1
|
Mizuno K, Sugahara M, Kutomi O, Kato R, Itoh T, Fujita S, Yamada M. Direct observation of importin α family member KPNA1 in axonal transport with or without a schizophrenia-related mutation. J Biol Chem 2025; 301:108343. [PMID: 40010609 PMCID: PMC11982482 DOI: 10.1016/j.jbc.2025.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/03/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
Karyopherin α1 (KPNA1)/(human importin α5; mouse importin α1) facilitates cargo transport into the nucleus by forming a complex with a nuclear localization sequence containing cargo and importin β1 (IPOB1). The elevated KPNA1 expression in neurons and the correlation between mutations and psychiatric disorders suggest its broader significance beyond nucleocytoplasmic transport. Although KPNA1 is localized in the neurites of neurons, its role in axonal transport mechanisms remains unclear, and data on the connection between psychiatric disorders and signaling at the periphery of neurons remain limited. To address this knowledge gap, we investigated the dynamics of KPNA1 and related factors within axons. Our results showed that many of the axonal KPNA1 did not form a complex with IPOB1 in noninjured steady-state neurons. Axonal KPNA1 exhibited relatively stationary mobility and some showed bidirectional motility with fluctuating motion. KPNA1 partly comigrated with endosome/lysosome-associated factors, suggesting the presence of novel mechanisms underlie axonal transport and nucleocytoplasmic shuttling involving KPNA1 and IPOB1. Mutated KPNA1, which has been shown to be associated with psychiatric disorders (KPNA1E448X), was predominantly localized to the nucleus and lost from the axon. Incorporating a nuclear export signal (KPNA1E448X-NES) enhanced its subcellular localization and dynamics in the axon. Our findings demonstrate that KPNA1 functions not only as a shuttle between the cytoplasm and nucleus but also as a transporter in neuronal axons, relying on the endosomes for movement away from the nucleus with relatively slow net motions. Furthermore, a mutation in the Kpna1 gene can affect the dynamics of axonal transport. The insights from these mutations provide valuable knowledge for expanding our understanding of psychiatric disorders and facilitate the development of novel treatment strategies.
Collapse
Affiliation(s)
- Katsutoshi Mizuno
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Life Science Innovation Center, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Masaki Sugahara
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Osamu Kutomi
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Life Science Innovation Center, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Ryota Kato
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-gun, Fukui Prefecture, Japan
| | - Satoshi Fujita
- Life Science Innovation Center, University of Fukui, Fukui City, Fukui Prefecture, Japan; Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Life Science Innovation Center, University of Fukui, Fukui City, Fukui Prefecture, Japan.
| |
Collapse
|
2
|
Mukhwana N, Garg R, Azad A, Mitchell AR, Williamson M. B-type Plexins Regulate Mitosis via RanGTPase. Mol Cancer Res 2025; 23:8-19. [PMID: 39136653 DOI: 10.1158/1541-7786.mcr-23-0836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/05/2024] [Accepted: 08/08/2024] [Indexed: 01/03/2025]
Abstract
Aberrant mitosis can result in aneuploidy and cancer. The small GTPase, Ras-related nuclear protein (Ran), is a key regulator of mitosis. B-type plexins regulate Ran activity by acting as RanGTPase-activating proteins and have been implicated in cancer progression. However, whether B-type plexins have a role in mitosis has not so far been investigated. We show here that Plexin B1 functions in the control of mitosis. Depletion of Plexin B1 affects mitotic spindle assembly, significantly delaying anaphase. This leads to mitotic catastrophe in some cells and prolonged application of the spindle assembly checkpoint. Plexin B1 depletion also promoted acentrosomal microtubule nucleation and defects in spindle pole refocusing and increased the number of cells with multipolar or aberrant mitotic spindles. An increase in lagging chromosomes or chromosomal bridges at anaphase was also found upon Plexin B1 depletion. Plexin B1 localizes to the mitotic spindle in dividing cells. The mitotic defects observed upon Plexin B1 depletion were rescued by an RCC1 inhibitor, indicating that Plexin B1 signals, via Ran, to affect mitosis. These errors in mitosis generated multinucleate cells and nuclei of altered morphology and abnormal karyotype. Furthermore, semaphorin 4D treatment increased the percentage of cells with micronuclei, precursors of chromothripsis. Implications: Defects in B-type plexins may contribute to the well-established role of plexins in cancer progression by inducing chromosomal instability.
Collapse
Affiliation(s)
- Nicholus Mukhwana
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Ritu Garg
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Abul Azad
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Alexandria R Mitchell
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Magali Williamson
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
3
|
Chua XL, Tong CS, Su M, Xǔ XJ, Xiao S, Wu X, Wu M. Competition and synergy of Arp2/3 and formins in nucleating actin waves. Cell Rep 2024; 43:114423. [PMID: 38968072 PMCID: PMC11378572 DOI: 10.1016/j.celrep.2024.114423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/23/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024] Open
Abstract
Actin assembly and dynamics are crucial for maintaining cell structure and changing physiological states. The broad impact of actin on various cellular processes makes it challenging to dissect the specific role of actin regulatory proteins. Using actin waves that propagate on the cortex of mast cells as a model, we discovered that formins (FMNL1 and mDia3) are recruited before the Arp2/3 complex in actin waves. GTPase Cdc42 interactions drive FMNL1 oscillations, with active Cdc42 and the constitutively active mutant of FMNL1 capable of forming waves on the plasma membrane independently of actin waves. Additionally, the delayed recruitment of Arp2/3 antagonizes FMNL1 and active Cdc42. This antagonism is not due to competition for monomeric actin but rather for their common upstream regulator, active Cdc42, whose levels are negatively regulated by Arp2/3 via SHIP1 recruitment. Collectively, our study highlights the complex feedback loops in the dynamic control of the actin cytoskeletal network.
Collapse
Affiliation(s)
- Xiang Le Chua
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore
| | - Chee San Tong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore
| | - Maohan Su
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - X J Xǔ
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Shengping Xiao
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore
| | - Xudong Wu
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
4
|
Chen YJ, Tseng SC, Chen PT, Hwang E. The non-mitotic role of HMMR in regulating the localization of TPX2 and the dynamics of microtubules in neurons. eLife 2024; 13:RP94547. [PMID: 38904660 PMCID: PMC11192530 DOI: 10.7554/elife.94547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
A functional nervous system is built upon the proper morphogenesis of neurons to establish the intricate connection between them. The microtubule cytoskeleton is known to play various essential roles in this morphogenetic process. While many microtubule-associated proteins (MAPs) have been demonstrated to participate in neuronal morphogenesis, the function of many more remains to be determined. This study focuses on a MAP called HMMR in mice, which was originally identified as a hyaluronan binding protein and later found to possess microtubule and centrosome binding capacity. HMMR exhibits high abundance on neuronal microtubules and altering the level of HMMR significantly affects the morphology of neurons. Instead of confining to the centrosome(s) like cells in mitosis, HMMR localizes to microtubules along axons and dendrites. Furthermore, transiently expressing HMMR enhances the stability of neuronal microtubules and increases the formation frequency of growing microtubules along the neurites. HMMR regulates the microtubule localization of a non-centrosomal microtubule nucleator TPX2 along the neurite, offering an explanation for how HMMR contributes to the promotion of growing microtubules. This study sheds light on how cells utilize proteins involved in mitosis for non-mitotic functions.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Shun-Cheng Tseng
- Department of Orthopedic Surgery, Changhua Christian HospitalChanghuaTaiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Peng-Tzu Chen
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Eric Hwang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| |
Collapse
|
5
|
Gu X, Jia C, Wang J. Advances in Understanding the Molecular Mechanisms of Neuronal Polarity. Mol Neurobiol 2023; 60:2851-2870. [PMID: 36738353 DOI: 10.1007/s12035-023-03242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
The establishment and maintenance of neuronal polarity are important for neural development and function. Abnormal neuronal polarity establishment commonly leads to a variety of neurodevelopmental disorders. Over the past three decades, with the continuous development and improvement of biological research methods and techniques, we have made tremendous progress in the understanding of the molecular mechanisms of neuronal polarity establishment. The activity of positive and negative feedback signals and actin waves are both essential in this process. They drive the directional transport and aggregation of key molecules of neuronal polarity, promote the spatiotemporal regulation of ordered and coordinated interactions of actin filaments and microtubules, stimulate the specialization and growth of axons, and inhibit the formation of multiple axons. In this review, we focus on recent advances in these areas, in particular the important findings about neuronal polarity in two classical models, in vitro primary hippocampal/cortical neurons and in vivo cortical pyramidal neurons, and discuss our current understanding of neuronal polarity..
Collapse
Affiliation(s)
- Xi Gu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Chunhong Jia
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Sánchez-Huertas C, Herrera E. With the Permission of Microtubules: An Updated Overview on Microtubule Function During Axon Pathfinding. Front Mol Neurosci 2021; 14:759404. [PMID: 34924953 PMCID: PMC8675249 DOI: 10.3389/fnmol.2021.759404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 01/27/2023] Open
Abstract
During the establishment of neural circuitry axons often need to cover long distances to reach remote targets. The stereotyped navigation of these axons defines the connectivity between brain regions and cellular subtypes. This chemotrophic guidance process mostly relies on the spatio-temporal expression patterns of extracellular proteins and the selective expression of their receptors in projection neurons. Axon guidance is stimulated by guidance proteins and implemented by neuronal traction forces at the growth cones, which engage local cytoskeleton regulators and cell adhesion proteins. Different layers of guidance signaling regulation, such as the cleavage and processing of receptors, the expression of co-receptors and a wide variety of intracellular cascades downstream of receptors activation, have been progressively unveiled. Also, in the last decades, the regulation of microtubule (MT) assembly, stability and interactions with the submembranous actin network in the growth cone have emerged as crucial effector mechanisms in axon pathfinding. In this review, we will delve into the intracellular signaling cascades downstream of guidance receptors that converge on the MT cytoskeleton of the growing axon. In particular, we will focus on the microtubule-associated proteins (MAPs) network responsible of MT dynamics in the axon and growth cone. Complementarily, we will discuss new evidences that connect defects in MT scaffold proteins, MAPs or MT-based motors and axon misrouting during brain development.
Collapse
Affiliation(s)
- Carlos Sánchez-Huertas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | | |
Collapse
|
7
|
Wilkes OR, Moore AW. Distinct Microtubule Organizing Center Mechanisms Combine to Generate Neuron Polarity and Arbor Complexity. Front Cell Neurosci 2020; 14:594199. [PMID: 33328893 PMCID: PMC7711044 DOI: 10.3389/fncel.2020.594199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/02/2020] [Indexed: 01/15/2023] Open
Abstract
Dendrite and axon arbor wiring patterns determine the connectivity and computational characteristics of a neuron. The identities of these dendrite and axon arbors are created by differential polarization of their microtubule arrays, and their complexity and pattern are generated by the extension and organization of these arrays. We describe how several molecularly distinct microtubule organizing center (MTOC) mechanisms function during neuron differentiation to generate and arrange dendrite and axon microtubules. The temporal and spatial organization of these MTOCs generates, patterns, and diversifies arbor wiring.
Collapse
Affiliation(s)
- Oliver R Wilkes
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, Japan.,Department of Cellular and Molecular Biology, Institute for Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Adrian W Moore
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, Japan
| |
Collapse
|