1
|
Andresen S, Al Outa A, Formica M, Enserink J, Knævelsrud H. Improved detection of lipidated Atg8a by immunoblotting in drosophila melanogaster cells and tissues enables precise investigation of Atg8a flux and its termination. Autophagy 2025. [PMID: 40426043 DOI: 10.1080/15548627.2025.2508551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Macroautophagy/autophagy is an essential intracellular catabolic process for maintaining cellular homeostasis. In Drosophila melanogaster, Atg8a lipidation serves as a key marker for autophagy, yet traditional methods often fail to effectively detect its lipidated state. To overcome this limitation, we developed a refined approach that employs N-ethylmaleimide (NEM) to inhibit Atg4, thereby preserving Atg8a lipidation during sample preparation both in vitro and in vivo. We determined the optimal concentration of the autophagic inhibitors bafilomycin A1 (BafA1) and chloroquine (CQ) required for inhibition of autolysosomal degradation. Furthermore, we investigated the effects of prolonged nutrient deprivation on autophagic flux and TORC1 signaling. Our findings not only validate the effectiveness of this new approach to monitor lipidation of Atg8a but also provide insights into selection of autolysosomal inhibitors and nutrient-dependent regulatory roles of TORC1 in Drosophila.
Collapse
Affiliation(s)
- Siri Andresen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Amani Al Outa
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Miriam Formica
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jorrit Enserink
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Section for Biochemistry and Molecular Biology, The Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Helene Knævelsrud
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Han C, Fu S, Tang D, Chen Y, Liu D, Feng Z, Gou Y, Zhang C, Zhang W, Xiao L, Zhang J, Yi C, Xue Y, Peng D. Omic AI reveals new autophagy regulators from the Atg1 interactome in Saccharomyces cerevisiae. Front Cell Dev Biol 2025; 13:1554958. [PMID: 40365021 PMCID: PMC12069372 DOI: 10.3389/fcell.2025.1554958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
In Saccharomyces cerevisiae, Atg1 is a core autophagy-related (Atg) protein kinase (PK) in regulating macroautophagy/autophagy, by physically interacting with numerous other proteins, or by phosphorylating various substrates. It is unclear how many Atg1-interacting partners and substrates are also involved in regulating autophagy. Here, we conducted transcriptomic, proteomic and phosphoproteomic profiling of Atg1-dependent molecular landscapes during nitrogen starvation-triggered autophagy, and detected 244, 245 and 217 genes to be affected by ATG1 in the autophagic process at mRNA, protein, and phosphorylation levels, respectively. Based on the Atg1 interactome, we developed a novel artificial intelligence (AI) framework, inference of autophagy regulators from multi-omic data (iAMD), and predicted 12 Atg1-interacting partners and 17 substrates to be potentially functional in autophagy. Further experiments validated that Rgd1 and Whi5 are required for bulk autophagy, as well as physical interactions and co-localizations with Atg1 during autophagy. In particular, we demonstrated that 2 phosphorylation sites (p-sites), pS78 and pS149 of Whi5, are phosphorylated by Atg1 to regulate the formation of Atg1 puncta during autophagy initiation. A working model was illustrated to emphasize the importance of the Atg1-centered network in yeast autophagy. In addition, iAMD was extended to accurately predict Atg proteins and autophagy regulators from other PK interactomes, indicating a high transferability of the method. Taken together, we not only revealed new autophagy regulators from the Atg1 interactome, but also provided a useful resource for further analysis of yeast autophagy.
Collapse
Affiliation(s)
- Cheng Han
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Fu
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dachao Tang
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuting Chen
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Liu
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zihao Feng
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujie Gou
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chi Zhang
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weizhi Zhang
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Leming Xiao
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiayi Zhang
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cong Yi
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Xue
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Nanjing University Institute of Artificial Intelligence Biomedicine, Nanjing, Jiangsu, China
| | - Di Peng
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Bhattacharya A, Torggler R, Reiter W, Romanov N, Licheva M, Ciftci A, Mari M, Kolb L, Kaiser D, Reggiori F, Ammerer G, Hollenstein DM, Kraft C. Decoding the function of Atg13 phosphorylation reveals a role of Atg11 in bulk autophagy initiation. EMBO Rep 2024; 25:813-831. [PMID: 38233718 PMCID: PMC10897315 DOI: 10.1038/s44319-023-00055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024] Open
Abstract
Autophagy is initiated by the assembly of multiple autophagy-related proteins that form the phagophore assembly site where autophagosomes are formed. Atg13 is essential early in this process, and a hub of extensive phosphorylation. How these multiple phosphorylations contribute to autophagy initiation, however, is not well understood. Here we comprehensively analyze the role of phosphorylation events on Atg13 during nutrient-rich conditions and nitrogen starvation. We identify and functionally characterize 48 in vivo phosphorylation sites on Atg13. By generating reciprocal mutants, which mimic the dephosphorylated active and phosphorylated inactive state of Atg13, we observe that disrupting the dynamic regulation of Atg13 leads to insufficient or excessive autophagy, which are both detrimental to cell survival. We furthermore demonstrate an involvement of Atg11 in bulk autophagy even during nitrogen starvation, where it contributes together with Atg1 to the multivalency that drives phase separation of the phagophore assembly site. These findings reveal the importance of post-translational regulation on Atg13 early during autophagy initiation, which provides additional layers of regulation to control bulk autophagy activity and integrate cellular signals.
Collapse
Affiliation(s)
- Anuradha Bhattacharya
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Raffaela Torggler
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Wolfgang Reiter
- Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria
- Mass Spectrometry Facility, Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 7, Vienna, Austria
| | - Natalie Romanov
- Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Akif Ciftci
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Muriel Mari
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000, Aarhus C, Denmark
| | - Lena Kolb
- Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Dominik Kaiser
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000, Aarhus C, Denmark
| | - Gustav Ammerer
- Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - David M Hollenstein
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
- Mass Spectrometry Facility, Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 7, Vienna, Austria.
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
4
|
Lee Y, Kim B, Jang HS, Huh WK. Atg1-dependent phosphorylation of Vps34 is required for dynamic regulation of the phagophore assembly site and autophagy in Saccharomyces cerevisiae. Autophagy 2023; 19:2428-2442. [PMID: 36803233 PMCID: PMC10392759 DOI: 10.1080/15548627.2023.2182478] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Macroautophagy/autophagy is a key catabolic pathway in which double-membrane autophagosomes sequester various substrates destined for degradation, enabling cells to maintain homeostasis and survive under stressful conditions. Several autophagy-related (Atg) proteins are recruited to the phagophore assembly site (PAS) and cooperatively function to generate autophagosomes. Vps34 is a class III phosphatidylinositol 3-kinase, and Atg14-containing Vps34 complex I plays essential roles in autophagosome formation. However, the regulatory mechanisms of yeast Vps34 complex I are still poorly understood. Here, we demonstrate that Atg1-dependent phosphorylation of Vps34 is required for robust autophagy activity in Saccharomyces cerevisiae. Following nitrogen starvation, Vps34 in complex I is selectively phosphorylated on multiple serine/threonine residues in its helical domain. This phosphorylation is important for full autophagy activation and cell survival. The absence of Atg1 or its kinase activity leads to complete loss of Vps34 phosphorylation in vivo, and Atg1 directly phosphorylates Vps34 in vitro, regardless of its complex association type. We also demonstrate that the localization of Vps34 complex I to the PAS provides a molecular basis for the complex I-specific phosphorylation of Vps34. This phosphorylation is required for the normal dynamics of Atg18 and Atg8 at the PAS. Together, our results reveal a novel regulatory mechanism of yeast Vps34 complex I and provide new insights into the Atg1-dependent dynamic regulation of the PAS.Abbreviations: ATG: autophagy-related; BARA: the repeated, autophagy-specific Co-IP: co-immunoprecipitation; GFP: green fluorescent protein; IP-MS: immunoprecipitation followed by tandem mass spectrometry; NTD: the N-terminal domain; PAS: phagophore assembly site; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns3K: phosphatidylinositol 3-kinase; SUR: structurally uncharacterized region; Vps34[KD]: Vps34D731N.
Collapse
Affiliation(s)
- Yongook Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Bongkeun Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hae-Soo Jang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Ando T. Functional Implications of Dynamic Structures of Intrinsically Disordered Proteins Revealed by High-Speed AFM Imaging. Biomolecules 2022; 12:biom12121876. [PMID: 36551304 PMCID: PMC9776203 DOI: 10.3390/biom12121876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
The unique functions of intrinsically disordered proteins (IDPs) depend on their dynamic protean structure that often eludes analysis. High-speed atomic force microscopy (HS-AFM) can conduct this difficult analysis by directly visualizing individual IDP molecules in dynamic motion at sub-molecular resolution. After brief descriptions of the microscopy technique, this review first shows that the intermittent tip-sample contact does not alter the dynamic structure of IDPs and then describes how the number of amino acids contained in a fully disordered region can be estimated from its HS-AFM images. Next, the functional relevance of a dumbbell-like structure that has often been observed on IDPs is discussed. Finally, the dynamic structural information of two measles virus IDPs acquired from their HS-AFM and NMR analyses is described together with its functional implications.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
6
|
Majeed ST, Majeed R, Andrabi KI. Expanding the view of the molecular mechanisms of autophagy pathway. J Cell Physiol 2022; 237:3257-3277. [PMID: 35791448 DOI: 10.1002/jcp.30819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Sheikh Tahir Majeed
- Department of Biotechnology Central University of Kashmir Ganderbal Jammu and Kashmir India
- Growth Factor Signaling Laboratory, Department of Biotechnology University of Kashmir Srinagar Jammu and Kashmir India
| | - Rabiya Majeed
- Growth Factor Signaling Laboratory, Department of Biotechnology University of Kashmir Srinagar Jammu and Kashmir India
- Department of Biochemistry University of Kashmir Srinagar Jammu and Kashmir India
| | - Khurshid I. Andrabi
- Growth Factor Signaling Laboratory, Department of Biotechnology University of Kashmir Srinagar Jammu and Kashmir India
| |
Collapse
|
7
|
Takuma T, Ushimaru T. Vacuolar fragmentation promotes fluxes of microautophagy and micronucleophagy but not of macroautophagy. Biochem Biophys Res Commun 2022; 614:161-168. [PMID: 35597153 DOI: 10.1016/j.bbrc.2022.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022]
Abstract
Vacuoles and lysosomes are organelles involved in the degradation of cytoplasmic proteins and organelles. Vacuolar morphology is dynamically regulated by fission and fusion in budding yeast. Vacuolar fusion is elicited in nutrient-depleted conditions and mediated by inactivation of target of rapamycin complex 1 (TORC1) protein kinase. However, it is unknown whether and how vacuolar morphology affects macroautophagy and microautophagy, which are induced by nutrient starvation and TORC1 inactivation. Here, we developed a system to control vacuolar fission in budding yeast. Vacuolar fragmentation promoted microautophagy but not macroautophagy. Vacuolar fragmentation caused multiple nucleus-vacuole junctions. Multiple vacuoles caused by vacuolar fragmentation also improved micronucleophagy (microautophagic degradation of a portion of the nucleus). However, vacuolar morphology did not impact nucleolar remodeling, condensation of the rDNA (rRNA gene) region, or separation of ribosomal DNA from nucleolar proteins, which is evoked by TORC1 inactivation. Thus, this study provides insights into the impacts of vacuolar/lysosomal morphology on macroautophagy and microautophagy.
Collapse
Affiliation(s)
- Tsuneyuki Takuma
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Takashi Ushimaru
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan.
| |
Collapse
|
8
|
Eising S, Esch B, Wälte M, Vargas Duarte P, Walter S, Ungermann C, Bohnert M, Fröhlich F. A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways. J Cell Biol 2022; 221:213011. [PMID: 35175277 PMCID: PMC8859911 DOI: 10.1083/jcb.202107148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/20/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
The lysosome is the major catabolic organelle in the cell that has been established as a key metabolic signaling center. Mutations in many lysosomal proteins have catastrophic effects and cause neurodegeneration, cancer, and age-related diseases. The vacuole is the lysosomal analog of Saccharomyces cerevisiae that harbors many evolutionary conserved proteins. Proteins reach vacuoles via the Vps10-dependent endosomal vacuolar protein sorting pathway, via the alkaline phosphatase (ALP or AP-3) pathway, and via the cytosol-to-vacuole transport (CVT) pathway. A systematic understanding of the cargo spectrum of each pathway is completely lacking. Here, we use quantitative proteomics of purified vacuoles to generate the yeast lysosomal biogenesis map. This dataset harbors information on the cargo-receptor relationship of almost all vacuolar proteins. We map binding motifs of Vps10 and the AP-3 complex and identify a novel cargo of the CVT pathway under nutrient-rich conditions. Our data show how organelle purification and quantitative proteomics can uncover fundamental insights into organelle biogenesis.
Collapse
Affiliation(s)
- Sebastian Eising
- Molecular Membrane Biology Group, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Bianca Esch
- Molecular Membrane Biology Group, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Mike Wälte
- Institute of Cell Dynamics and Imaging, University of Münster, Münster, Germany
| | - Prado Vargas Duarte
- Biochemistry Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytics Osnabrück, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Biochemistry Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany.,Center of Cellular Nanoanalytics Osnabrück, Osnabrück University, Osnabrück, Germany
| | - Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster, Münster, Germany.,Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Florian Fröhlich
- Molecular Membrane Biology Group, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany.,Biochemistry Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
9
|
Nasaruddin ML, Tajul Arifin K. Application of Metabolomics in the Study of Starvation-Induced Autophagy in Saccharomyces cerevisiae: A Scoping Review. J Fungi (Basel) 2021; 7:987. [PMID: 34829274 PMCID: PMC8619235 DOI: 10.3390/jof7110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
This scoping review is aimed at the application of the metabolomics platform to dissect key metabolites and their intermediates to observe the regulatory mechanisms of starvation-induced autophagy in Saccharomyces cerevisiae. Four research papers were shortlisted in this review following the inclusion and exclusion criteria. We observed a commonly shared pathway undertaken by S. cerevisiae under nutritional stress. Targeted and untargeted metabolomics was applied in either of these studies using varying platforms resulting in the annotation of several different observable metabolites. We saw a commonly shared pathway undertaken by S. cerevisiae under nutritional stress. Following nitrogen starvation, the concentration of cellular nucleosides was altered as a result of autophagic RNA degradation. Additionally, it is also found that autophagy replenishes amino acid pools to sustain macromolecule synthesis. Furthermore, in glucose starvation, nucleosides were broken down into carbonaceous metabolites that are being funneled into the non-oxidative pentose phosphate pathway. The ribose salvage allows for the survival of starved yeast. Moreover, acute glucose starvation showed autophagy to be involved in maintaining ATP/energy levels. We highlighted the practicality of metabolomics as a tool to better understand the underlying mechanisms involved to maintain homeostasis by recycling degradative products to ensure the survival of S. cerevisiae under starvation. The application of metabolomics has extended the scope of autophagy and provided newer intervention targets against cancer as well as neurodegenerative diseases in which autophagy is implicated.
Collapse
Affiliation(s)
| | - Khaizurin Tajul Arifin
- Department of Biochemistry, Faculty of Medicine, National University of Malaysia Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
10
|
Levine TP. TMEM106B in humans and Vac7 and Tag1 in yeast are predicted to be lipid transfer proteins. Proteins 2021; 90:164-175. [PMID: 34347309 DOI: 10.1002/prot.26201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 11/05/2022]
Abstract
TMEM106B is an integral membrane protein of late endosomes and lysosomes involved in neuronal function, its overexpression being associated with familial frontotemporal lobar degeneration, and point mutation linked to hypomyelination. It has also been identified in multiple screens for host proteins required for productive SARS-CoV-2 infection. Because standard approaches to understand TMEM106B at the sequence level find no homology to other proteins, it has remained a protein of unknown function. Here, the standard tool PSI-BLAST was used in a nonstandard way to show that the lumenal portion of TMEM106B is a member of the late embryogenesis abundant-2 (LEA-2) domain superfamily. More sensitive tools (HMMER, HHpred, and trRosetta) extended this to predict LEA-2 domains in two yeast proteins. One is Vac7, a regulator of PI(3,5)P2 production in the degradative vacuole, equivalent to the lysosome, which has a LEA-2 domain in its lumenal domain. The other is Tag1, another vacuolar protein, which signals to terminate autophagy and has three LEA-2 domains in its lumenal domain. Further analysis of LEA-2 structures indicated that LEA-2 domains have a long, conserved lipid-binding groove. This implies that TMEM106B, Vac7, and Tag1 may all be lipid transfer proteins in the lumen of late endocytic organelles.
Collapse
|
11
|
Arita Y, Kim G, Li Z, Friesen H, Turco G, Wang RY, Climie D, Usaj M, Hotz M, Stoops EH, Baryshnikova A, Boone C, Botstein D, Andrews BJ, McIsaac RS. A genome-scale yeast library with inducible expression of individual genes. Mol Syst Biol 2021; 17:e10207. [PMID: 34096681 PMCID: PMC8182650 DOI: 10.15252/msb.202110207] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
The ability to switch a gene from off to on and monitor dynamic changes provides a powerful approach for probing gene function and elucidating causal regulatory relationships. Here, we developed and characterized YETI (Yeast Estradiol strains with Titratable Induction), a collection in which > 5,600 yeast genes are engineered for transcriptional inducibility with single-gene precision at their native loci and without plasmids. Each strain contains SGA screening markers and a unique barcode, enabling high-throughput genetics. We characterized YETI using growth phenotyping and BAR-seq screens, and we used a YETI allele to identify the regulon of Rof1, showing that it acts to repress transcription. We observed that strains with inducible essential genes that have low native expression can often grow without inducer. Analysis of data from eukaryotic and prokaryotic systems shows that native expression is a variable that can bias promoter-perturbing screens, including CRISPRi. We engineered a second expression system, Z3 EB42, that gives lower expression than Z3 EV, a feature enabling conditional activation and repression of lowly expressed essential genes that grow without inducer in the YETI library.
Collapse
Affiliation(s)
- Yuko Arita
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
- RIKEN Centre for Sustainable Resource ScienceWakoSaitamaJapan
| | - Griffin Kim
- Calico Life Sciences LLCSouth San FranciscoCAUSA
| | - Zhijian Li
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Helena Friesen
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Gina Turco
- Calico Life Sciences LLCSouth San FranciscoCAUSA
| | | | - Dale Climie
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Matej Usaj
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Manuel Hotz
- Calico Life Sciences LLCSouth San FranciscoCAUSA
| | | | | | - Charles Boone
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
- RIKEN Centre for Sustainable Resource ScienceWakoSaitamaJapan
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | | | - Brenda J Andrews
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | | |
Collapse
|