1
|
Shelford J, Burgess SG, Rostkova E, Richards MW, Larocque G, Sampson J, Tiede C, Fielding AJ, Daviter T, Tomlinson DC, Calabrese AN, Pfuhl M, Bayliss R, Royle SJ. Structural characterization and inhibition of the interaction between ch-TOG and TACC3. J Cell Biol 2025; 224:e202407002. [PMID: 40105698 PMCID: PMC11921806 DOI: 10.1083/jcb.202407002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/19/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
The mitotic spindle is a bipolar array of microtubules, radiating from the poles which each contain a centrosome, embedded in pericentriolar material. Two proteins, ch-TOG and TACC3, have multiple functions at the mitotic spindle due to operating either alone, together, or in complex with other proteins. To distinguish these activities, we need new molecular tools to dissect their function. Here, we present the structure of the α-helical bundle domain of ch-TOG that mediates its interaction with TACC3 and a structural model describing the interaction, supported by biophysical and biochemical data. We have isolated Affimer tools to precisely target the ch-TOG-binding site on TACC3 in live cells, which displace ch-TOG without affecting the spindle localization of other protein complex components. Inhibition of the TACC3-ch-TOG interaction led unexpectedly to fragmentation of the pericentriolar material in metaphase cells and delayed mitotic progression, uncovering a novel role of TACC3-ch-TOG in maintaining pericentriolar material integrity during mitosis to ensure timely cell division.
Collapse
Affiliation(s)
- James Shelford
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Selena G. Burgess
- School of Molecular and Cellular Biology, Astbury Centre for Structural Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Elena Rostkova
- School of Cardiovascular and Metabolic Medicine and Sciences and Randall Centre, King’s College London, Guy’s Campus, London, UK
| | - Mark W. Richards
- School of Molecular and Cellular Biology, Astbury Centre for Structural Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Gabrielle Larocque
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Josephina Sampson
- School of Molecular and Cellular Biology, Astbury Centre for Structural Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Christian Tiede
- School of Molecular and Cellular Biology, Astbury Centre for Structural Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Alistair J. Fielding
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Tina Daviter
- Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Darren C. Tomlinson
- School of Molecular and Cellular Biology, Astbury Centre for Structural Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Antonio N. Calabrese
- School of Molecular and Cellular Biology, Astbury Centre for Structural Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mark Pfuhl
- School of Cardiovascular and Metabolic Medicine and Sciences and Randall Centre, King’s College London, Guy’s Campus, London, UK
| | - Richard Bayliss
- School of Molecular and Cellular Biology, Astbury Centre for Structural Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stephen J. Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
2
|
Piano V. Multitasking Proteins: Exploring Noncanonical Functions of Proteins during Mitosis. Biochemistry 2025; 64:2123-2137. [PMID: 40315343 DOI: 10.1021/acs.biochem.5c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
This review provides a comprehensive overview of how mitotic cells drive the repurposing of proteins to fulfill mitosis-specific functions. To ensure the successful completion of cell division, the cell strategically reallocates its "workforce" by assigning additional functions to available proteins. Protein repurposing occurs at multiple levels of cellular organization and involves diverse mechanisms. At the protein level, proteins may gain mitosis-specific functions through post-translational modifications. At the structural level, proteins that typically maintain cellular architecture in interphase are co-opted to participate in mitotic spindle formation, chromosome condensation, and kinetochore assembly. Furthermore, the dynamic reorganization of the nuclear envelope and other organelles relies on the temporary reassignment of enzymes, structural proteins, and motor proteins to facilitate these changes. These adaptive mechanisms underscore the remarkable versatility of the cellular proteome in responding to the stringent requirements of mitosis. By leveraging the existing proteome for dual or multiple specialized roles, cells optimize resource usage while maintaining the precision needed to preserve genomic integrity and ensure the survival of the next generation of cells.
Collapse
Affiliation(s)
- Valentina Piano
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
3
|
Lin Z, Liang F, Hong G, Jiang X, Zhang Q, Wang M. TACC3 enhances glycolysis in bladder cancer cells through inducing acetylation of c-Myc. Cell Death Dis 2025; 16:311. [PMID: 40246827 PMCID: PMC12006502 DOI: 10.1038/s41419-025-07645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
The proliferation of bladder cancer (BC) cells is driven by metabolic reprogramming, marked by a glycolytic dependency to sustain uncontrolled growth. While Transforming Acidic Coiled-Coil Containing Protein 3 (TACC3) is known to promote BC progression and correlate with poor prognosis, the mechanisms underlying its upregulation and role in aerobic glycolysis remain unclear. Here, we identify E2F3 as a direct transcriptional activator of TACC3, with its amplification in BC driving elevated TACC3 expression. TACC3 overexpression enhances glycolysis, increasing glucose consumption, lactate production, and expression of glycolytic enzymes (e.g., GLUT1, HK2, PFKFB3), while its knockdown suppresses these effects. Pharmacological inhibition of glycolysis abrogates TACC3-driven tumor growth in vitro and in vivo. Mechanistically, TACC3 interacts with c-Myc, promoting its acetylation at lysine 323 (K323) by recruiting the acetyltransferase PCAF and antagonizing the deacetylase SIRT1. This acetylation stabilizes c-Myc, amplifying its transcriptional activation of glycolytic targets. Our findings establish TACC3 as a critical regulator of c-Myc-driven metabolic reprogramming in BC, highlighting its potential as a therapeutic target to disrupt glycolysis and oncogenic c-Myc signaling.
Collapse
Affiliation(s)
- Zhirui Lin
- Institute of Medical Research, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, People's Republic of China.
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Falian Liang
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China
| | - Gengde Hong
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China
| | - Xizhen Jiang
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China
| | - Qingling Zhang
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Mengyao Wang
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China.
| |
Collapse
|
4
|
Prichard K, Chau N, Xue J, Krauss M, Sakoff JA, Gilbert J, Bahnik C, Muehlbauer M, Radetzki S, Robinson PJ, Haucke V, McCluskey A. Inhibition Clathrin Mediated Endocytosis: Pitstop 1 and Pitstop 2 Chimeras. ChemMedChem 2024; 19:e202400253. [PMID: 38894585 DOI: 10.1002/cmdc.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Twenty-five chimera compounds of Pitstop 1 and 2 were synthesised and screened for their ability to block the clathrin terminal domain-amphiphysin protein-protein interaction (NTD-PPI using an ELISA) and clathrin mediated endocytosis (CME) in cells. Library 1 was based on Pitstop 2, but no notable clathrin PPI or in-cell activity was observed. With the Pitstop 1, 16 analogues were produced with 1,8-naphthalic imide core as a foundation. Analogues with methylene spaced linkers and simple amides showed a modest to good range of PPI inhibition (7.6-42.5 μM, naphthyl 39 and 4-nitrophenyl 40 respectively) activity. These data reveal the importance of the naphthalene sulfonate moiety, with no des-SO3 analogue displaying PPI inhibition. This was consistent with the observed analogue docked poses within the clathrin terminal domain Site 1 binding pocket. Further modifications targeted the naphthalene imide moiety, with the installation of 5-Br (45 a), 5-OH (45 c) and 5-propyl ether (45 d) moieties. Among them, the OH 45 c and propyl ether 45 d retained PPI inhibition, with propyl ether 45 d being the most active with a PPI inhibition IC50=7.3 μM. This is 2x more potent than Pitstop 2 and 3x more potent than Pitstop 1.
Collapse
Affiliation(s)
- Kate Prichard
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ngoc Chau
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Hawkesbury Road, Westmead, Sydney, Australia
| | - Jing Xue
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Hawkesbury Road, Westmead, Sydney, Australia
| | - Michael Krauss
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Jennette A Sakoff
- Experimental Therapeutics Group, Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW, 2298, Australia
| | - Jayne Gilbert
- Experimental Therapeutics Group, Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW, 2298, Australia
| | - Claudia Bahnik
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Maria Muehlbauer
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Silke Radetzki
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Hawkesbury Road, Westmead, Sydney, Australia
| | - Volker Haucke
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
5
|
Vassilopoulos S, Montagnac G. Clathrin assemblies at a glance. J Cell Sci 2024; 137:jcs261674. [PMID: 38668719 DOI: 10.1242/jcs.261674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Clathrin assembles into honeycomb-like lattices at the plasma membrane but also on internal membranes, such as at the Golgi and tubular endosomes. Clathrin assemblies primarily regulate the intracellular trafficking of different cargoes, but clathrin also has non-endocytic functions in cell adhesion through interactions with specific integrins, contributes to intraluminal vesicle formation by forming flat bilayered coats on endosomes and even assembles on kinetochore k-fibers during mitosis. In this Cell Science at a Glance article and the accompanying poster, we review our current knowledge on the different types of canonical and non-canonical membrane-associated clathrin assemblies in mammalian cells, as observed by thin-section or platinum replica electron microscopy in various cell types, and discuss how the structural plasticity of clathrin contributes to its functional diversity.
Collapse
Affiliation(s)
- Stéphane Vassilopoulos
- Sorbonne Université, Inserm U974, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, 94800 Villejuif, France
| |
Collapse
|
6
|
Turan FB, Ercan ME, Firat-Karalar EN. A Chemically Inducible Organelle Rerouting Assay to Probe Primary Cilium Assembly, Maintenance, and Disassembly in Cultured Cells. Methods Mol Biol 2024; 2725:55-78. [PMID: 37856017 DOI: 10.1007/978-1-0716-3507-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The primary cilium is a conserved, microtubule-based organelle that protrudes from the surface of most vertebrate cells as well as sensory cells of many organisms. It transduces extracellular chemical and mechanical cues to regulate diverse cellular processes during development and physiology. Loss-of-function studies via RNA interference and CRISPR/Cas9-mediated gene knockouts have been the main tool for elucidating the functions of proteins, protein complexes, and organelles implicated in cilium biology. However, these methods are limited in studying acute spatiotemporal functions of proteins as well as the connection between their cellular positioning and functions. A powerful approach based on inducible recruitment of plus or minus end-directed molecular motors to the protein of interest enables fast and precise control of protein activity in time and in space. In this chapter, we present a chemically inducible heterodimerization method for functional perturbation of centriolar satellites, an emerging membrane-less organelle involved in cilium biogenesis and function. The method we present is based on rerouting of centriolar satellites to the cell center or the periphery in mammalian epithelial cells. We also describe how this method can be applied to study the temporal functions of centriolar satellites during primary cilium assembly, maintenance, and disassembly.
Collapse
Affiliation(s)
- F Basak Turan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - M Erdem Ercan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.
- Koc University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
7
|
Saatci O, Sahin O. TACC3: a multi-functional protein promoting cancer cell survival and aggressiveness. Cell Cycle 2023; 22:2637-2655. [PMID: 38197196 PMCID: PMC10936615 DOI: 10.1080/15384101.2024.2302243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
TACC3 is the most oncogenic member of the transforming acidic coiled-coil domain-containing protein (TACC) family. It is one of the major recruitment factors of distinct multi-protein complexes. TACC3 is localized to spindles, centrosomes, and nucleus, and regulates key oncogenic processes, including cell proliferation, migration, invasion, and stemness. Recently, TACC3 inhibition has been identified as a vulnerability in highly aggressive cancers, such as cancers with centrosome amplification (CA). TACC3 has spatiotemporal functions throughout the cell cycle; therefore, targeting TACC3 causes cell death in mitosis and interphase in cancer cells with CA. In the clinics, TACC3 is highly expressed and associated with worse survival in multiple cancers. Furthermore, TACC3 is a part of one of the most common fusions of FGFR, FGFR3-TACC3 and is important for the oncogenicity of the fusion. A detailed understanding of the regulation of TACC3 expression, its key partners, and molecular functions in cancer cells is vital for uncovering the most vulnerable tumors and maximizing the therapeutic potential of targeting this highly oncogenic protein. In this review, we summarize the established and emerging interactors and spatiotemporal functions of TACC3 in cancer cells, discuss the potential of TACC3 as a biomarker in cancer, and therapeutic potential of its inhibition.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
8
|
Burke JE, Triscott J, Emerling BM, Hammond GRV. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat Rev Drug Discov 2023; 22:357-386. [PMID: 36376561 PMCID: PMC9663198 DOI: 10.1038/s41573-022-00582-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Lipid phosphoinositides are master regulators of almost all aspects of a cell's life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.
Collapse
Affiliation(s)
- John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Joanna Triscott
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Sittewelle M, Ferrandiz N, Fesenko M, Royle SJ. Genetically encoded imaging tools for investigating cell dynamics at a glance. J Cell Sci 2023; 136:jcs260783. [PMID: 37039102 DOI: 10.1242/jcs.260783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
The biology of a cell is the sum of many highly dynamic processes, each orchestrated by a plethora of proteins and other molecules. Microscopy is an invaluable approach to spatially and temporally dissect the molecular details of these processes. Hundreds of genetically encoded imaging tools have been developed that allow cell scientists to determine the function of a protein of interest in the context of these dynamic processes. Broadly, these tools fall into three strategies: observation, inhibition and activation. Using examples for each strategy, in this Cell Science at a Glance and the accompanying poster, we provide a guide to using these tools to dissect protein function in a given cellular process. Our focus here is on tools that allow rapid modification of proteins of interest and how observing the resulting changes in cell states is key to unlocking dynamic cell processes. The aim is to inspire the reader's next set of imaging experiments.
Collapse
Affiliation(s)
- Méghane Sittewelle
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Nuria Ferrandiz
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Mary Fesenko
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
10
|
High Expression of TACC3 Is Associated with the Poor Prognosis and Immune Infiltration in Lung Adenocarcinoma Patients. DISEASE MARKERS 2022; 2022:8789515. [PMID: 35855850 PMCID: PMC9288335 DOI: 10.1155/2022/8789515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022]
Abstract
Background Lung adenocarcinoma (LUAD) has been recognized as one of the commonest aggressive malignant tumors occurring in humans. The transforming acidic coiled-coil-containing protein 3 (TACC3) seems to be a probable prognostic marker and treatment target for non-small-cell lung cancer (NSCLC). Nevertheless, there exist no reports on the association between TACC3 and immunotherapy or other therapeutic interventions in LUAD. Methods Premised on the data accessed from The Cancer Genome Atlas- (TCGA-) LUAD, we carried out bioinformatics analysis. The TACC3 expression in LUAD was analyzed utilizing the GEPIA. A survival module was constructed to evaluate the effect of TACC3 on the survival of patients with LUAD. Logistic regression was undertaken to examine the relationship between TACC3 expression and clinical factors. Protein-protein interaction analysis was performed in the GeneMANIA database, and enrichment analysis and identification of predicted signaling pathways were performed using Gene Ontology and Kyoto Encyclopedia of Genes. Additionally, the Cox regression was used to assess the clinicopathologic features linked to the overall survival in TCGA patients. Lastly, we investigated the link between TACC3 and tumor-infiltrating immune cells (TIICs) through CIBERSORT and the “Correlation” module of GEPIA. The association between TACC3 gene expression and drug response was analyzed using the CellMiner database to predict drug sensitivity. Results The outcomes illustrated that TACC3 was upregulated and considerably correlated with dismal prognosis in LUAD patients. Moreover, the multivariate Cox regression analysis depicted TACC3 as an independent prognostic marker in LUAD patients. It was also revealed that the expression of TACC3 was related to clinical stage (P = 0.014), age (P = 0.002), and T classification (P ≤ 0.018). Moreover, we discovered that the expression of TACC3 was considerably linked to a wide range of TIICs, especially the T cells and NK cells. Single-cell results found that TACC3 was mainly expressed in the immune cells (especially tprolif cells) and malignant cells. TACC3 gene expression was positively correlated with TMB and MSI, and TACC3 may provide a prediction of the efficacy of immunotherapy. Moreover, the correlation analysis between TACC3 gene expression and immune checkpoint gene expression revealed that TACC3 may coordinate the activities of these ICP genes in different signal transduction pathways. TACC3 is related to biological progress (BP), cellular component (CC), and molecular function (MF). The pathways involved in the interaction network involving TACC3 include nonhomologous end-joining, RNA transport, pantothenate and CoA biosynthesis, homologous recombination, and nucleotide excision repair. Furthermore, we investigated the association between the expression of TACC3 and the use of antitumor drugs, and TACC3 was positively correlated with response to most drugs. Conclusion The findings from this research offer robust proof that the expression of TACC3 could be a prognostic marker correlated with TIICs in LUAD. TACC3 can also provide new ideas for immunotherapy as a potential therapeutic target.
Collapse
|
11
|
Larocque G, Royle SJ. Integrating intracellular nanovesicles into integrin trafficking pathways and beyond. Cell Mol Life Sci 2022; 79:335. [PMID: 35657500 PMCID: PMC9166830 DOI: 10.1007/s00018-022-04371-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Membrane traffic controls the movement of proteins and lipids from one cellular compartment to another using a system of transport vesicles. Intracellular nanovesicles (INVs) are a newly described class of transport vesicles. These vesicles are small, carry diverse cargo, and are involved in multiple trafficking steps including anterograde traffic and endosomal recycling. An example of a biological process that they control is cell migration and invasion, due to their role in integrin recycling. In this review, we describe what is known so far about these vesicles. We discuss how INVs may integrate into established membrane trafficking pathways using integrin recycling as an example. We speculate where in the cell INVs have the potential to operate and we identify key questions for future investigation.
Collapse
Affiliation(s)
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|