1
|
Zaher A, Stephens SB. Breaking the Feedback Loop of β-Cell Failure: Insight into the Pancreatic β-Cell's ER-Mitochondria Redox Balance. Cells 2025; 14:399. [PMID: 40136648 PMCID: PMC11941261 DOI: 10.3390/cells14060399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Pancreatic β-cells rely on a delicate balance between the endoplasmic reticulum (ER) and mitochondria to maintain sufficient insulin stores for the regulation of whole animal glucose homeostasis. The ER supports proinsulin maturation through oxidative protein folding, while mitochondria supply the energy and redox buffering that maintain ER proteostasis. In the development of Type 2 diabetes (T2D), the progressive decline of β-cell function is closely linked to disruptions in ER-mitochondrial communication. Mitochondrial dysfunction is a well-established driver of β-cell failure, whereas the downstream consequences for ER redox homeostasis have only recently emerged. This interdependence of ER-mitochondrial functions suggests that an imbalance is both a cause and consequence of metabolic dysfunction. In this review, we discuss the regulatory mechanisms of ER redox control and requirements for mitochondrial function. In addition, we describe how ER redox imbalances may trigger mitochondrial dysfunction in a vicious feed forward cycle that accelerates β-cell dysfunction and T2D onset.
Collapse
Affiliation(s)
- Amira Zaher
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA;
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| | - Samuel B. Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA;
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52246, USA
| |
Collapse
|
2
|
Kadokura H, Harada N, Yamaki S, Hirai N, Tsukuda R, Azuma K, Amagai Y, Nakamura D, Yanagitani K, Taguchi H, Kohno K, Inaba K. Development of luciferase-based highly sensitive reporters that detect ER-associated protein biogenesis abnormalities. iScience 2024; 27:111189. [PMID: 39555403 PMCID: PMC11564982 DOI: 10.1016/j.isci.2024.111189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/01/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Localization to the endoplasmic reticulum (ER) and subsequent disulfide bond formation are crucial processes governing the biogenesis of secretory pathway proteins in eukaryotes. Hence, comprehending the mechanisms underlying these processes is important. Here, we have engineered firefly luciferase (FLuc) as a tool to detect deficiencies in these processes within mammalian cells. To achieve this, we introduced multiple cysteine substitutions into FLuc and targeted it to the ER. The reporter exhibited FLuc activity in response to defects in protein localization or disulfide bond formation within the ER. Notably, this system exhibited outstanding sensitivity, reproducibility, and convenience in detecting abnormalities in these processes. We applied this system to observe a protein translocation defect induced by an inhibitor of HIV receptor biogenesis. Moreover, utilizing the system, we showed that modulating LMF1 levels dramatically impacted the ER's redox environment, confirming that LMF1 plays some critical role in the redox control of the ER.
Collapse
Affiliation(s)
- Hiroshi Kadokura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| | - Nanshi Harada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Satoshi Yamaki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Naoya Hirai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| | - Ryusuke Tsukuda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kota Azuma
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yuta Amagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Daisuke Nakamura
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kota Yanagitani
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| | - Kenji Kohno
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Graduate School of Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1297, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
3
|
Rohli KE, Stubbe NJ, Walker EM, Pearson GL, Soleimanpour SA, Stephens SB. A metabolic redox relay supports ER proinsulin export in pancreatic islet β cells. JCI Insight 2024; 9:e178725. [PMID: 38935435 PMCID: PMC11383593 DOI: 10.1172/jci.insight.178725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
ER stress and proinsulin misfolding are heralded as contributing factors to β cell dysfunction in type 2 diabetes, yet how ER function becomes compromised is not well understood. Recent data identify altered ER redox homeostasis as a critical mechanism that contributes to insulin granule loss in diabetes. Hyperoxidation of the ER delays proinsulin export and limits the proinsulin supply available for insulin granule formation. In this report, we identified glucose metabolism as a critical determinant in the redox homeostasis of the ER. Using multiple β cell models, we showed that loss of mitochondrial function or inhibition of cellular metabolism elicited ER hyperoxidation and delayed ER proinsulin export. Our data further demonstrated that β cell ER redox homeostasis was supported by the metabolic supply of reductive redox donors. We showed that limiting NADPH and thioredoxin flux delayed ER proinsulin export, whereas thioredoxin-interacting protein suppression restored ER redox and proinsulin trafficking. Taken together, we propose that β cell ER redox homeostasis is buffered by cellular redox donor cycles, which are maintained through active glucose metabolism.
Collapse
Affiliation(s)
- Kristen E Rohli
- Fraternal Order of Eagles Diabetes Research Center
- Interdisciplinary Graduate Program in Genetics, and
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - Emily M Walker
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, and
| | - Gemma L Pearson
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, and
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center
- Interdisciplinary Graduate Program in Genetics, and
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Veszelyi K, Czegle I, Varga V, Németh CE, Besztercei B, Margittai É. Subcellular Localization of Thioredoxin/Thioredoxin Reductase System-A Missing Link in Endoplasmic Reticulum Redox Balance. Int J Mol Sci 2024; 25:6647. [PMID: 38928353 PMCID: PMC11204020 DOI: 10.3390/ijms25126647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The lumen of the endoplasmic reticulum (ER) is usually considered an oxidative environment; however, oxidized thiol-disulfides and reduced pyridine nucleotides occur there parallelly, indicating that the ER lumen lacks components which connect the two systems. Here, we investigated the luminal presence of the thioredoxin (Trx)/thioredoxin reductase (TrxR) proteins, capable of linking the protein thiol and pyridine nucleotide pools in different compartments. It was shown that specific activity of TrxR in the ER is undetectable, whereas higher activities were measured in the cytoplasm and mitochondria. None of the Trx/TrxR isoforms were expressed in the ER by Western blot analysis. Co-localization studies of various isoforms of Trx and TrxR with ER marker Grp94 by immunofluorescent analysis further confirmed their absence from the lumen. The probability of luminal localization of each isoform was also predicted to be very low by several in silico analysis tools. ER-targeted transient transfection of HeLa cells with Trx1 and TrxR1 significantly decreased cell viability and induced apoptotic cell death. In conclusion, the absence of this electron transfer chain may explain the uncoupling of the redox systems in the ER lumen, allowing parallel presence of a reduced pyridine nucleotide and a probably oxidized protein pool necessary for cellular viability.
Collapse
Affiliation(s)
- Krisztina Veszelyi
- Institute of Translational Medicine, Semmelweis University, H-1085 Budapest, Hungary; (K.V.); (V.V.); (B.B.)
| | - Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary;
| | - Viola Varga
- Institute of Translational Medicine, Semmelweis University, H-1085 Budapest, Hungary; (K.V.); (V.V.); (B.B.)
| | - Csilla Emese Németh
- Institute of Biochemistry and Molecular Biology, Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary;
| | - Balázs Besztercei
- Institute of Translational Medicine, Semmelweis University, H-1085 Budapest, Hungary; (K.V.); (V.V.); (B.B.)
| | - Éva Margittai
- Institute of Translational Medicine, Semmelweis University, H-1085 Budapest, Hungary; (K.V.); (V.V.); (B.B.)
| |
Collapse
|
5
|
Mahmood M, Liu EM, Shergold AL, Tolla E, Tait-Mulder J, Huerta-Uribe A, Shokry E, Young AL, Lilla S, Kim M, Park T, Boscenco S, Manchon JL, Rodríguez-Antona C, Walters RC, Springett RJ, Blaza JN, Mitchell L, Blyth K, Zanivan S, Sumpton D, Roberts EW, Reznik E, Gammage PA. Mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade response in melanoma. NATURE CANCER 2024; 5:659-672. [PMID: 38286828 PMCID: PMC11056318 DOI: 10.1038/s43018-023-00721-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024]
Abstract
The mitochondrial genome (mtDNA) encodes essential machinery for oxidative phosphorylation and metabolic homeostasis. Tumor mtDNA is among the most somatically mutated regions of the cancer genome, but whether these mutations impact tumor biology is debated. We engineered truncating mutations of the mtDNA-encoded complex I gene, Mt-Nd5, into several murine models of melanoma. These mutations promoted a Warburg-like metabolic shift that reshaped tumor microenvironments in both mice and humans, consistently eliciting an anti-tumor immune response characterized by loss of resident neutrophils. Tumors bearing mtDNA mutations were sensitized to checkpoint blockade in a neutrophil-dependent manner, with induction of redox imbalance being sufficient to induce this effect in mtDNA wild-type tumors. Patient lesions bearing >50% mtDNA mutation heteroplasmy demonstrated a response rate to checkpoint blockade that was improved by ~2.5-fold over mtDNA wild-type cancer. These data nominate mtDNA mutations as functional regulators of cancer metabolism and tumor biology, with potential for therapeutic exploitation and treatment stratification.
Collapse
Affiliation(s)
| | - Eric Minwei Liu
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | - Engy Shokry
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Alex L Young
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Sergio Lilla
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Minsoo Kim
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tricia Park
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sonia Boscenco
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Javier L Manchon
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Crístina Rodríguez-Antona
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER, Madrid, Spain
| | - Rowan C Walters
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, UK
| | - Roger J Springett
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, UK
| | - James N Blaza
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, UK
| | | | - Karen Blyth
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Sara Zanivan
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Edward W Roberts
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Payam A Gammage
- Cancer Research UK Scotland Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
6
|
Mahmood M, Liu EM, Shergold AL, Tolla E, Tait-Mulder J, Huerta Uribe A, Shokry E, Young AL, Lilla S, Kim M, Park T, Manchon J, Rodríguez-Antona C, Walters RC, Springett RJ, Blaza JN, Zanivan S, Sumpton D, Roberts EW, Reznik E, Gammage PA. Tumour mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533091. [PMID: 36993533 PMCID: PMC10055208 DOI: 10.1101/2023.03.21.533091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The mitochondrial genome encodes essential machinery for respiration and metabolic homeostasis but is paradoxically among the most common targets of somatic mutation in the cancer genome, with truncating mutations in respiratory complex I genes being most over-represented1. While mitochondrial DNA (mtDNA) mutations have been associated with both improved and worsened prognoses in several tumour lineages1-3, whether these mutations are drivers or exert any functional effect on tumour biology remains controversial. Here we discovered that complex I-encoding mtDNA mutations are sufficient to remodel the tumour immune landscape and therapeutic resistance to immune checkpoint blockade. Using mtDNA base editing technology4 we engineered recurrent truncating mutations in the mtDNA-encoded complex I gene, Mt-Nd5, into murine models of melanoma. Mechanistically, these mutations promoted utilisation of pyruvate as a terminal electron acceptor and increased glycolytic flux without major effects on oxygen consumption, driven by an over-reduced NAD pool and NADH shuttling between GAPDH and MDH1, mediating a Warburg-like metabolic shift. In turn, without modifying tumour growth, this altered cancer cell-intrinsic metabolism reshaped the tumour microenvironment in both mice and humans, promoting an anti-tumour immune response characterised by loss of resident neutrophils. This subsequently sensitised tumours bearing high mtDNA mutant heteroplasmy to immune checkpoint blockade, with phenocopy of key metabolic changes being sufficient to mediate this effect. Strikingly, patient lesions bearing >50% mtDNA mutation heteroplasmy also demonstrated a >2.5-fold improved response rate to checkpoint inhibitor blockade. Taken together these data nominate mtDNA mutations as functional regulators of cancer metabolism and tumour biology, with potential for therapeutic exploitation and treatment stratification.
Collapse
Affiliation(s)
| | - Eric Minwei Liu
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | - Engy Shokry
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Sergio Lilla
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Minsoo Kim
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tricia Park
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J.L. Manchon
- Centro Nacional de Investigaciones Oncológicas(CNIO), Madrid, Spain
| | - Crístina Rodríguez-Antona
- Centro Nacional de Investigaciones Oncológicas(CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER, Madrid, Spain
| | - Rowan C. Walters
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, UK
| | - Roger J. Springett
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, UK
| | - James N. Blaza
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, UK
| | | | - Edward W. Roberts
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, UK
| | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Payam A. Gammage
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, UK
| |
Collapse
|
7
|
Robinson PJ, Pringle MA, Fleming B, Bulleid NJ. Distinct role of ERp57 and ERdj5 as a disulfide isomerase and reductase during ER protein folding. J Cell Sci 2023; 136:286707. [PMID: 36655611 PMCID: PMC10022741 DOI: 10.1242/jcs.260656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/13/2022] [Indexed: 01/20/2023] Open
Abstract
Proteins entering the secretory pathway need to attain native disulfide pairings to fold correctly. For proteins with complex disulfides, this process requires the reduction and isomerisation of non-native disulfides. Two key members of the protein disulfide isomerase (PDI) family, ERp57 and ERdj5 (also known as PDIA3 and DNAJC10, respectively), are thought to be required for correct disulfide formation but it is unknown whether they act as a reductase, an isomerase or both. In addition, it is unclear how reducing equivalents are channelled through PDI family members to substrate proteins. Here, we show that neither enzyme is required for disulfide formation, but ERp57 is required for isomerisation of non-native disulfides within glycoproteins. In addition, alternative PDIs compensate for the absence of ERp57 to isomerise glycoprotein disulfides, but only in the presence of a robust reductive pathway. ERdj5 is required for this alternative pathway to function efficiently indicating its role as a reductase. Our results define the essential cellular functions of two PDIs, highlighting a distinction between formation, reduction and isomerisation of disulfide bonds.
Collapse
Affiliation(s)
- Philip John Robinson
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Marie Anne Pringle
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Bethany Fleming
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Neil John Bulleid
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
8
|
Introduction of a More Glutaredoxin-like Active Site to PDI Results in Competition between Protein Substrate and Glutathione Binding. Antioxidants (Basel) 2022; 11:antiox11101920. [PMID: 36290643 PMCID: PMC9598436 DOI: 10.3390/antiox11101920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins in the thioredoxin superfamily share a similar fold, contain a -CXXC- active site, and catalyze oxidoreductase reactions by dithiol-disulfide exchange mechanisms. Protein disulfide isomerase (PDI) has two -CGHC- active sites. For in vitro studies, oxidation/reduction of PDI during the catalytic cycle is accomplished with glutathione. Glutathione may act as electron donor/acceptor for PDI also in vivo, but at least for oxidation reactions, GSSG probably is not the major electron acceptor and PDI may not have evolved to react with glutathione with high affinity, but merely having adequate affinity for both glutathione and folding proteins/peptides. Glutaredoxins, on the other hand, have a high affinity for glutathione. They commonly have -CXFC- or -CXYC- active site, where the tyrosine residue forms part of the GSH binding groove. Mutating the active site of PDI to a more glutaredoxin-like motif increased its reactivity with glutathione. All such variants showed an increased rate in GSH-dependent reduction or GSSG-dependent oxidation of the active site, as well as a decreased rate of the native disulfide bond formation, with the magnitude of the effect increasing with glutathione concentration. This suggests that these variants lead to competition in binding between glutathione and folding protein substrates.
Collapse
|
9
|
Rohli KE, Boyer CK, Bearrows SC, Moyer MR, Elison WS, Bauchle CJ, Blom SE, Zhang J, Wang Y, Stephens SB. ER Redox Homeostasis Regulates Proinsulin Trafficking and Insulin Granule Formation in the Pancreatic Islet β-Cell. FUNCTION 2022; 3:zqac051. [PMID: 36325514 PMCID: PMC9614934 DOI: 10.1093/function/zqac051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/11/2022] [Accepted: 09/21/2022] [Indexed: 01/07/2023] Open
Abstract
Defects in the pancreatic β-cell's secretion system are well-described in type 2 diabetes (T2D) and include impaired proinsulin processing and a deficit in mature insulin-containing secretory granules; however, the cellular mechanisms underlying these defects remain poorly understood. To address this, we used an in situ fluorescent pulse-chase strategy to study proinsulin trafficking. We show that insulin granule formation and the appearance of nascent granules at the plasma membrane are decreased in rodent and cell culture models of prediabetes and hyperglycemia. Moreover, we link the defect in insulin granule formation to an early trafficking delay in endoplasmic reticulum (ER) export of proinsulin, which is independent of overt ER stress. Using a ratiometric redox sensor, we show that the ER becomes hyperoxidized in β-cells from a dietary model of rodent prediabetes and that addition of reducing equivalents restores ER export of proinsulin and insulin granule formation and partially restores β-cell function. Together, these data identify a critical role for the regulation of ER redox homeostasis in proinsulin trafficking and suggest that alterations in ER redox poise directly contribute to the decline in insulin granule production in T2D. This model highlights a critical link between alterations in ER redox and ER function with defects in proinsulin trafficking in T2D. Hyperoxidation of the ER lumen, shown as hydrogen peroxide, impairs proinsulin folding and disulfide bond formation that prevents efficient exit of proinsulin from the ER to the Golgi. This trafficking defect limits available proinsulin for the formation of insulin secretory granules during the development of T2D.
Collapse
Affiliation(s)
- Kristen E Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Cierra K Boyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Shelby C Bearrows
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Marshall R Moyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Weston S Elison
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Casey J Bauchle
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Sandra E Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48103, USA
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Gansemer ER, Rutkowski DT. Pathways Linking Nicotinamide Adenine Dinucleotide Phosphate Production to Endoplasmic Reticulum Protein Oxidation and Stress. Front Mol Biosci 2022; 9:858142. [PMID: 35601828 PMCID: PMC9114485 DOI: 10.3389/fmolb.2022.858142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) lumen is highly oxidizing compared to other subcellular compartments, and maintaining the appropriate levels of oxidizing and reducing equivalents is essential to ER function. Both protein oxidation itself and other essential ER processes, such as the degradation of misfolded proteins and the sequestration of cellular calcium, are tuned to the ER redox state. Simultaneously, nutrients are oxidized in the cytosol and mitochondria to power ATP generation, reductive biosynthesis, and defense against reactive oxygen species. These parallel needs for protein oxidation in the ER and nutrient oxidation in the cytosol and mitochondria raise the possibility that the two processes compete for electron acceptors, even though they occur in separate cellular compartments. A key molecule central to both processes is NADPH, which is produced by reduction of NADP+ during nutrient catabolism and which in turn drives the reduction of components such as glutathione and thioredoxin that influence the redox potential in the ER lumen. For this reason, NADPH might serve as a mediator linking metabolic activity to ER homeostasis and stress, and represent a novel form of mitochondria-to-ER communication. In this review, we discuss oxidative protein folding in the ER, NADPH generation by the major pathways that mediate it, and ER-localized systems that can link the two processes to connect ER function to metabolic activity.
Collapse
Affiliation(s)
- Erica R. Gansemer
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
11
|
Blomme A, Peter C, Mui E, Rodriguez Blanco G, An N, Mason LM, Jamieson LE, McGregor GH, Lilla S, Ntala C, Patel R, Thiry M, Kung SHY, Leclercq M, Ford CA, Rushworth LK, McGarry DJ, Mason S, Repiscak P, Nixon C, Salji MJ, Markert E, MacKay GM, Kamphorst JJ, Graham D, Faulds K, Fazli L, Gleave ME, Avezov E, Edwards J, Yin H, Sumpton D, Blyth K, Close P, Murphy DJ, Zanivan S, Leung HY. THEM6-mediated reprogramming of lipid metabolism supports treatment resistance in prostate cancer. EMBO Mol Med 2022; 14:e14764. [PMID: 35014179 PMCID: PMC8899912 DOI: 10.15252/emmm.202114764] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022] Open
Abstract
Despite the clinical benefit of androgen-deprivation therapy (ADT), the majority of patients with advanced prostate cancer (PCa) ultimately develop lethal castration-resistant prostate cancer (CRPC). In this study, we identified thioesterase superfamily member 6 (THEM6) as a marker of ADT resistance in PCa. THEM6 deletion reduces in vivo tumour growth and restores castration sensitivity in orthograft models of CRPC. Mechanistically, we show that the ER membrane-associated protein THEM6 regulates intracellular levels of ether lipids and is essential to trigger the induction of the ER stress response (UPR). Consequently, THEM6 loss in CRPC cells significantly alters ER function, reducing de novo sterol biosynthesis and preventing lipid-mediated activation of ATF4. Finally, we demonstrate that high THEM6 expression is associated with poor survival and correlates with high levels of UPR activation in PCa patients. Altogether, our results highlight THEM6 as a novel driver of therapy resistance in PCa as well as a promising target for the treatment of CRPC.
Collapse
Affiliation(s)
| | | | - Ernest Mui
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Ning An
- Laboratory of Cancer SignalingGIGA‐InstituteUniversity of LiègeLiègeBelgium
| | | | - Lauren E Jamieson
- Centre for Molecular NanometrologyDepartment of Pure and Applied ChemistryTechnology and Innovation CentreUniversity of StrathclydeGlasgowUK
| | - Grace H McGregor
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Chara Ntala
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Marc Thiry
- GIGA‐NeurosciencesUnit of Cell and Tissue BiologyUniversity of LiègeLiègeBelgium
| | - Sonia H Y Kung
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- Vancouver Prostate CentreVancouverBCCanada
| | - Marine Leclercq
- Laboratory of Cancer SignalingGIGA‐InstituteUniversity of LiègeLiègeBelgium
| | | | - Linda K Rushworth
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Susan Mason
- CRUK Beatson InstituteGarscube EstateGlasgowUK
| | | | - Colin Nixon
- CRUK Beatson InstituteGarscube EstateGlasgowUK
| | - Mark J Salji
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Elke Markert
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Jurre J Kamphorst
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Duncan Graham
- Centre for Molecular NanometrologyDepartment of Pure and Applied ChemistryTechnology and Innovation CentreUniversity of StrathclydeGlasgowUK
| | - Karen Faulds
- Centre for Molecular NanometrologyDepartment of Pure and Applied ChemistryTechnology and Innovation CentreUniversity of StrathclydeGlasgowUK
| | - Ladan Fazli
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- Vancouver Prostate CentreVancouverBCCanada
| | - Martin E Gleave
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- Vancouver Prostate CentreVancouverBCCanada
| | - Edward Avezov
- UK Dementia Research Institute at University of CambridgeDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Joanne Edwards
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Huabing Yin
- School of EngineeringUniversity of GlasgowGlasgowUK
| | | | - Karen Blyth
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Pierre Close
- Laboratory of Cancer SignalingGIGA‐InstituteUniversity of LiègeLiègeBelgium
| | - Daniel J Murphy
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Sara Zanivan
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Hing Y Leung
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| |
Collapse
|
12
|
Rohli KE, Boyer CK, Blom SE, Stephens SB. Nutrient Regulation of Pancreatic Islet β-Cell Secretory Capacity and Insulin Production. Biomolecules 2022; 12:335. [PMID: 35204835 PMCID: PMC8869698 DOI: 10.3390/biom12020335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic islet β-cells exhibit tremendous plasticity for secretory adaptations that coordinate insulin production and release with nutritional demands. This essential feature of the β-cell can allow for compensatory changes that increase secretory output to overcome insulin resistance early in Type 2 diabetes (T2D). Nutrient-stimulated increases in proinsulin biosynthesis may initiate this β-cell adaptive compensation; however, the molecular regulators of secretory expansion that accommodate the increased biosynthetic burden of packaging and producing additional insulin granules, such as enhanced ER and Golgi functions, remain poorly defined. As these adaptive mechanisms fail and T2D progresses, the β-cell succumbs to metabolic defects resulting in alterations to glucose metabolism and a decline in nutrient-regulated secretory functions, including impaired proinsulin processing and a deficit in mature insulin-containing secretory granules. In this review, we will discuss how the adaptative plasticity of the pancreatic islet β-cell's secretory program allows insulin production to be carefully matched with nutrient availability and peripheral cues for insulin signaling. Furthermore, we will highlight potential defects in the secretory pathway that limit or delay insulin granule biosynthesis, which may contribute to the decline in β-cell function during the pathogenesis of T2D.
Collapse
Affiliation(s)
- Kristen E. Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cierra K. Boyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Sandra E. Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel B. Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
13
|
van Lith M, Pringle MA, Fleming B, Gaeta G, Im J, Gilmore R, Bulleid NJ. A cytosolic reductase pathway is required for efficient N-glycosylation of an STT3B-dependent acceptor site. J Cell Sci 2021; 134:273533. [PMID: 34734627 PMCID: PMC8645230 DOI: 10.1242/jcs.259340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
N-linked glycosylation of proteins entering the secretory pathway is an essential modification required for protein stability and function. Previously, it has been shown that there is a temporal relationship between protein folding and glycosylation, which influences the occupancy of specific glycosylation sites. Here, we used an in vitro translation system that reproduces the initial stages of secretory protein translocation, folding and glycosylation under defined redox conditions. We found that the efficiency of glycosylation of hemopexin was dependent upon a robust NADPH-dependent cytosolic reductive pathway, which could be mimicked by the addition of a membrane-impermeable reducing agent. We identified a hypoglycosylated acceptor site that is adjacent to a cysteine involved in a short-range disulfide. We show that efficient glycosylation at this site is influenced by the cytosolic reductive pathway acting on both STT3A- and STT3B-dependent glycosylation. Our results provide further insight into the important role of the endoplasmic reticulum redox conditions in glycosylation site occupancy and demonstrate a link between redox conditions in the cytosol and glycosylation efficiency.
Collapse
Affiliation(s)
- Marcel van Lith
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marie Anne Pringle
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Bethany Fleming
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Giorgia Gaeta
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Headington, Oxford OX3 7LD, UK
| | - Jisu Im
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK.,Cellular Protein Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Neil J Bulleid
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
14
|
Bassot A, Chen J, Simmen T. Post-Translational Modification of Cysteines: A Key Determinant of Endoplasmic Reticulum-Mitochondria Contacts (MERCs). CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211001213. [PMID: 37366382 PMCID: PMC10243593 DOI: 10.1177/25152564211001213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 06/28/2023]
Abstract
Cells must adjust their redox state to an ever-changing environment that could otherwise result in compromised homeostasis. An obvious way to adapt to changing redox conditions depends on cysteine post-translational modifications (PTMs) to adapt conformation, localization, interactions and catalytic activation of proteins. Such PTMs should occur preferentially in the proximity of oxidative stress sources. A particular concentration of these sources is found near membranes where the endoplasmic reticulum (ER) and the mitochondria interact on domains called MERCs (Mitochondria-Endoplasmic Reticulum Contacts). Here, fine inter-organelle communication controls metabolic homeostasis. MERCs achieve this goal through fluxes of Ca2+ ions and inter-organellar lipid exchange. Reactive oxygen species (ROS) that cause PTMs of mitochondria-associated membrane (MAM) proteins determine these intertwined MERC functions. Chronic changes of the pattern of these PTMs not only control physiological processes such as the circadian clock but could also lead to or worsen many human disorders such as cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Thomas Simmen
- Thomas Simmen, Department of Cell
Biology, Faculty of Medicine and Dentistry, University of Alberta,
Edmonton, Alberta, Canada T6G2H7.
| |
Collapse
|
15
|
Mechanisms of Disulfide Bond Formation in Nascent Polypeptides Entering the Secretory Pathway. Cells 2020; 9:cells9091994. [PMID: 32872499 PMCID: PMC7565403 DOI: 10.3390/cells9091994] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
Disulfide bonds are an abundant feature of proteins across all domains of life that are important for structure, stability, and function. In eukaryotic cells, a major site of disulfide bond formation is the endoplasmic reticulum (ER). How cysteines correctly pair during polypeptide folding to form the native disulfide bond pattern is a complex problem that is not fully understood. In this paper, the evidence for different folding mechanisms involved in ER-localised disulfide bond formation is reviewed with emphasis on events that occur during ER entry. Disulfide formation in nascent polypeptides is discussed with focus on (i) its mechanistic relationship with conformational folding, (ii) evidence for its occurrence at the co-translational stage during ER entry, and (iii) the role of protein disulfide isomerase (PDI) family members. This review highlights the complex array of cellular processes that influence disulfide bond formation and identifies key questions that need to be addressed to further understand this fundamental process.
Collapse
|