1
|
Wimmers DG, Huebner K, Dale T, Papargyriou A, Reichert M, Hartmann A, Schneider-Stock R. A floating collagen matrix triggers ring formation and stemness characteristics in human colorectal cancer organoids. Pathol Res Pract 2025; 269:155890. [PMID: 40073643 DOI: 10.1016/j.prp.2025.155890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/06/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
Intestinal organoids reflect the 3D structure and function of their original tissues. Organoid are typically cultured in Matrigel, an extracellular matrix (ECM) mimicking the basement membrane, which is suitable for epithelial cells but does not accurately mimic the tumour microenvironment of colorectal cancer (CRC). The ECM and particularly collagen type I is crucial for CRC progression and invasiveness. Given that efforts to examine CRC organoid invasion in a more physiologically relevant ECM have been limited, we used a floating collagen type I matrix (FC) to study organoid invasion in three patient-derived CRC organoid lines. In FC gel, organoids contract, align, and fuse into macroscopic ring structures, initiating minor branch formation and invasion fronts, phenomena unique for the collagen ECM and otherwise not observed in Matrigel-grown CRC organoids. In contrast to Matrigel, FC organoids showed basal extrusion with improper actin localization, but without change in the organoid polarity. Moreover, small clusters of vital invading cells were observed. Gene expression analysis revealed that the organoids cultured in a FC matrix presented more epithelial and stem cell-like characteristics. This novel technique of cultivating CRC organoids in a FC matrix represents an in-vitro model for studying cancer organization and matrix remodelling with increased organoid stemness potential.
Collapse
Affiliation(s)
- Daniel Gerhard Wimmers
- Experimental Tumorpathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Kerstin Huebner
- Experimental Tumorpathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Trevor Dale
- Cardiff University, European Cancer Stem Cell Research Institute (ECSCRI), School of Bioscience, Cardiff, United Kingdom
| | - Aristeidis Papargyriou
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Technical University of Munich, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Maximilian Reichert
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Technical University of Munich, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, 85764, Germany; Center for Organoid Systems, Technical University of Munich, Garching, Germany; Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, Garching, Germany; German Center for Translational Cancer Research (DKTK), Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Arndt Hartmann
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| |
Collapse
|
2
|
Matsuura Y, Onuma K, Coppo R, Uematsu H, Kondo J, Miyagawa‐Hayashino A, Takeda‐Miyata N, Kameyama K, Furuya T, Okada S, Shimomura M, Inoue M, Inoue M. Dynamic change of polarity in spread through air spaces of pulmonary malignancies. J Pathol 2025; 265:260-273. [PMID: 39804150 PMCID: PMC11794978 DOI: 10.1002/path.6382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/16/2024] [Accepted: 11/22/2024] [Indexed: 02/06/2025]
Abstract
Spread through air spaces (STAS) is a histological finding of lung tumours where tumour cells exist within the air space of the lung parenchyma beyond the margin of the main tumour. Although STAS is an important prognostic factor, the pathobiology of STAS remains unclear. Here, we investigated the mechanism of STAS by analysing the relationship between STAS and polarity switching in vivo and in vitro. Histopathological analysis revealed that apical membranes were observed outside the STAS lesions around colorectal cancer (CRC) lung metastases and lung adenocarcinomas. When apical-out CRC organoids were administered intratracheally to mice, the organoids had greater metastatic potential than did single cells. To investigate the pathobiology of STAS, we established an in vitro model of STAS in which CRC or lung cancer organoids were co-cultured with 2D-cultured mouse airway epithelial organoids (2D-MAOs). Adhesion of cancer organoids to 2D-MAOs was much less than to type I collagen or endothelial cells, suggesting a protective role of the airway epithelium against adhesion. Loss of the apical membrane of CRC organoids at the contact surface with 2D-MAOs after adhesion was responsible for establishing adhesion. When airway epithelium was stimulated by transforming growth factor beta 1 (TGF-β1), adhesion of CRC organoids was enhanced. Among TGF-β1-induced genes in airway epithelium, follistatin-like protein 1 (FSTL1) increased CRC organoid adhesion by promoting loss of the apical membrane. These results suggested that TGF-β1-induced FSTL1 may promote metastatic progression of STAS by altering the polarity status. Elucidating the mechanism of STAS could contribute to the improvement of survival in patients with pulmonary malignancies associated with STAS. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Grants
- 21cm0106203h0006 Japan Agency for Medical Research and Development
- 18H02648 Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan
- 20H03772 Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan
- 20K08286 Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan
- 22K08982 Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan
- 23K07395 Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan
- Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Yoshiaki Matsuura
- Department of Clinical Bio‐resource Research and Development, Graduate School of MedicineKyoto UniversityKyotoJapan
- Divison of Thoracic Surgery, Department of Surgery, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Kunishige Onuma
- Department of Clinical Bio‐resource Research and Development, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Roberto Coppo
- Department of Clinical Bio‐resource Research and Development, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiroyuki Uematsu
- Department of Clinical Bio‐resource Research and Development, Graduate School of MedicineKyoto UniversityKyotoJapan
- KBBM Inc.KyotoJapan
| | - Jumpei Kondo
- Department of Clinical Bio‐resource Research and Development, Graduate School of MedicineKyoto UniversityKyotoJapan
- Department of Molecular Biology and Clinical Investigation, Graduate School of MedicineOsaka UniversityOsakaJapan
| | | | - Naoko Takeda‐Miyata
- Department of Surgical PathologyKyoto Prefectural University of MedicineKyotoJapan
| | - Kenji Kameyama
- Department of Clinical Bio‐resource Research and Development, Graduate School of MedicineKyoto UniversityKyotoJapan
- Divison of Thoracic Surgery, Department of Surgery, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Tatsuo Furuya
- Divison of Thoracic Surgery, Department of Surgery, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Satoru Okada
- Divison of Thoracic Surgery, Department of Surgery, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Masanori Shimomura
- Divison of Thoracic Surgery, Department of Surgery, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Masayoshi Inoue
- Divison of Thoracic Surgery, Department of Surgery, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Masahiro Inoue
- Department of Clinical Bio‐resource Research and Development, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
3
|
Pasquier N, Jaulin F, Peglion F. Inverted apicobasal polarity in health and disease. J Cell Sci 2024; 137:jcs261659. [PMID: 38465512 PMCID: PMC10984280 DOI: 10.1242/jcs.261659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Apicobasal epithelial polarity controls the functional properties of most organs. Thus, there has been extensive research on the molecular intricacies governing the establishment and maintenance of cell polarity. Whereas loss of apicobasal polarity is a well-documented phenomenon associated with multiple diseases, less is known regarding another type of apicobasal polarity alteration - the inversion of polarity. In this Review, we provide a unifying definition of inverted polarity and discuss multiple scenarios in mammalian systems and human health and disease in which apical and basolateral membrane domains are interchanged. This includes mammalian embryo implantation, monogenic diseases and dissemination of cancer cell clusters. For each example, the functional consequences of polarity inversion are assessed, revealing shared outcomes, including modifications in immune surveillance, altered drug sensitivity and changes in adhesions to neighboring cells. Finally, we highlight the molecular alterations associated with inverted apicobasal polarity and provide a molecular framework to connect these changes with the core cell polarity machinery and to explain roles of polarity inversion in health and disease. Based on the current state of the field, failure to respond to extracellular matrix (ECM) cues, increased cellular contractility and membrane trafficking defects are likely to account for most cases of inverted apicobasal polarity.
Collapse
Affiliation(s)
- Nicolas Pasquier
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
- Cell Adhesion and Cancer lab, University of Turku, FI-20520 Turku, Finland
| | - Fanny Jaulin
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
| | - Florent Peglion
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
| |
Collapse
|
4
|
Peglion F, Etienne-Manneville S. Cell polarity changes in cancer initiation and progression. J Cell Biol 2024; 223:e202308069. [PMID: 38091012 PMCID: PMC10720656 DOI: 10.1083/jcb.202308069] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Cell polarity, which consists of the morphological, structural, and functional organization of cells along a defined axis, is a feature of healthy cells and tissues. In contrast, abnormal polarity is a hallmark of cancer cells. At the molecular level, key evolutionarily conserved proteins that control polarity establishment and maintenance in various contexts are frequently altered in cancer, but the relevance of these molecular alterations in the oncogenic processes is not always clear. Here, we summarize the recent findings, shedding new light on the involvement of polarity players in cancer development, and discuss the possibility of harnessing cell polarity changes to better predict, diagnose, and cure cancers.
Collapse
Affiliation(s)
- Florent Peglion
- Cell Polarity, Migration and Cancer Unit, Université de Paris, UMR3691 CNRS, Equipe Labellisée Ligue 2023, Institut Pasteur, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Université de Paris, UMR3691 CNRS, Equipe Labellisée Ligue 2023, Institut Pasteur, Paris, France
| |
Collapse
|
5
|
Gelli M, Desterke C, Bani MA, Boige V, Ferté C, Dartigues P, Job B, Perkins G, Laurent-Puig P, Goéré D, Mathieu JRR, Cartry J, Ducreux M, Jaulin F. Primary Colorectal Tumor Displays Differential Genomic Expression Profiles Associated with Hepatic and Peritoneal Metastases. Cancers (Basel) 2023; 15:4418. [PMID: 37686695 PMCID: PMC10648258 DOI: 10.3390/cancers15174418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Despite improvements in characterization of CRC heterogeneity, appropriate risk stratification tools are still lacking in clinical practice. This study aimed to elucidate the primary tumor transcriptomic signatures associated with distinct metastatic routes. METHODS Primary tumor specimens obtained from CRC patients with either isolated LM (CRC-Liver) or PM (CRC-Peritoneum) were analyzed by transcriptomic mRNA sequencing, gene set enrichment analyses (GSEA) and immunohistochemistry. We further assessed the clinico-pathological associations and prognostic value of our signature in the COAD-TCGA independent cohort. RESULTS We identified a significantly different distribution of Consensus Molecular Subtypes between CRC-Liver and CRC-peritoneum groups. A transcriptomic signature based on 61 genes discriminated between liver and peritoneal metastatic routes. GSEA showed a higher expression of immune response and epithelial invasion pathways in CRC-Peritoneum samples and activation of proliferation and metabolic pathways in CRC-Liver samples. The biological relevance of RNA-Seq results was validated by the immunohistochemical expression of three significantly differentially expressed genes (ACE2, CLDN18 and DUSP4) in our signature. In silico analysis of the COAD-TCGA showed that the CRC-Peritoneum signature was associated with negative prognostic factors and poor overall and disease-free survivals. CONCLUSIONS CRC primary tumors spreading to the liver and peritoneum display significantly different transcriptomic profiles. The implementation of this signature in clinical practice could contribute to identify new therapeutic targets for stage IV CRC and to define individualized follow-up programs in stage II-III CRC.
Collapse
Affiliation(s)
- Maximiliano Gelli
- Université Paris-Saclay, Gustave Roussy, INSERM, Dynamique des Cellules Tumorales (U-1279), F-94805 Villejuif, France; (M.G.); (D.G.); (J.R.R.M.); (J.C.); (M.D.)
- Gustave Roussy, Département de Anesthésie, Chirurgie et Interventionnel, F-94805 Villejuif, France
| | - Christophe Desterke
- Université Paris Saclay, INSERM, Modèles de Cellules Souches Malignes et Thérapeutiques (UMR1310), F-94805 Villejuif, France;
| | - Mohamed Amine Bani
- Gustave Roussy, Département de Biologie et Pathologie Médicale, F-94805 Villejuif, France; (M.A.B.); (P.D.)
- Université Paris-Saclay, CNRS, Inserm, US23, UMS3655, F-94805 Villejuif, France;
| | - Valérie Boige
- Gustave Roussy, Département de Médecine Oncologique, F-94805 Villejuif, France; (V.B.); (C.F.)
| | - Charles Ferté
- Gustave Roussy, Département de Médecine Oncologique, F-94805 Villejuif, France; (V.B.); (C.F.)
| | - Peggy Dartigues
- Gustave Roussy, Département de Biologie et Pathologie Médicale, F-94805 Villejuif, France; (M.A.B.); (P.D.)
| | - Bastien Job
- Université Paris-Saclay, CNRS, Inserm, US23, UMS3655, F-94805 Villejuif, France;
| | - Geraldine Perkins
- Institut du Cancer Paris CARPEM, AP-HP, AP-HP Centre, Department of Hepatogastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, 20 Rue Leblanc, F-75015 Paris, France;
| | - Pierre Laurent-Puig
- Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, INSERM, CNRS, F-75005 Paris, France;
| | - Diane Goéré
- Université Paris-Saclay, Gustave Roussy, INSERM, Dynamique des Cellules Tumorales (U-1279), F-94805 Villejuif, France; (M.G.); (D.G.); (J.R.R.M.); (J.C.); (M.D.)
- Gustave Roussy, Département de Anesthésie, Chirurgie et Interventionnel, F-94805 Villejuif, France
| | - Jacques R. R. Mathieu
- Université Paris-Saclay, Gustave Roussy, INSERM, Dynamique des Cellules Tumorales (U-1279), F-94805 Villejuif, France; (M.G.); (D.G.); (J.R.R.M.); (J.C.); (M.D.)
| | - Jerome Cartry
- Université Paris-Saclay, Gustave Roussy, INSERM, Dynamique des Cellules Tumorales (U-1279), F-94805 Villejuif, France; (M.G.); (D.G.); (J.R.R.M.); (J.C.); (M.D.)
| | - Michel Ducreux
- Université Paris-Saclay, Gustave Roussy, INSERM, Dynamique des Cellules Tumorales (U-1279), F-94805 Villejuif, France; (M.G.); (D.G.); (J.R.R.M.); (J.C.); (M.D.)
- Gustave Roussy, Département de Médecine Oncologique, F-94805 Villejuif, France; (V.B.); (C.F.)
| | - Fanny Jaulin
- Université Paris-Saclay, Gustave Roussy, INSERM, Dynamique des Cellules Tumorales (U-1279), F-94805 Villejuif, France; (M.G.); (D.G.); (J.R.R.M.); (J.C.); (M.D.)
| |
Collapse
|
6
|
Del Valle JS, Chuva de Sousa Lopes SM. Bioengineered 3D Ovarian Models as Paramount Technology for Female Health Management and Reproduction. Bioengineering (Basel) 2023; 10:832. [PMID: 37508859 PMCID: PMC10376580 DOI: 10.3390/bioengineering10070832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Ovarian dysfunction poses significant threats to the health of female individuals. Ovarian failure can lead to infertility due to the lack or inefficient production of fertilizable eggs. In addition, the ovary produces hormones, such as estrogen and progesterone, that play crucial roles not only during pregnancy, but also in maintaining cardiovascular, bone, and cognitive health. Decline in estrogen and progesterone production due to ovarian dysfunction can result in menopausal-associated syndromes and lead to conditions, such as osteoporosis, cardiovascular disease, and Alzheimer's disease. Recent advances in the design of bioengineered three-dimensional (3D) ovarian models, such as ovarian organoids or artificial ovaries, have made it possible to mimic aspects of the cellular heterogeneity and functional characteristics of the ovary in vitro. These novel technologies are emerging as valuable tools for studying ovarian physiology and pathology and may provide alternatives for fertility preservation. Moreover, they may have the potential to restore aspects of ovarian function, improving the quality of life of the (aging) female population. This review focuses on the state of the art of 3D ovarian platforms, including the latest advances modeling female reproduction, female physiology, ovarian cancer, and drug screening.
Collapse
Affiliation(s)
- Julieta S Del Valle
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Bootsma S, Bijlsma MF, Vermeulen L. The molecular biology of peritoneal metastatic disease. EMBO Mol Med 2023; 15:e15914. [PMID: 36700339 PMCID: PMC9994485 DOI: 10.15252/emmm.202215914] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/27/2023] Open
Abstract
Peritoneal metastases are a common form of tumor cell dissemination in gastrointestinal malignancies. Peritoneal metastatic disease (PMD) is associated with severe morbidity and resistance to currently employed therapies. Given the distinct route of dissemination compared with distant organ metastases, and the unique microenvironment of the peritoneal cavity, specific tumor cell characteristics are needed for the development of PMD. In this review, we provide an overview of the known histopathological, genomic, and transcriptomic features of PMD. We find that cancers representing the mesenchymal subtype are strongly associated with PMD in various malignancies. Furthermore, we discuss the peritoneal niche in which the metastatic cancer cells reside, including the critical role of the peritoneal immune system. Altogether, we show that PMD should be regarded as a distinct disease entity, that requires tailored treatment strategies.
Collapse
Affiliation(s)
- Sanne Bootsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC, Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Center Amsterdam, Cancer BiologyAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
- Oncode InstituteAmsterdamThe Netherlands
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC, Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Center Amsterdam, Cancer BiologyAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
- Oncode InstituteAmsterdamThe Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC, Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Center Amsterdam, Cancer BiologyAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
- Oncode InstituteAmsterdamThe Netherlands
| |
Collapse
|
8
|
First person – Charlotte Canet-Jourdan. J Cell Sci 2022. [DOI: 10.1242/jcs.260403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Charlotte Canet-Jourdan is first author on ‘ Patient-derived organoids identify an apico-basolateral polarity switch associated with survival in colorectal cancer’, published in JCS. Charlotte conducted the research described in this article while a PhD student in Fanny Jaulin's lab at Institut Gustave Roussy, Villejuif, France, and is now a postdoc in the lab of Ana-Maria Lennon-Duménil at Institut Curie, Paris. She is passionate about cancer cell biology and is now investigating the intricate relationships between tumor and immune cells, especially macrophages.
Collapse
|