1
|
Ohtsuka H, Kawai S, Ito Y, Kato Y, Shimasaki T, Imada K, Otsubo Y, Yamashita A, Mishiro‐Sato E, Kuwata K, Aiba H. Novel TORC1 inhibitor Ecl1 is regulated by phosphorylation in fission yeast. Aging Cell 2025; 24:e14450. [PMID: 39910760 PMCID: PMC11984688 DOI: 10.1111/acel.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 02/07/2025] Open
Abstract
Extender of chronological lifespan 1 (Ecl1) inhibits target of rapamycin complex 1 (TORC1) and is necessary for appropriate cellular responses to various stressors, such as starvation, in fission yeast. However, little is known about the effect of posttranslational modifications on Ecl1 regulation. Thus, we investigated the phosphorylation levels of Ecl1 extracted from yeast under conditions of sulfur or metal starvation. Mass spectrometry analysis revealed that Ecl1 was phosphorylated at Thr7, and the level was decreased by starvation. The phosphorylation-mimetic mutation of Thr7 significantly reduced the effects of Ecl1-induced cellular responses to starvation, suggesting that Ecl1 function was suppressed by Thr7 phosphorylation. By contrast, regardless of starvation exposure, TORC1 was significantly suppressed, even when Thr7 phosphorylation-mimetic Ecl1 was overexpressed. This indicated that Ecl1 suppressed TORC1 regardless of Thr7 phosphorylation. We newly identified that Ecl1 physically interacted with TORC1 subunit RAPTOR (Mip1). Based on these evidences, we propose that, Ecl1 has dual functional modes: quantity-dependent TORC1 inhibition and Thr7 phosphorylation-dependent control of cellular function.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Sawa Kawai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Yurika Ito
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Yuka Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Takafumi Shimasaki
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Kazuki Imada
- Department of Chemistry and BiochemistrySuzuka College, National Institute of Technology (KOSEN)SuzukaJapan
- Department of Biology, Graduate School of ScienceOsaka City UniversityOsakaJapan
| | - Yoko Otsubo
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
- Life Science NetworkThe University of TokyoTokyoJapan
| | - Akira Yamashita
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Emi Mishiro‐Sato
- Institute of Transformative bio‐MoleculesTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Keiko Kuwata
- Institute of Transformative bio‐MoleculesTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Hirofumi Aiba
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| |
Collapse
|
2
|
Dang W, Wang Z, Li H, Yuan H, Iqbal B, Zhang H. Negative Regulation of Kog1 on Lipid Accumulation in the Oleaginous Fungus Mucor circinelloides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6807-6819. [PMID: 40052636 DOI: 10.1021/acs.jafc.4c12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Oleaginous microorganisms can produce polyunsaturated fatty acids beneficial to human health through adjusting the nitrogen content in the medium. The target of rapamycin complex 1 (TORC1) is important for nitrogen sensing and then regulates lipid metabolism. However, the function of Kog1, a subunit of TORC1, in TORC1-regulated lipid metabolism in oleaginous microorganisms remains unclear. In this study, the gene kog1 was knocked out to explore the mechanism of lipid accumulation in the oleaginous fungus M. circinelloides under nitrogen-limited and nitrogen-rich conditions. The results showed that the cell dry weight (CDW) of the kog1 deletion mutant was obviously decreased from 22.2 to 15.4 g/L under nitrogen-limited conditions; however, the lipid content markedly increased by 43.2% compared to the control, from 20.8% of CDW to 29.9%. A similar trend was observed under nitrogen-rich conditions; the cell growth was significantly inhibited, the CDW was decreased from 28.6 to 23.0 g/L, and the lipid content increased by 79.6% compared to the control strain, reaching 9.7% of CDW. The addition of rapamycin further enhanced lipid accumulation in the kog1 knockout mutant but not in the tor knockout mutant, indicating that Kog1 is the upstream target of rapamycin (TOR) in regulating lipid regulation. Transcriptional analysis under both nitrogen-limited and nitrogen-rich conditions notably suggested that nitrogen stress may activate Snf1/AMPK to inhibit Kog1, facilitating SREBP-1c nuclear translocation and activating fatty acid biosynthesis genes.
Collapse
Affiliation(s)
- Wenrui Dang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Zhen Wang
- School of public health, Qilu Medical University, Zibo, Shandong 255300, People's Republic of China
| | - Hequn Li
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Hongjuan Yuan
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Bushra Iqbal
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Huaiyuan Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| |
Collapse
|
3
|
Morozumi Y, Hayashi Y, Chu CM, Sofyantoro F, Akikusa Y, Fukuda T, Shiozaki K. Fission yeast Pib2 localizes to vacuolar membranes and regulates TOR complex 1 through evolutionarily conserved domains. FEBS Lett 2024; 598:2886-2896. [PMID: 39010328 DOI: 10.1002/1873-3468.14980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024]
Abstract
TOR complex 1 (TORC1) is a multi-protein kinase complex that coordinates cellular growth with environmental cues. Recent studies have identified Pib2 as a critical activator of TORC1 in budding yeast. Here, we show that loss of Pib2 causes severe growth defects in fission yeast cells, particularly when basal TORC1 activity is diminished by hypomorphic mutations in tor2, the gene encoding the catalytic subunit of TORC1. Consistently, TORC1 activity is significantly compromised in the tor2 hypomorphic mutants lacking Pib2. Moreover, as in budding yeast, fission yeast Pib2 localizes to vacuolar membranes via its FYVE domain, with its tail motif indispensable for TORC1 activation. These results strongly suggest that Pib2-mediated positive regulation of TORC1 is evolutionarily conserved between the two yeast species.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yumi Hayashi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Cuong Minh Chu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Fajar Sofyantoro
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yutaka Akikusa
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tomoyuki Fukuda
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| |
Collapse
|
4
|
Zeng Q, Araki Y, Noda T. Pib2 is a cysteine sensor involved in TORC1 activation in Saccharomyces cerevisiae. Cell Rep 2024; 43:113599. [PMID: 38127619 DOI: 10.1016/j.celrep.2023.113599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/24/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a master regulator that monitors the availability of various amino acids to promote cell growth in Saccharomyces cerevisiae. It is activated via two distinct upstream pathways: the Gtr pathway, which corresponds to mammalian Rag, and the Pib2 pathway. This study shows that Ser3 was phosphorylated exclusively in a Pib2-dependent manner. Using Ser3 as an indicator of TORC1 activity, together with the established TORC1 substrate Sch9, we investigated which pathways were employed by individual amino acids. Different amino acids exhibited different dependencies on the Gtr and Pib2 pathways. Cysteine was most dependent on the Pib2 pathway and increased the interaction between TORC1 and Pib2 in vivo and in vitro. Moreover, cysteine directly bound to Pib2 via W632 and F635, two critical residues in the T(ail) motif that are necessary to activate TORC1. These results indicate that Pib2 functions as a sensor for cysteine in TORC1 regulation.
Collapse
Affiliation(s)
- Qingzhong Zeng
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Yasuhiro Araki
- Center for Frontier Oral Sciences, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan.
| | - Takeshi Noda
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan; Center for Frontier Oral Sciences, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Morozumi Y, Mahayot F, Nakase Y, Soong JX, Yamawaki S, Sofyantoro F, Imabata Y, Oda AH, Tamura M, Kofuji S, Akikusa Y, Shibatani A, Ohta K, Shiozaki K. Rapamycin-sensitive mechanisms confine the growth of fission yeast below the temperatures detrimental to cell physiology. iScience 2024; 27:108777. [PMID: 38269097 PMCID: PMC10805665 DOI: 10.1016/j.isci.2023.108777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/12/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Cells cease to proliferate above their growth-permissible temperatures, a ubiquitous phenomenon generally attributed to heat damage to cellular macromolecules. We here report that, in the presence of rapamycin, a potent inhibitor of Target of Rapamycin Complex 1 (TORC1), the fission yeast Schizosaccharomyces pombe can proliferate at high temperatures that usually arrest its growth. Consistently, mutations to the TORC1 subunit RAPTOR/Mip1 and the TORC1 substrate Sck1 significantly improve cellular heat resistance, suggesting that TORC1 restricts fission yeast growth at high temperatures. Aiming for a more comprehensive understanding of the negative regulation of high-temperature growth, we conducted genome-wide screens, which identified additional factors that suppress cell proliferation at high temperatures. Among them is Mks1, which is phosphorylated in a TORC1-dependent manner, forms a complex with the 14-3-3 protein Rad24, and suppresses the high-temperature growth independently of Sck1. Our study has uncovered unexpected mechanisms of growth restraint even below the temperatures deleterious to cell physiology.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Fontip Mahayot
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yukiko Nakase
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Jia Xin Soong
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Sayaka Yamawaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Fajar Sofyantoro
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta 55281, Indonesia
| | - Yuki Imabata
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Arisa H. Oda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Miki Tamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Shunsuke Kofuji
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yutaka Akikusa
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ayu Shibatani
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
An H, Gan T, Tang M, Chen H. Molecular Mechanism of Overcoming Host Resistance by the Target of Rapamycin Gene in Leptographium qinlingensis. Microorganisms 2022; 10:microorganisms10030503. [PMID: 35336079 PMCID: PMC8954470 DOI: 10.3390/microorganisms10030503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Leptographium qinlingensis is a fungal symbiont of the Chinese white pine beetle (Dendroctonus armandi) and a pathogen of the Chinese white pine (Pinus armandii) that must overcome the terpenoid oleoresin defenses of host trees to invade and colonize. L. qinlingensis responds to monoterpene flow with abundant mechanisms that include the decomposing and use of these compounds as a nitrogen source. Target of Rapamycin (TOR) is an evolutionarily conserved protein kinase that plays a central role in both plants and animals through integration of nutrients, energies, hormones, growth factors and environmental inputs to control proliferation, growth and metabolism in diverse multicellular organisms. In this study, in order to explore the relationship between TOR gene and carbon sources, nitrogen sources, host nutrients and host volatiles (monoterpenoids) in L. qinlingensis, we set up eight carbon source treatments, ten nitrogen source treatments, two host nutrients and six monoterpenoids (5%, 10% and 20%) treatments, and prepared different media conditions. By measuring the biomass and growth rate of mycelium, the results revealed that, on the whole, the response of L. qinlingensis to nitrogen sources was better than carbon sources, and the fungus grew well in maltose (carbon source), (NH4)2C2O4 (inorganic nitrogen source), asparagine (organic nitrogen source) and P. armandii (host nutrient) versus other treatments. Then, by analyzing the relationship between TOR expression and different nutrients, the data showed that: (i) TOR expression exhibited negative regulation in response to carbon sources and host nutrition. (ii) The treatments of nitrogen sources and terpenoids had positively regulatory effects on TOR gene; moreover, the fungus was most sensitive to β-pinene and 3-carene. In conclusion, our findings reveal that TOR in L. qinlingensis plays a key role in the utilization of host volatiles as nutrient intake, overcoming the physical and chemical host resistances and successful colonization.
Collapse
|