B and T cells, fibroblasts, endothelial cells and platelets, and hypoxic stress, and suggested a general downregulation of mitochondrial proteins accompanying the establishment of apparent wound healing-promoting activities including scar formation. Whereas pro-inflammatory proteins were apparently upregulated by immune cells, the colitis-associated epithelial cells, fibroblasts, endothelial cells, and platelets seemed to predominantly contribute anti-inflammatory and wound healing-promoting proteins. Blood plasma proteomics indicated chronic inflammation and platelet activation, whereas plasma metabolomics identified disease-associated deregulations of gut and gut microbiome-derived metabolites. Upon remission several, but not all, molecular candidate biomarker levels recovered back to normal. CONCLUSION The findings may indicate that microvascular damage and platelet deregulation hardly resolve upon remission, but apparently persist as disease-associated molecular signatures. This study presents local and systemic molecular alterations integrated in a model for UC pathomechanisms, potentially supporting the assessment of disease and remission states in UC patients.
Collapse
Affiliation(s)
- Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Dina Schuster
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Patricia Bortel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Gerhard Hagn
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Samuel M Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Vienna, Austria
| | - Johanna C Mader
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Astrid Slany
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Vienna, Austria
| | - Julia Brunmair
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christian Madl
- Institute of Pathology and Microbiology, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - Lukas Unger
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Hennlich
- Institute of Pathology and Microbiology, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - Barbara Weitmayr
- Institute of Pathology and Microbiology, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - Giorgia Del Favero
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Dietmar Pils
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Nikolaus Pfisterer
- Institute of Pathology and Microbiology, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | | | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Ren J, Ren A, Huang Z, Deng X, Jiang Z, Xue Y, Fu Z, Smith LE, Ke M, Gong Y. Metabolomic Profiling of Long-Chain Polyunsaturated Fatty Acid Oxidation in Adults with Retinal Vein Occlusion: A Case-Control Study. Am J Clin Nutr 2023; 118:579-590. [PMID: 37454758 DOI: 10.1016/j.ajcnut.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Long-chain polyunsaturated fatty acids (LCPUFAs) and their metabolites are closely related to neovascular eye diseases. However, the clinical significance of their oxylipins in retinal vein occlusion (RVO) remains inconclusive. OBJECTIVES This case-control study aimed to explore metabolomic profiles of LCPUFA oxidation in RVO and to identify potential indicators for diagnosis and pathologic progression. METHODS The plasma concentrations of ω-3 (n-3) and ω-6 (n-6) LCPUFA and their oxylipins in 44 adults with RVO and 36 normal controls were analyzed using ultraperformance liquid chromatography tandem mass spectrometry. Univariate analysis combined with principal component and orthogonal projections to latent structure discriminant analysis was used to screen differential metabolites. Aortic ring and choroidal explant sprouting assays were used to investigate the effects of 5-oxo-eicosatetraenoic acids (ETE) on angiogenesis ex vivo. Tubule formation and wound healing assays were performed to verify its effects on human retinal microvascular endothelial cell functions. RESULTS Higher ω-6 and lower ω-3 LCPUFA plasma concentrations were measured in the adults with RVO compared with control (odds ratio [OR]: 2.34; 95% confidence interval [CI]: 1.42, 3.86; P < 0.001; OR: 0.28; 95% CI: 0.15, 0.51; P < 0.001). Metabolomic analysis revealed 20 LCPUFA and their oxylipins dysregulated in RVO, including increased arachidonic acid (ω-6, OR: 1.85; 95% CI: 1.18, 2.90; P < 0.001) and its lipoxygenase product 5-oxo-ETE (OR: 11.76; 95% CI: 3.73, 37.11; P < 0.001), as well as decreased docosahexaenoic acid (ω-3, OR: 0.13; 95% CI: 0.05, 0.33; P < 0.001). Interestingly, 5-oxo-ETE was downregulated in ischemic compared with nonischemic central RVO. Exogenous 5-oxo-ETE attenuated aortic ring and choroidal explant sprouting and inhibited tubule formation and migration of human retinal microvascular endothelial cells in a dose-dependent manner, possibly via suppressing the vascular endothelial growth factor signaling pathway. CONCLUSIONS The plasma concentrations of ω-6 and ω-3 LCPUFA and their oxylipins were associated with RVO. The ω-6 LCPUFA-derived metabolite 5-oxo-ETE was a potential marker of RVO development and progression.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, China
| | - Yanni Xue
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Lois Eh Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Maitra U, Conger J, Owens MMM, Ciesla L. Predicting structural features of selected flavonoids responsible for neuroprotection in a Drosophila model of Parkinson's disease. Neurotoxicology 2023; 96:1-12. [PMID: 36822376 PMCID: PMC11080622 DOI: 10.1016/j.neuro.2023.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Nature-derived bioactive compounds have emerged as promising candidates for the prevention and treatment of diverse chronic illnesses, including neurodegenerative diseases. However, the exact molecular mechanisms underlying their neuroprotective effects remain unclear. Most studies focus solely on the antioxidant activities of natural products which translate to poor outcome in clinical trials. Current therapies against neurodegeneration only provide symptomatic relief, thereby underscoring the need for novel strategies to combat disease onset and progression. We have employed an environmental toxin-induced Drosophila Parkinson's disease (PD) model as an inexpensive in vivo screening platform to explore the neuroprotective potential of selected dietary flavonoids. We have identified a specific group of flavonoids known as flavones displaying protection against paraquat (PQ)-induced neurodegenerative phenotypes involving reduced survival, mobility defects, and enhanced oxidative stress. Interestingly, the other groups of investigated flavonoids, namely, the flavonones and flavonols failed to provide protection indicating a requirement of specific structural features that confer protection against PQ-mediated neurotoxicity in Drosophila. Based on our screen, the neuroprotective flavones lack a functional group substitution at the C3 and contain α,β-unsaturated carbonyl group. Furthermore, flavones-mediated neuroprotection is not solely dependent on antioxidant properties through nuclear factor erythroid 2-related factor 2 (Nrf2) but also requires regulation of the immune deficiency (IMD) pathway involving NFκB and the negative regulator poor Imd response upon knock-in (Pirk). Our data have identified specific structural features of selected flavonoids that provide neuroprotection against environmental toxin-induced PD pathogenesis that can be explored for novel therapeutic interventions.
Collapse
Affiliation(s)
- Urmila Maitra
- Department of Biological Sciences, University of Alabama, 2320 Science and Engineering Complex, Tuscaloosa, AL 35487-0344, USA.
| | - John Conger
- Department of Biological Sciences, University of Alabama, 2320 Science and Engineering Complex, Tuscaloosa, AL 35487-0344, USA; College of Pharmacy, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mary Magdalene Maggie Owens
- Department of Biological Sciences, University of Alabama, 2320 Science and Engineering Complex, Tuscaloosa, AL 35487-0344, USA; David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Lukasz Ciesla
- Department of Biological Sciences, University of Alabama, 2320 Science and Engineering Complex, Tuscaloosa, AL 35487-0344, USA.
| |
Collapse
|
4
|
A Blueprint for Cancer-Related Inflammation and Host Innate Immunity. Cells 2021; 10:cells10113211. [PMID: 34831432 PMCID: PMC8623541 DOI: 10.3390/cells10113211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
Both in situ and allograft models of cancer in juvenile and adult Drosophila melanogaster fruit flies offer a powerful means for unravelling cancer gene networks and cancer-host interactions. They can also be used as tools for cost-effective drug discovery and repurposing. Moreover, in situ modeling of emerging tumors makes it possible to address cancer initiating events-a black box in cancer research, tackle the innate antitumor immune responses to incipient preneoplastic cells and recurrent growing tumors, and decipher the initiation and evolution of inflammation. These studies in Drosophila melanogaster can serve as a blueprint for studies in more complex organisms and help in the design of mechanism-based therapies for the individualized treatment of cancer diseases in humans. This review focuses on new discoveries in Drosophila related to the diverse innate immune responses to cancer-related inflammation and the systemic effects that are so detrimental to the host.
Collapse
|
5
|
A parasitoid wasp of Drosophila employs preemptive and reactive strategies to deplete its host's blood cells. PLoS Pathog 2021; 17:e1009615. [PMID: 34048506 PMCID: PMC8191917 DOI: 10.1371/journal.ppat.1009615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/10/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
The wasps Leptopilina heterotoma parasitize and ingest their Drosophila hosts. They produce extracellular vesicles (EVs) in the venom that are packed with proteins, some of which perform immune suppressive functions. EV interactions with blood cells of host larvae are linked to hematopoietic depletion, immune suppression, and parasite success. But how EVs disperse within the host, enter and kill hematopoietic cells is not well understood. Using an antibody marker for L. heterotoma EVs, we show that these parasite-derived structures are readily distributed within the hosts’ hemolymphatic system. EVs converge around the tightly clustered cells of the posterior signaling center (PSC) of the larval lymph gland, a small hematopoietic organ in Drosophila. The PSC serves as a source of developmental signals in naïve animals. In wasp-infected animals, the PSC directs the differentiation of lymph gland progenitors into lamellocytes. These lamellocytes are needed to encapsulate the wasp egg and block parasite development. We found that L. heterotoma infection disassembles the PSC and PSC cells disperse into the disintegrating lymph gland lobes. Genetically manipulated PSC-less lymph glands remain non-responsive and largely intact in the face of L. heterotoma infection. We also show that the larval lymph gland progenitors use the endocytic machinery to internalize EVs. Once inside, L. heterotoma EVs damage the Rab7- and LAMP-positive late endocytic and phagolysosomal compartments. Rab5 maintains hematopoietic and immune quiescence as Rab5 knockdown results in hematopoietic over-proliferation and ectopic lamellocyte differentiation. Thus, both aspects of anti-parasite immunity, i.e., (a) phagocytosis of the wasp’s immune-suppressive EVs, and (b) progenitor differentiation for wasp egg encapsulation reside in the lymph gland. These results help explain why the lymph gland is specifically and precisely targeted for destruction. The parasite’s simultaneous and multipronged approach to block cellular immunity not only eliminates blood cells, but also tactically blocks the genetic programming needed for supplementary hematopoietic differentiation necessary for host success. In addition to its known functions in hematopoiesis, our results highlight a previously unrecognized phagocytic role of the lymph gland in cellular immunity. EV-mediated virulence strategies described for L. heterotoma are likely to be shared by other parasitoid wasps; their understanding can improve the design and development of novel therapeutics and biopesticides as well as help protect biodiversity. Parasitoid wasps serve as biological control agents of agricultural insect pests and are worthy of study. Many parasitic wasps develop inside their hosts to emerge as free-living adults. To overcome the resistance of their hosts, parasitic wasps use varied and ingenious strategies such as mimicry, evasion, bioactive venom, virus-like particles, viruses, and extracellular vesicles (EVs). We describe the effects of a unique class of EVs containing virulence proteins and produced in the venom of wasps that parasitize fruit flies of Drosophila species. EVs from Leptopilina heterotoma are widely distributed throughout the Drosophila hosts’ circulatory system after infection. They enter and kill macrophages by destroying the very same subcellular machinery that facilitates their uptake. An important protein in this process, Rab5, is needed to maintain the identity of the macrophage; when Rab5 function is reduced, macrophages turn into a different cell type called lamellocytes. Activities in the EVs can eliminate lamellocytes as well. EVs also interfere with the hosts’ genetic program that promotes lamellocyte differentiation needed to block parasite development. Thus, wasps combine specific preemptive and reactive strategies to deplete their hosts of the very cells that would otherwise sequester and kill them. These findings have applied value in agricultural pest control and medical therapeutics.
Collapse
|
6
|
Krautz R, Khalili D, Theopold U. Tissue-autonomous immune response regulates stress signaling during hypertrophy. eLife 2020; 9:64919. [PMID: 33377870 PMCID: PMC7880693 DOI: 10.7554/elife.64919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Postmitotic tissues are incapable of replacing damaged cells through proliferation, but need to rely on buffering mechanisms to prevent tissue disintegration. By constitutively activating the Ras/MAPK-pathway via RasV12-overexpression in the postmitotic salivary glands (SGs) of Drosophila larvae, we overrode the glands adaptability to growth signals and induced hypertrophy. The accompanied loss of tissue integrity, recognition by cellular immunity, and cell death are all buffered by blocking stress signaling through a genuine tissue-autonomous immune response. This novel, spatio-temporally tightly regulated mechanism relies on the inhibition of a feedback-loop in the JNK-pathway by the immune effector and antimicrobial peptide Drosomycin. While this interaction might allow growing SGs to cope with temporary stress, continuous Drosomycin expression in RasV12-glands favors unrestricted hypertrophy. These findings indicate the necessity to refine therapeutic approaches that stimulate immune responses by acknowledging their possible, detrimental effects in damaged or stressed tissues. Tissues and organs work hard to maintain balance in everything from taking up nutrients to controlling their growth. Ageing, wounding, sickness, and changes in the genetic code can all alter this balance, and cause the tissue or organ to lose some of its cells. Many tissues restore this loss by dividing their remaining cells to fill in the gaps. But some – like the salivary glands of fruit fly larvae – have lost this ability. Tissues like these rely on being able to sense and counteract problems as they arise so as to not lose their balance in the first place. The immune system and stress responses are crucial for this process. They trigger steps to correct the problem and interact with each other to find a common decision about the fate of the affected tissue. To better understand how the immune system and stress response work together, Krautz, Khalili and Theopold genetically manipulated cells in the salivary gland of fruit fly larvae. These modifications switched on signals that stimulate cells to keep growing, causing the salivary gland’s tissue to slowly lose its balance and trigger the stress and immune response. The experiments showed that while the stress response instructed the cells in the gland to die, a peptide released by the immune system called Drosomycin blocked this response and prevented the tissue from collapsing. The cells in the part of the gland not producing this immune peptide were consequently killed by the stress response. When all the cells in the salivary gland were forced to produce Drosomycin, none of the cells died and the whole tissue survived. But it also allowed the cells in the gland to grow uncontrollably, like a tumor, threatening the health of the entire organism. Mapping the interactions between immune and stress pathways could help to fine-tune treatments that can prevent tissue damage. Fruit flies share many genetic features and molecular pathways with humans. So, the next step towards these kinds of treatments would be to screen for similar mechanisms that block stress activation in damaged human tissues. But this research carries a warning: careless activation of the immune system to protect stressed tissues could lead to uncontrolled tissue growth, and might cause more harm than good.
Collapse
Affiliation(s)
- Robert Krautz
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Dilan Khalili
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Ulrich Theopold
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Drosophila melanogaster Responses against Entomopathogenic Nematodes: Focus on Hemolymph Clots. INSECTS 2020; 11:insects11010062. [PMID: 31963772 PMCID: PMC7023112 DOI: 10.3390/insects11010062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/28/2022]
Abstract
Several insect innate immune mechanisms are activated in response to infection by entomopathogenic nematodes (EPNs). In this review, we focus on the coagulation of hemolymph, which acts to stop bleeding after injury and prevent access of pathogens to the body cavity. After providing a general overview of invertebrate coagulation systems, we discuss recent findings in Drosophila melanogaster which demonstrate that clots protect against EPN infections. Detailed analysis at the cellular level provided insight into the kinetics of the secretion of Drosophila coagulation factors, including non-classical modes of secretion. Roughly, clot formation can be divided into a primary phase in which crosslinking of clot components depends on the activity of Drosophila transglutaminase and a secondary, phenoloxidase (PO)-dependent phase, characterized by further hardening and melanization of the clot matrix. These two phases appear to play distinct roles in two commonly used EPN infection models, namely Heterorhabditis bacteriophora and Steinernema carpocapsae. Finally, we discuss the implications of the coevolution between parasites such as EPNs and their hosts for the dynamics of coagulation factor evolution.
Collapse
|