1
|
Gupta P, Chakroborty S, Rathod AK, Kumar KR, Bhat S, Ghosh S, Rao T P, Yele K, Bakthisaran R, Nagaraj R, Manna M, Raychaudhuri S. Kingdom-specific lipid unsaturation calibrates sequence evolution in membrane arm subunits of eukaryotic respiratory complexes. Nat Commun 2025; 16:2044. [PMID: 40016208 PMCID: PMC11868549 DOI: 10.1038/s41467-025-57295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Sequence evolution of protein complexes (PCs) is constrained by protein-protein interactions (PPIs). PPI-interfaces are predominantly conserved and hotspots for disease-related mutations. How do lipid-protein interactions (LPIs) constrain sequence evolution of membrane-PCs? We explore Respiratory Complexes (RCs) as a case study as these allow to compare sequence evolution in subunits exposed to both lipids in inner-mitochondrial membrane (IMM) and lipid-free aqueous matrix. We find that lipid-exposed surfaces of the IMM-subunits but not of the matrix subunits are populated with non-PPI disease-causing mutations signifying LPIs in stabilizing RCs. Further, IMM-subunits including their exposed surfaces show high intra-kingdom sequence conservation but remarkably diverge beyond. Molecular Dynamics simulation suggests contrasting LPIs of structurally superimposable but sequence-wise diverged IMM-exposed helices of Complex I (CI) subunit Ndufa1 from human and Arabidopsis depending on kingdom-specific unsaturation of cardiolipin fatty acyl chains. in cellulo assays consolidate inter-kingdom incompatibility of Ndufa1-helices due to the lipid-exposed amino acids. Plant-specific unsaturated fatty acids in human cells also trigger CI-instability. Taken together, we posit that altered LPIs calibrate sequence evolution at the IMM-arms of eukaryotic RCs.
Collapse
Affiliation(s)
- Pooja Gupta
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Sristi Chakroborty
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Arun K Rathod
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
- CSIR- Central Salt and Marine Chemical Research Institute, Bhavnagar - 364002, Gujrat, India
| | - K Ranjith Kumar
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Shreya Bhat
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Suparna Ghosh
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Pallavi Rao T
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Kameshwari Yele
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Raman Bakthisaran
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - R Nagaraj
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Moutusi Manna
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
- CSIR- Central Salt and Marine Chemical Research Institute, Bhavnagar - 364002, Gujrat, India
| | - Swasti Raychaudhuri
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India.
| |
Collapse
|
2
|
Mansuri S, Jain A, Singh R, Rawat S, Mondal D, Raychaudhuri S. Widespread nuclear lamina injuries defeat proteostatic purposes of α-synuclein amyloid inclusions. J Cell Sci 2024; 137:jcs261935. [PMID: 38477372 DOI: 10.1242/jcs.261935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Biogenesis of inclusion bodies (IBs) facilitates protein quality control (PQC). Canonical aggresomes execute degradation of misfolded proteins while non-degradable amyloids sequester into insoluble protein deposits. Lewy bodies (LBs) are filamentous amyloid inclusions of α-synuclein, but PQC benefits and drawbacks associated with LB-like IBs remain underexplored. Here, we report that crosstalk between filamentous LB-like IBs and aggresome-like IBs of α-synuclein (Syn-aggresomes) buffer the load, aggregation state, and turnover of the amyloidogenic protein in mouse primary neurons and HEK293T cells. Filamentous LB-like IBs possess unorthodox PQC capacities of self-quarantining α-synuclein amyloids and being degradable upon receding fresh amyloidogenesis. Syn-aggresomes equilibrate biogenesis of filamentous LB-like IBs by facilitating spontaneous degradation of α-synuclein and conditional turnover of disintegrated α-synuclein amyloids. Thus, both types of IB primarily contribute to PQC. Incidentally, the overgrown perinuclear LB-like IBs become degenerative once these are misidentified by BICD2, a cargo-adapter for the cytosolic motor-protein dynein. Microscopy indicates that microtubules surrounding the perinuclear filamentous inclusions are also distorted, misbalancing the cytoskeleton-nucleoskeleton tension leading to widespread lamina injuries. Together, nucleocytoplasmic mixing, DNA damage, and deregulated transcription of stress chaperones defeat the proteostatic purposes of the filamentous amyloids of α-synuclein.
Collapse
Affiliation(s)
- Shemin Mansuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Aanchal Jain
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Richa Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Shivali Rawat
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Debodyuti Mondal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Swasti Raychaudhuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Kato T, Yokomori A, Suzuki R, Azegami J, El Enshasy HA, Park EY. Effects of a proteasome inhibitor on the riboflavin production in Ashbya gossypii. J Appl Microbiol 2021; 132:1176-1184. [PMID: 34496097 DOI: 10.1111/jam.15296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
AIMS Effects of a proteasome inhibitor, MG-132, on the riboflavin production in Ashbya gossypii were investigated to elucidate the relationship of the riboflavin production with flavoprotein homeostasis. METHODS AND RESULTS The addition of MG-132 to the liquid medium reduced the specific riboflavin production by 79% in A. gossypii at 25 μM after 24 h. The addition of the inhibitor also caused the accumulation of reactive oxygen species and ubiquitinated proteins. These results indicated that MG-132 works in A. gossypii without any genetic engineering and reduces riboflavin production. In the presence of 25 μM MG-132, specific NADH dehydrogenase activity was increased by 1.4-fold compared to DMSO, but specific succinate dehydrogenase (SDH) activity was decreased to 52% compared to DMSO. Additionally, the amount of AgSdh1p (ACR052Wp) was also reduced. Specific riboflavin production was reduced to 22% when 20 mM malonate, a SDH inhibitor, was added to the culture medium. The riboflavin production in heterozygous AgSDH1 gene-disrupted mutant (AgSDH1-/+ ) was reduced to 63% compared to that in wild type. CONCLUSIONS MG-132 suppresses the riboflavin production and SDH activity in A. gossypii. SDH is one of the flavoproteins involved in the riboflavin production in A. gossypii. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows that MG-132 has a negative influence on the riboflavin production and SDH activity in A. gossypii and leads to the elucidation of the connection of the riboflavin production with flavoproteins.
Collapse
Affiliation(s)
- Tatsuya Kato
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Ami Yokomori
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Riho Suzuki
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Junya Azegami
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hesham A El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia.,City of Scientific Research and Technology Applications, New Borg Al Arab, Alexandria, Egypt
| | - Enoch Y Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
4
|
First person – Shivali Rawat. J Cell Sci 2020. [DOI: 10.1242/jcs.253922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Shivali Rawat is first author on ‘Increased supraorganization of respiratory complexes is a dynamic multistep remodelling in response to proteostasis stress’, published in JCS. Shivali is a PhD student in the lab of Swasti Raychaudhuri at CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India, investigating protein homeostasis and aggregation in stress and disease-related conditions.
Collapse
|